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1. Introduction

The notion of a semiring was introduced by Vandinet934. Needless to say, semirings
found their full place in Mathematics long beforays. The applications of semirings to
areas such as optimization theory, graph theonemgdized fuzzy computation, automata
theory, formal language theory, coding theory andlysis of computer programs have
been extensively studied in the literature (cf8]),It is also well-known that ideals
usually play a fundamental role in algebra, espligdiathe study of rings. Nevertheless,
ideals in a semirin® do not in general coincide with the usual ringaidef S is a ring,
and so many results in ring theory have no ana®guesemirings using only ideals.
Consequently, some more restricted concepts ofsidesch as k-ideals [9] and h-ideals
[10] have been introduced in the study of the siagiitheory. Moreover, the fuzzy set
theory initiated by Zadeh [16] has been successfytiplied to generalize many basic
concepts in algebra. Rosenfeld [14] proposed tmeeqmt of group in order to establish
the algebraic structure of fuzzy sets. In factesalvresearchers have investigated a fuzzy
theory in semirings. They introduced the notionfuaky semirings, fuzzy (prime) ideals,
fuzzy k-ideals, fuzzy h-ideals and L-fuzzy idealssemirings, and obtained many related
results. However, all of these theories have thwein difficulties which are pointed out in
[13] by Molodtsov who then proposed a completelywnapproach for modeling
vagueness and uncertainty, that is free from tfieulties. This so-called soft set theory
has potential applications in many different fielti4aji et al. [11] firstly worked on
detailed theoretical study of soft sets. After thhe properties and applications on the
soft set theory have been studied by many autleogs [, 2, 3, 4, 6, 12, 15, 17]). Feng et
al. [5] dealt with the algebraic structure of sengs by applying soft set theory and
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defined the notion of a soft semiring and focusedtle algebraic properties of soft
semirings. In this paper, we make a new approchdalassical semiring theory via soft
sets, with the concept of soft intersection sermgirand soft intersection ideals of
semirings.

2. Preliminaries

Molodtsov [13] defined the notion of a soft setlie following way: LetU be an initial
universe set an€E be a set of parameters. The power sdt) ois denoted byP(U) and

A is a subset of U. A paifF, A) is called a soft set over U, wheFe: A . P(U).For
ed A F(e) may be considered as the set@fapproximate elements of the soft set
(F,A). Clearly, a soft set is not a set. For illustratiddolodtsov considered several
examples in [13].

Example 2.1. Let U ={c,C,C,C,C;CyC} be the set of seven cars and

expensive, fuel efficiency, spacious, maintenanmea® f, ecofriendly, high security
measurg are set of parameters. LEE, P) be a soft set representing the “suitable cars”

given by (F,P)={expensivecars={c, c, c, ¢}, fuel efficiency ={c, c,, C, C},
spacious={c, C, C, C4, maintenance free{cC, C, C C} ecofriendly={c, C,, C, ,
high security measure={c,, C,, C, C}}. Suppose that Mr X wants to buy a car

consisting the parameter fuel efficiency, spaciaes friendly, high security measure
which forms the subseP ={fuel efficiency, spacious, eco friendly, high sety
measure} of the seE. The problem is to select the car which is suéaith the choice
parameters set by Mr X.

Definition 2.2. Let f,, f; OS(U). Then, f, is called a soft subset df; and denoted
by f, O fg if f,(X) 0O fy(x) forall XxOE.

Definition 2.3. Let f,, fy OS(U). Then, union off, and f; denoted byf, I fg, is
defined as f, O f, = f, 5, where f, 5 (X) = f,(X) O f;(x) for all XUE.

Definition 2.4. Let f,, f;0S(WU). Then, intersection off, and f; denoted by
f,n fg, is defined as f,n fy; =1, 5, where f, (X)="f,(X)n fz(X) for all

xUE.

Definition 2.5. Let f,, f;JS(U). Then, U-product of f, and f, denoted by
f,Ofg, is defined as f,0f; =f, 5, where f, 5(X,y)=f,(X)n f;(y) for all

(x,y) UEXE.

Definition 2.6. Let f, and f; be soft sets over the common universe U 8hdbe a

function from A to B. Then, soft image of ,under ¥ , denoted by¥(f,), is a soft set
overU by
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(W(f))(b) ={U{ f(@labA a(;“d W@ =bhif WD 20,
,otherwise

for all bOB. And soft pre-image (or soft inverse image) ff under W, denoted by
W (f,), is a soft set oveld by W7(f;)(a) = f,(W(a))forall al A

Definition 2.7.Let f, be a soft set ovdd and a [1U.Then, uppera -inclusion of f,,
denoted byJ (f,; ), is defined adJ (f,;a) ={xOA| (X Ua}.
3. Soft Intersection sum, product and soft characteristic function

In this section, we define soft intersection sumpdpict and soft characteristic function
and study their properties.

Definition 3.1. Let fg and g5 be soft sets over the common univetde Then, soft
intersection sumfg + gg is defined by
U {f<(y) n a2}, if there existsy, 7] ¢

(fs +gs)(X) = ey
00 ,otherwise.

for all xOS.

Definition 3.2. Let fg and g4 be soft sets over the common univetde Then, soft
intersection product o gg is defined by
UJLfY nad 2}, if there existsy, 7] ¢

(fs ° gs)(x) =%y
O ,otherwise.

for all XIS,
Example 3.3. Consider the semiring S={0,a,b,c} defined by tbkofving table:

0|0 |A|b |c ® |0 a b C
0 |0|A|b]|cC 0O |0 [0 |O |O
a a B lc a a 0 a b C
b |[blclalb b |0 b b |c
C c A lb lc C 0 C C C

Let U=D,={<xy>x’=y’=exy=yx} {ex x’y yx yx} be the universal
set. Let fg and gy be soft sets ovetd such that f;(0)={e x y, yx, fs(a)=
{ex ¥} fs(b)={ey yx3}, fs(c)={e xx* y} andgs(0) ={e y,y’}, gs(a) =

{e x ¥4, 9s(b) ={e yx %, 9s(c) ={e y, & (fso9s)(@)=(fs(@)n gs(a))
={e %,
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(fs°95)(B) = (fs(@) n g5 (M) O (fs(0) N g5(@) O(fs(B) N gs(0)) ={8 e Te YK 5 e ¥
(fs29)(Q) =(fs(8) N 95(0) D(fs(0) n 65(9)) U (fs(Q) n 9s(a)) D(fs () n g5 (0) U (fs(C) N 95(C)
e ey tax{d el ¢ Tey

={ex
Theorem 3.4. Lefs, g, hg € S(U). Then,

(1) (fsegs)ehs = fso(gsohy).

2) fso0s # fso Qs.

(3) fso(gsDhs)=(fs°gs)D(fs°hs)and(stgs)ohs:(fsohs)D(gsohs)-
50 (05 1) = (500 A (fohy) 4 (Fon gg)ohy = (fyohy)o(ggohy).

©) If fs0gg thenfgohgyOggohgandhgo fgOhgo Q.

(6) If tslsBSU) guch thafs U fs andls B9t thenls©9s B fse 0s.

(8) fso(gs +hs) =(fsogs) +(fsohy).
Proof: (1) and (2) follows from Definition 3.1 and Examfddl.

(3) LetallS If a is not expressible a@ = xy, then f o (gg n hy)(A) =0.

Similarly, (( fs ° gs) 5(]‘5 Ohs))(@) =(fsegs)(@ U (fs Ohs)(a) =000 =0.
Now, let there exisk, y[1S such thata = xy.

(fs2(9s 0 )@ = [ (159 0 (g5 Th)(¥)
= JI(fs09 1 gs(y) O (f(x) 0 hs()]

a=xy

= U [(fs(¥) n gs(V))] D[U[(fs(x) nhyy)l
=(fso9s)(@) U (fsohs)(a)

=[(fs > gs) O( fs - h)1(a).

Thus (fg D gg)ehs =(fsohs)(gsohg).
Similarly, we can prove(4) is also clear.

(5) Let XIS, If X is not expressible as = yz, then
(fsohg)(X) =(gs o hg)(X) = 0. Otherwise,
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(fsohg)(x) = U (fs(y) n hs(2))

X=yz

O U (9s(Y) n hs(2)) (sincefs(y) O gs(y)) = (9s o hs)(X).

Similarly, one can show thhg o fo Ohgogg.

(6) can be proved similar to (5).

(7) Let XS, If X is not expressible as=y+ z, then
((fs+9g) +hy)(x) =0. Otherwise,

If X=y+2z then

((fs +9s) +he)(x) = U {(fs +99(y) nhy(2}

X=y+2

X:Uw{ y:uy( f(y) n 9s(y,) nhy(2} U U (fs0) n gs(ys) n hy(2)
U@ =0ityr vy, | e
U (fs(%1) N 9s(Y,) N hs(2)) U (fs(a) n (9s(Y,) N hs(2))
= x=y+y,tz = =N H(Y212)
0, otherwise [0, otherwise

(fs+0s) +hs = fs+(gs +hs).

(7) Let XLJS. If X is not expressible as = yz, then
(fso(gg*+hg))(x) =0. Otherwise,
If Xx=yz, then

(fso(9s +he))(x) = U{( fs(Y n(9gs +h)(2)}

If z# 2z +z, then(gs+hs)(z) =0 and so
(fso(gs+hs))(X) =0. Therefore assumg =z + z,,

_{ U {fnl U (efa nh(

x=y(z+2;) =73+7,

0, otherwise

X=y(z+2;)

_{ U €4y nofat d 6y (o 2

0, otherwise
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_{ U (5009 n( foohy( vz}

X=yz+Y2,)
0, otherwise

=((fsogs) +(fsohs))(X)
= fso(gs+hs) =(fso9s) +(fsohs).

Definition 3.5. Let X be a subset of S. We denote 8y the soft characteristic function
of X and is define as

oY ifxOX,
S0 = O, if xOX.

It is obvious that the soft characteristic functis a soft set overllJ, that is,
S, :S - PU).

Theorem 3.6. Let X andY be nonempty subsets of a semirdigThen, the following
properties hold:

()if X OY, thenS, OS,.

(i) S NS, =Sy,y.S 0, =S,y

(i) S, S, =Sy.

(V) S, +S, =S,y

Proof: (i) is straight forward by Definition 3.3.

(i) Let s be any element 06. Supposesl]1 X nY. Then, sl1 X and sLlY.Thus, we
have

(S« n§)=S(9)n S (s)=U nU =U =5, ,(9).
SupposeslI X nY. Then,s[JX or sL1Y. Hence, we have

(Sx N §)(8) =S, (s)n S (s) =00 =Sy (9).
Let S be any element of S. Supposkl X LY. Then,s[1X or sLIY. Thus, we have

(S, 0S,)(8)=S,(90S,(9)=U =S, (9).
Supposest] X [IY. Then,sl1X andsLlY.
Hence, we have

(S US)(8) =S (59§, (s) =0 =S,y (9).
(iii) Let s be any element of S. Supposél XY. Then, s=xy for some X[l X and
yY. Thus we have

(Sc28)(9)= U (S S,(y) DS (x)n S, (y) =U.

This implies that(S, S, )(s) =U. Sinces=xy[ XY, S,,(S) =U. Thus,
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S oS, =S,
In another case, wheslJ] XY, we haves# Xy for all X[ X and yOY. If s=mn for
somem,nS, then we have

(S 2S)(9) = (Sc(m) n S, () =0 =S, ().

S=mn

If sZmn forall mnOS, then (S, oS, )(s) =0 =S,,(S). Therefore in all the cases,

we haveS, oS, =S, .

4. Soft inter section semiring
Definition 4.1. Let S be a semiring and's be a soft set over U. Therfy is called a

soft intersection semiring of S,if

1) fs(x+y) O fs(x) n f(y)

(2) fs(xy) O fs(x) n fs(y) forall x,yOS.

Example 4.2. Consider the semiring S = {0,a,b,c} defined by fihilowing table:

[110|a|b |c |0 |a |b |c
0 |0 |a C 0O |0 |0 |0 |O
a a b |c a a 0 a b C
b lblcla |b b |0 |b |b |c
C clalb |c C 0 |c |c |c

Let U=D,={<xy>x’=y’=exy=yx} {ex x’y yx yx} be the universal
set. Let fg and g be soft sets overU such that f5(0)={e x vV, yx},

fs@={exy}, fs0)={ey w3} fs)={exx’ %

Clearlyf_S is a Sl-semiring over U.

It is easy that iff_S = U for all x € S, thenfs is a Sl-semiring over U. We denote that
such a kind of Sl-semiring §; It is obvious thaS = S, that isS,(x) = U for all

x €S.

Lemma4.3. Let f5 be any Sl-semiring over U. Then, we have the falg:
(S-S ES.

(2)fs°S E Sando f; E S,

) f,US=SandS A f; ES.

(4)S + SES.

(5)fs+ SESandS + f; ES.

Proof: Obviously (1),(2) and (3) are true.

(4) forany xS

($+5)(X)=Ux=a+b(S(a) N S(b))

=Ux=a+p (U) DU =5(x)
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) (fs+90 = J (fs@n So) = J (@) 0 J V)= Sm

x=a+b x=a+b x=a+b x=a+b
(f,+9) ()0 S(x) = (f.+S)0 S.
Similarly, we can prové§+ fs O é

Theorem 4.4. Let fg be a soft set oved . Then, fg is a Sl-semiring oveld if and
only if

(1) o+ f Of..

) foo f O fg.

Proof: Assume thatf, is a Sl-semiringoveld . Let allS. If (fs+ f)(a) =01, thenit
is obvious that( fs + f)(a) O f(a), thus fg+ fo O 1.

Otherwise, there exist elementsy[]S such thata= X+Y.Then, sincefg is a SI-
semiring over U, we have:

(1) (fs+ f5)(@) = U (fs() n f5(y)

a=x+y

0 U fstx+y) = U fs(@ = fs(a).
a=x+y a=x+y
Thus, fg + fsﬁ fs.
(2) is similar to (1).
Conversely, assume that (1) and (2) are truex gt 1S anda= X+ Y. Then, we have

fs(x+y)=fs(@) O(fs+ 1)@ = [J (Fs()n fs(y) O f() n fs(y).

a=x+y
fs(x+y) 0 fs() 0 fo(y).
Similarly, fs(xy) O fs(X) n f(y)
Hence, f is an Sl-semiring over U.

Theorem 4.5. Let X be a nonempty subset of a semiring S. Theis, &subsemiring of S
if and only if S, is a Sl-semiring of S.

Proof: Assume that X is a subsemiring of S, thatXe{ [1 X and X + X [J X . Then,
we have

S, +S, =S, USandS,; S, =S, US;, (by Theorem 3.2(iii)j and Theorem
3.2(iv)) and soS, is a Sl-semiring over U.
Conversely, letx[I X+ X and S, be a Sl-semiring ofS. Then, by Theorem 4.1,

S () O (S,+S)0 = | (Sc@) n S (b)) = Sy () =U implying that S, (X)

x=a+b
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=U, hence X+ X OX and let xUX and S, be a Sl-semiring ofS. Then,

S (X) O (S, oSy )(X) =Sy (X) =U implying that S, (X) =U. Hence XX O X and
so,X is a subsemiring of S.

Proposition 4.6. Let fg and f; be a SI-semiring over U. Therfg U f; is a Sl-semiring
over U.

Proof: Let (X, V,), (X,,Y,)SXT. Then,

Foor (06 V) + (%2, ¥2)) = Fsor (4 X5,y 1Y ) = fs O +30) 0 (Y +Y))

O[fs(x) n O] Nl f(y) 0 (Y] =[f(0) n fH(w] n[ f(x) n f:(y)]

= for O Y1) 0 o (%5, Y2)
and

forr (4, YD (X5, ¥2)) = fsor (XX Yy ) = f5(3%,) 0 (Vo)
Ol fs(x) n fsOQI N[ F(y) n (Y] =[fs(x) n (W] n[ f(x) n F(y,)]

= foor (4 Y0 0 fsr (%2, Y2)-
Therefore,fg U f; is a Sl-semiring over U.

Definition 4.7. Let fg, f; be a Sl-semirings ovdd . Then, the product of soft intersec-
tion semiringsfg and f; isdefined asfg x f; = fg; where
foer (% Y) = f5 ()% F; (y) forall (x,y) D SXT.

Proposition 4.8. If fg and f; are Sl-semiring over U. Then, sofgx f; overU xU.
Proof: By Definition 4.2, fox f, = fg; where fg (X, y)=fs(X)x f;(y) for all
(X, y)OSXT.

Then’ for a”(xl' yl)’ (XZ’ y2)|:| SXT ! foT ((Xl' yl) + (XZ’ yZ)) = fSXT (X1+ XZ’ yl+ y2)

= 00+ %) x fr(ya+y,) Ulfs(x) n fsOQIX f(y) n (Y]

=[fs00) x f(WI N[ x) X f(yI] = for (X, Y1) 0 Fsir (X5, V)
and

for (% Y)(Xa Vo)) = Tor (XX Y o) = Ts(30) X 17 (V1Y)

O[fs00) 0 TsOIX f:(y) 0 (Y3l =[Fs(x) x ()] n[ T(x) x T:(y3]
= foq (0 Y1) 0 foir (X2, Y2))-
Therefore,fg x f. = fg,; is a Sl-semiring ovéy xU.

Proposition 4.9. If fg andhg are Sl-semiring over U. Then, so fg n hs over U.
Proof: Let x,y[IS, then

(fs nhg)(x+y) = fo(x+y) n hy(x+y) O(fs(x) 0 fs(¥)) 0 (hs(¥) 0 hs(y)
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= (fs() 0 hs()) n (Fs(¥) n hs(y)) = (f, 0 h)(X) 0 (fs 0 h)(y)
and

(fs N h)OY) = F0) 0 hs(xy) D (F5(3) n Fs(y) 0 (hs(¥) n hs(y)

= (509 1 1s00) 0 (1(¥)  hs(¥) = (s 0 () 0 (s 0 h)(Y):
Therefore, fg n h, is a Sl-semiring over U.

Proposition 4.10. Let fg be a soft set ovetd and a be a subset oJ such that
alOlm(fg), where Im(fg) ={a OU: f(X =a, for xUS. If fg is a Sl-semiring
overU , thenU(fg; @) is a subsemiring 05.

Proof: Let fi(X) =a for somexOS, thenO ZU(fg;a) O S. Let x,yOU (fg;a),
then fi(X)Ua and fi(y)Ja. We need to show thatxy[JU(fg;a) and
x+yUOU (fg,a). Since fg is a Sl-semiring over U, it follows that

fs(xy) O fs(x)n fs(y) Dana=a = xyOU(fg;a).

fs(x+y) O fs(X)n fs(y) Uana=a.

This shows<+ yOU (fg; a).

Definition 4.11. Let fg be a Sl-semiring over U. Then, the subsemldfdg;a) are
called uppera -subsemiring offs.

Proposition 4.12. Let fg be a soft set over W (fg; ) be uppera -subsemiring off

for eacha OU and Im(fg) be an ordered set by inclusion. Thefy, is a Sl-semiring
over U.
Proof: Let x,yOS and fi(X)=a,andfs(y)=a,. Suppose thata, Oa,. It is

obvious thatx[U (fg;a,) and yOU (fg;a,). Since a, Ua,,x,yOU (fg;a,) and
since U(fg;a) is a subsemiring of S for all aOU, it follows that
xyOU (fg;a,),x+yOU (fg,a,). Hencefs(x+y)Ua,=a,na,=f(x)n f5(y)
and fs(xy) Ua, =a,na,= fs(x) n f5(y). Thus, fg is a Sl-semiring over U.
Proposition 4.13. Let fg and f; be soft sets ovdd and ¢ be a semiring isomorphism

from S to T. If fg is a Sl-semiring over U, then sog% f,).
Proof: Let t,t,[IT. Since @ is surjective, then there exists,s,[JS such that

@(s) =t,andg(s,) =t,. Then,
(A fN(EL) = T(9: sUS e9 =t}
=(Jlf(9:sOS s=g (1)} =(HT{9:sOSs=¢g(dss)) =ss}
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=Jlfss): sOS ds) =t,i =12

DUt f(s) n f{s): sO0S «s) =t,i=1,2}

=(Ulf(e): s.0Sds) =th) n( (9 s,08¢9), =t)

= (@ fs))(t) n (A f5))(t;) and

(@ f +t) = J{f(9: sOS 9 =t, +t} = J{f(9:sOSs=@'(t, +1,)}
=(J{f{9:sUS s=¢(ds +s)) =5,+5}

=J{f(s+s);sO0S «s) =t,i=1,2}

OULT(s) n f(s) sOS s) =t,i=1,2}

=(Ulfde): s.0Sds) =th) n(J( f 9 s,0S ¢s), =t)})

=@(f)(t) n (@A F))(L)-

Henceg(f,) is a Sl-semiring over U.

Proposition 4.14. Let fg and f; be soft sets oveld and ¢ be a semiring
homomorphism fronsS to T. If f; is a Sl-semiring over U, then sogs*( f,).
Proof: Let s,s,JS. Then,

g (f)(ss) = 1 (@ss,) = (As)As)) O fr(As)) n fr(As,)

g (f:)(ss) = (@ (F:))(s) n (@ (F:))(s,)

Let s,s,00S. Then,

g )(s+s,) = f(fs,+5,) = (As) +H(AS)) O f(A)) n fr(#s,)
g (f)(s+s) O (@ (f:)(s) n @ (f;)(sy).

Hence,¢*(f,) is an SI- semiring over U.

5. Soft inter section left (right, two-sided) ideals of semiring
Definition 5.1. A soft set fg over U is called a soft intersection left (right, two-st)

ideals of S overU if
(1) fo(x+y) O f(x) n f5(y)

@) fs(xy) O f((f. ) O f5(y)
for all x,yS. A soft set overU is called a soft intersection two-sided ideal f{sof

intersection ideal) ofS if it is both soft intersection left and soft irdection right ideal
of S over U.

Example 5.2. Consider the semiring S={0,x,1} defined by thddaling table:
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O |0 X 1 © |0 X 1
0 0 X 1 0 0 0 0
X X 0 X X 0 X X
1 1 X 0 1 0 X 1

Let fs be soft set overS such that fs(0)={0, x4, fs(x) ={0, %, fs(1)={A.
Then, one can easily show th& is a Sl-ideal ofSover U.

Theorem 5.3. Let fg be a Sl-semiring oved . Then, f is a Sl-left ideal ofS over U
if and only if

(1) o+ f Of..

(2) So f, O f..

Proof: Assume thatfg is a Sl-left ideal ofSoverU . Let allS. If (fg+ fg)(a) =0,
then it is obvious thdifg + f¢)(a) O fg(a), thus g+ fg O f.

Otherwise, there exist elemerntsy [0S such thata = X+ Y. Then, sincef is a Sl-left
ideal of S over U, we have:

(fs+ f5)(@) = U (fsG) n fs(y)) O U fs(x+y) = U fs(@) =1s(a)

a=x+y a=x+y a=x+y
Thus, fg + fsﬁ fs.
(2) If (So f4)(@) =0, then it is obvious that

(S f.)(a) O fy(a), thusSo f. O f..
Otherwise, there exist elementsy S such thata = xy.Then, since fg is a Sl-left
ideal of S over U, we have:

(S 1)@= J (000 fo(y) 0 U U 0 15090) = J U 0 Fo(@) = £o(@)

Thus, So f¢ O fq.
Conversely, assume that (1) and (2) are truexX gt 1S anda= X+ Y. Then,we have:

fs(x+y)=fs(a) O (fs+f5)(a) = U (fs() n fs(y) O f5(x) n f5(y).

a=x+y

Similarly, fs(xy) O f5(y)
Hence, f is an Sl-left ideal over U. This competes the firoo

Theorem 5.4. Let fg be a Sl-semiring oveld . Then, fg is a Sl-right ideal ofS over

U if and only if
(1) fg+f, 0O fg.
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2) f oSO f..
Proof: Similar to the proof of Theorem 5.1.

Corollary 5.5. éis both Sl-right and Sl-left ideal db.
Proof: Follows from Lemma 4.1-(1).

Theorem 5.6. Let X be a nonempty subset of a semigThen, X is a left (right,
two-sided) ideal ofSif and onlyif S, is an Sl-left (right, two-sided) ideal dboverU .

Proof: We give the proof for the Sl-left ideals. AssumattiX is a left ideal of5, that
is, X+XUOX and SXOX. Then, we have S, +S, =S, 0SS, and

SoS, =S;0S, =S [IS,. Thus, S, is an Shleft ideal ofS over U by Theorem
5.1.

Conversely, letx[JSX and S, be an Sl-left ideal ofS over U. Then,

S, (¥ 0(S°S)(X) = (Sy©S,)(X) = S () =U implying that S, (x)=U, hence
xOX. Similarly S, (X) O (S +S,)(X+x). Thus, S, O X and X is a left ideal of
S.

Theorem 5.7. Let fiandgg be Sl-left (right) ideals of a semiring S. Thép+ g, is a
Sl-left (right) ideal of S.
Proof: Suppose fg,05 are Sl-left ideals of a semirify and x,yOS. If

(fs+9s)(¥) =0 or (fs+gs)(y)=0 then, (fs+gs)(X) n(fs+gg)(y) =00
(fs+gs)(x+y). If (fs+gg)(X)#0 and (fs+gs)(y) #0 then(f,+gs)(y) =
U {f9 n g4}

y=c+d
Thus,

(fs+95)0 n (s +9)(y) = (| {f(d nagB} ) n (UL f63 ngt b )

x=a+b y=c+d

= U U 13 ngdB) n(f(9 n g )}

x=a+b y=c+d

= U U (13 n 1(9) n(g«H) n g( )}

x=a+b y=c+d

0 U Uf(a+g ngdb+d)}

x=a+b y=c+d
O (fs+gg)(x+Yy).

Again, if (fs+0s)(X) =0 then (fs+9g)(X) U (fs +9s)(¥X). If (fs+05)(¥) #L,
then
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(fs+9)(¥0) = |J {fa nayB} Of{ |J{ f{ya nod yB}

x=a+b x=a+b

0 U {149 ngdd} =(fs+gs)(yX).

yx=c+d
Hence fg + g is a soft fuzzy left ideal of S.

Theorem 5.8. If fg,gg are Sl-left (right) ideals of a semiring S, thég°gs is a Sl-left
(right) ideal of S.
Proof: Suppose fg,0s are Sl-left ideals of a semiriy and x,yOS. If

(fs°95)(¥) =0 or (fs°gs)(y) =0,
then(f5°gs(X)) n (f5°gs)(y) =0 O (f5°gs)(X+Y).
If (fs°95)(X) 20 and(fs°g5(y)) #0, then

(1:°99)00 = U{(fs(a) n 05 (0}
(1590 = U{ (5(0) n as()}
(909 0 () =[ U (@ n as @} 1 U (fs(9) 0 gs(d]

y=

=J U@ n gs@)] n L (5@ nge®) O J [«(fs(® n gs(F))]

x=ab y=cd x+y=ef
=(fs°gs)(x+Y).
Again, if (f5°gs)(x) =0 then(f5°gs)(X) U (f5°gs)(YX).
If (fs°gs)# 0, then

(f:°95)09 = U{(fs@ n g5} 0 UL (Fs(va) n g (b}
0 U{fe©@n gs(@} =(fg5) .

yx=cd
Hence f;°Qg is a SI- left ideal of S.

Theorem 5.9. Let f; be a soft set over U. Then, g is a Sl-left (right, two sided)
ideal of S over U, f is a Sl-semiring over U.

Proof: We give the proof for Sl-ideals. Lefg be a Sl-left ideal ofS overU. Then,
fs(x+y) O fo(X) n fs(y) and fo(xy) O fs(y) for all x,yOS. Thus fs(xy) O
fs(y) O f5(X) n f5(y), so fg is a Sl-semiring over U.

Theorem 5.10. Let fg be a Sl-right ideal andyg a soft intersection left ideal of a
semiring S. Thenfg o gg 0 fg n Js-
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Proof: Let fg and g4 be a Sl-right ideal of S. Then, sinde, g5 0s always holds,

we have fg o gg ﬁfsoé ﬁfs and fsogsﬁ éogsﬁgS.Hencefsogsﬁfsr;gs.

Proposition 5.11. Let fg be a soft set ovetd and a be a subset oJ such that
aOlm(fg). If fg is an Sl-left (right) ideal ofS over U, theU (fg; @) is a left (right)
ideal of S over U.

6. Soft inter section quasi-ideals of semiring

Definition 6.1. A Sl-semiringfg over U is called a soft intersection quasi-ideal $f
over U.

(i) fs(x+y) O fs(x) n fs(y)forall x,yOS

(i) (So o) n (fo0S) O fe.

Theorem 6.2. A soft set f¢ of a semirindS is a soft intersection quasi-ideal &fif and
only if each nonempty level subdet( f5;a) of fs is a quasi-ideal of S.

Proof: Supposef is a fuzzy quasi-ideal of S. Let,bU (f5;a). Then fi(a) Da
and fg(b)Oa. As fs(a+b) O fs(a)n f5(b), so fs(a+b) Oa. Hence a+bl]

~ ~ m p
U(fsa).Let xOU(fg;a)Sn SU(fg;a). Then x=>"ur and x=)_sy, for
i=1

k=1
someu,, Vv, OU (fg;a) andr,,s OS.
Now,

fs(0) O[(Se fe) 1 (fso 9NN =(Se f)(X) 1 (f50S)(X)
= U [é(sK)n fs(vk)}m U {fs(ui)n é(ri)} Uana =a.

p

x=é%vk x:iZjl:uiri
.So, f4(X) O a. Thus, xOU (fg;a). HenceU (fs;a)Sn SU(fg;a) DU (fg;a).
Conversely, assume that each nonempty sub¢dt;a) of S is a quasi-ideal of S. Let
a,b0dS be such that fg(a+b)O fg(a)n fg(b). Take a U such that
fs(a+b)Oa U fs(@) n fg(b). Then a,b0U(fg;a) but a+bUU(fg;a), a

contradiction. Hencefg(a+b) O fg(a) n f5(b).
Let xOS. If possible let fo(x) O[(fso S) n(Se f)](x). Take @ OU such that

() OaO[(fs0S) n(Se fIRX. I [(fo S n(Se fI](X) Oa, then
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(1) n(fee SI= U [Ss)nfw) o U | 1w 0|

X:kZ:S,(Vk x:iZjl:ui I
Hence, | [S(s)n f.(v)] Oaand |J [fs(u)nS(r) Oa.
ngskvk xzizr;:q(vk

so, fs(u) Ua, fs(v,) Oa, thatis,u,v, OU (fg;a) for alli, k. Thus
m p
dur OU(fga)S and D sV, OSU(fg;a).This implies xOU(fg;a)Sn SU
i=1 k=1
(fg;a) OU(fg;a,) and hencexUOU(fg;a), that is fi(X) D a, a contradiction.

Hence(fg o é) N (éo fs) 0 fs. Thus fg is a soft intersection quasi-ideal of S.

Corollary 6.3. Let Q be a nonempty subset of a semiring S. TQeis a quasi-ideal of
Sif and only if the characteristic functioé of Q is a fuzzy quasi-ideal of S.

Proposition 6.4. The intersection of any two Sl-quasi-ideals ofemiingS is a Sl-
guasi-ideal of S.

Proof: Let fg, g5 be Sl-semiring quasi-ideals of a semirfigind x, yJ S. Then
(fs N gs)(x+y) = fs(x+y) ngs(x+y) O[fs(X) n fs(VI n[9X N 9« Y]

=[fs(¥) n g5 N[ (W n g Y] =(fs n gs)(¥) n (fs N gs)(Y).
Also,

((fsn 9s)e 9)n (So(fsn ge)) O(fso)n (So f) O .

((fs N 9s)° ) So(fs N 9)) O (gse S)n (S0 ) U ge.

Thus ((fs n gg)°S) N (Se(fs n gg)) O fe N ge.

Corollary 6.5. Let fg and g5 be SI- right and SI- left ideals of a semiring S,

respectively. Thenfs n gg is a SI- quasi-ideal of S.

7. Soft inter section bi-ideals of semiring
Definition 7.1. A soft set oveld is called a SI- bi-ideals o6 overU if

@) fs(x+y) O fs(x) n f5(y)
(2) fs(xy) O f5(x) n f5(y))
(3) fs(xyz) O fs(x) n f5(2) forall X,y,z01S.

Example 7.2. Consider the semiring S= {0,a,b,c} defined by tbkofving table:
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Ol/0ja|b |c ® |0 a B |c
0 |0|a|b |c 0 0 0 0 0
a alb |lc a A 0 a B c
b |blcla |b B |0 |[b |B |c
C clalb C C 0 c C c

Define the soft setf, over U =Z, such that f,(0)={0,1,2}, f (a)={0,1},
f.(b) ={0}, fs(c)={1,2}. Clearly f, is a SI-Bi-ideal ofSover U.

Theorem 7.3. Let fg be a soft set over U. Thefy, is a Sl-bi-ideal ofS overU if and
only if

(i) fo+f O,

(i) foof O f,

(iii) foo Sof, Of..

Proof: Let fg be a SI- bi-ideal oS and XUJS. Then
D (fs+ )00 = [J {f( n 12}

X=y+z

0 U foly+2) = fo(x.

X=y+z
Therefore fg + f O fs.
(2) fg°fg O fgis evident.

(3) Let sOOS If (fsoéo fs)(s) =0, then fsoéo fs O fg. Otherwise, there exist
elementx, y, p,qUS such thats = xy and x = pq.
Then, sincefy is an Sl-bi-ideal ofS over U, we have

(fo0S0 f6)(9) =[(fso S f)(9] = | (fs(p)n fs(y)) O U fs(pay)

S=pay S=pay
= fs(xy) = fs(9)
Hence,f o So fs O fs. Here, note that ik # pq, then (fgo s° fs O fg)(a) =0, and

s0 (fgoSo fo) =0 O f(9).
Conversely, assume (1) and (2). By theorem 4J,s a Sl-semiring of S. Let

X,¥,zUS ands = xyz. Then, sincefsoéo fs O fg, we have
fs(xyz) =15(s) U(fsoSe f5)(s) =[(fs° e fsl(9
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= U [((fsoS09) 0 (D) T (F529)09) n fs(2) =[(Fo() n SO 0 f(2
s=()2

O (fs(0) 0 S)Y) 1 T5(2) = (fs() nU) 0 f5(2) = Fs() 0 Ts(2).

Thus, fg is a Sl-bi-ideal ofS over U.

Theorem 7.4. Let X be a nonempty subset of a semiring S. Thénis a bi-ideal ofS
if and only if S, is a Sl-bi-ideal ofS over U.

Proof: Assume thatX is a bi-ideal of $S,$ that isX + X O X, XX O X and
XSX O X. Then, we have

S, +S, =Sy, S, and
S, oS, =S 0 S, (since x& X). Thus,S, is a Sl-semiring over U.

MoreoverS, o SoS, =S, 0S,0S, =S, 0S, (since XSX 0 X)

This means thaS, is a bi-ideal of S.

Conversely, letS, be an Sl-bi-ideal of S. It means th& is a Sl-semiring. Let
xOX+X.  ThenS (X)) O(S +S)(X)=Si,x(X)=U =>xOX = X+XOX
and letx[J XX. Then, S, (X) U (S, °S, )(X) =S, (X) =U = xO X = XX O X.
ThereforeX is a subsemiring d. Next, let y[1 XSX. Thus

S, (Y) O (S, 2SoS,)(¥) =(S¢ 2 S,°S,)(¥) =Si () =U and so yOIX. Thus
XSX O X and X is a bi-ideal of S.

Theorem 7.5. Every Sl-left (right, two sided) ideal of a semgi8 over U is a Sl-bi-
ideal of S over U.
Proof: Let f, be a Sl-left (right, two sided) ideal of a semyrfh over U and

X, ¥,z S.Thenf is as Sl-semiring by Theorem (5.6.). Moreover,
fs(xyz) = fs((xy)2) O f5(2) O f5(x) n f5(2). Thusfy is a Sl-bi-ideal of S.

Theorem 7.6. Let f be any Sl-ideal of a semiridy and g5 any Sl-bi-ideal of S.
fsogg and gg o fg are Sl-bi-ideals of S.

Proof: To show thatfg o g4 is a Sl-bi-ideal of S, first we need to show tHate g4 is a
Sl-semiring. Thus

(fsogs)o(fsogs) = fso(gso(fsogs))
O fso(gso(ogs)) (since fs as)= fso(gso(so gs))
[0 fg o ge(since g (S gs) 0 g, (gs being S —bi —ideal)

Hence by Theorem 4.1f o g4 is a Sl-semiring over U. Moreover we have
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(fsodg)oSe(fgogs) = fso(ggo(Se fs)ogs)

O fgo(gg0(Segs))(since So f O §) O fgogq.
Thus, it follow that f o g4 is a Sl-bi-ideal of S. It can be proved in a samivay that
gs° fs is a Sl-bi-ideal ofS over U.

Theorem 7.7. Intersection of a non-empty collection of SI- beé#a of S over U is also a
Sl- bi-ideal of S over U.
Proof: The proof follows by routine verifications.

Theorem 7.8. Let { f,: i0JI} be a family of SI- bi-ideal ofS overU such thatf, O f,
or f, O f fori,jOl. Then| J f,is aSI- bi-ideal ofS over U.

iol
Proof: The proof follows by routine verifications
Theorem 7.9. In a semiring every Sl- quasi ideals are Sldkals.

8. Conclusion
Through this paper, SlI- semiring, Sl- left (rigiwo-sided) ideals of semiring, SI- quasi
ideal of semiring and SI- bi- ideal of semiringe atudied and properties pertaining to
them elicited.

Acknowledgement. The first author is thankful to the University GarCommission,
New Delhi-110021, India, for providing OBC Nationf@llowship under grant no:F.4-
1/2016-17/NFO-2015-17-OBC-TAM-29759/(SA-III/Web3gi@l.04.2016

REFERENCES

1. N.C.Agman and S.Enginoglu, Soft set theory andinmndecision makingEur. J.
Oper. Res.,, 207 (2010) 848 - 855.

2. N.C.Agman and S.Enginoglu, Soft matrix theory atsddecision makingComput.
Math. Appl., 59 (2010) 3308 - 3314.

3. J.Ahsan, K.Saifullah and M.Farid Khan, Fuzzy semgisi Fuzzy Sets and Systems, 60
(1993) 309-320.

4. M.LAli, F.Feng, X.Liu, W.K.Min and M.Shabir, On ste new operations in soft set
theory,Comput. Math. Appl., 57 (2009) 1547-1553.

5. F.Fenga, Y.B.Jun and X.Zhao, Soft semirin@smput. and Math. Appl., 56 (2008)
2621-628.

6. F.Feng, X.Y.Liu, V.L.-Fotea and Y.B.Jun, Soft sat&l soft rough setsnform. <ci.,
181 (2011) 1125-1137.

7. K.Glazek, A Guide to the Literature on Semirings and their Applications in
Mathematics and Information Sciences, Kluwer, Dordrecht, 2002.

8. J.S.Golan,Semirings and Affine Equations over Them: Theory and Applications,
Kluwer, Dordrecht, 2003.

9. M.Henriksen, Ideals in semirings with commutativeédidion, Amer. Math. Soc.
Notices, 6 (1958) 321.

10. K.lizuka, On the Jacobson radical of a semirifahoku Math. J., 11 (2) (1959) 409 -
421.

201



11.
12.
13.
14.
15.

16.
17.

P. Murugadas and M.R.Thirumagal

P.K.Maji, A.R.Roy and R.Biswas, An application afftssets in a decision making
problem,Comput. Math. Appl., 44 (2002)1077-1083.

P.K.Maiji, R.Biswas and A.R.Roy, Soft set theoBgmput. Math. Appl., 45 (2003)
555-562.

D.A.Molodtsov, Soft set theory-first resultSpmput. Math. Appl., 37 (1999) 19-31.
A.Rosenfeld, Fuzzy groupd, Math. Anal. Appl., 35 (1971) 512 - 517.

A.Sezgin and A.O.Atag’'un, On operations of softss€omput. Math. Appl., 61
(2011) 1457-1467.

L.A.Zadeh, Fuzzy set$pnformation and Control, 8 (1995) 338-353.

Y.Zou and Z.Xiao, Data analysis approaches of sts under incomplete
information,Knowl. Base. Syst., 21 (2008) 941-945.

292



