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Abstract. Let j ≥ 3. Given any two coloring (consisting of say red and blue colors) of the 
edges of a complete graph Kj×s, we say that Kj×s→ (C4,G), if there exists a copy of a red 
C4 or a copy of blue G in it. Let mj(C4,G) denote the smallest positive integer s such that 
Kj×s→ (C4,G). This paper deals with finding the exact values mj(C4,G) for all possible 
proper subgraphs G of K4. 

Keywords: Ramsey theory, multipartite Ramsey numbers 

AMS Mathematics Subject Classification (2010): 05C55, 05D10 

1. Introduction 
All graphs listed in this paper are graphs without loops or parallel edges. Let G, H and K 
represent three graphs. Given any two coloring (consisting of say red and blue colors) of 
the edges of a graph G, we say that G → (H,K) if there exists a red copy of H in G or a 
blue copy of K in G. The Ramsey number r(H,K) is defined as the smallest positive in-
teger t such that Kt→ (H,K). The diagonal classical Ramsey number r(n,n) is defined as 
the smallest positive integer t such that  Kt→ (Kn,Kn). In the last four decades most of the 
Ramsey numbers R(H,K) have been studied in detail for |V (H)| <7 and |V (K)| <7 (see 
[6]). The size Ramsey multipartite number mj(H,K) is defined as the smallest natural 
number t such that Kj×t→ (H,K) (see [1,3,5,7]). In this paper we concentrate on determin-
ing multipartite Ramsey numbers mj(C4,G) for all possible proper subgraphs G of K4. 

 

2. Notation 
The vertices of Kj×s are labeled as {vk,i| 1 ≤ i≤ s, 1 ≤ k ≤ j}, with the mthpartite set consist-
ing of {vm,i| 1 ≤ i≤ s}. It is worth noting that all values of 4 4( , )jm C P and mj(C4,C3) (see 

[4])are currently known. Also all values of mj(C4,K1,3 + x) are known as mj(C4,C3) = 
mj(C4,K1,3 + x) for any integer j. 
 
3. Some useful lemmas on connected proper subgraphs of K4 
Theorem 1. If j ≥ 3, then 
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Proof. If j ≥ 6 (see [2]), since r(C4,C4) = 6 we get mj(C4,C4) = 1. So we are left with the 
cases j = 3, j = 4 and j = 5. If j = 4 or j = 5, consider the coloring of Kj×1 = HR ⊕HB, gen-
erated by HR = C5 and HR = C3 respectively. Then, Kj×1 has no red C4 or a blue C4. There-
fore, we obtain that m4(C4,C4) ≥ 2 and m5(C4,C4) ≥ 2. 

In order to show, m5(C4,C4) ≤ 2 and m4(C4,C4) ≤ 2, first note that it suffices only 
to show that m4(C4,C4) ≤ 2. Consider any red/blue coloring given by K4×2 = HR ⊕HB, such 
that HR contains no red C4 and HB contains no blue C4.  

In the first possibility that HR is a regular graph of order 3, we get from the above 
remark that HR must contain a red C3. Without loss of generality assume that this red 3 
cycle is incident to the first three partite sets and consists of  say v1,1, v2,1, v3,1. Then both 
v4,1 and v4,2 have to be adjacent to two verticesof v1,1, v2,1, v3,1 in blue in order to avoid a 
red C4. Without loss of generality assume v4,1 and v4,2 are adjacent v3,1, v2,1 and v3,1, v1,1 

respectively. But then as degR(v1,1) = 3, (v1,1,v2,2) and (v1,1,v3,2) will have to be blue edges. 
This is illustrated in the following figure. 

 

  
 

 

Figure 1: In the first possibility, the derived red/blue graphs 

As there is no blue C4, (v2,2,v3,1) and (v4,2,v2,1) have to be red edges. Next as there is no red 
C4, (v2,2,v4,1) has to be a blue edge. But then if we consider the edge (v2,2,v4,2) we see that 
it can be neither a red edge or a blue edge as it will give rise to a red C4 or a blue C4, a 
contradiction.In the second possibility that HR is not a regular graph of order 3, by sym-
metry we can assume that red degree of a vertex (say v1,2) is greater than or equal to 4 and 
without loss of generality v1,2 is connected in red to v2,1, v2,2, v3,1 and v4,1 as illustrated in 
the following figure (note if v1,2 is adjacent to v2,1, v2,2, v3,1 and v3,2, it would clearly force a 
monochromic.  

  
  
  
  
  
  
  

Figure 2: In the first possibility, the derived red/blue graphs 
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If v1,1 is connected in red to two vertices of NR(v1,2) will result in a red C4. Therefore, 
without loss of generality get either v1,1 to connected in blue to v2,1, v3,1, v4,1 or else v1,1 to 
connected in blue to v2,1, v2,2, v3,1. In the first scenario, as the induced subgraph of v2,1, v3,1, 
v4,1 will contains 2 red edges or 2 blue edges and these two edges will be contained in a 
C4 of that same color, a contradiction. In the second scenario, v4,2 will be adjacent to two 
vertices of v2,1, v2,2, v3,1 in some color and then this would force these two vertices to be 
contained in a monochromatic C4 in that same color, a contradiction. 

If j = 3, consider the coloring of Kj×2 = HR ⊕HB, generated by HR = 2K3. Then, 
Kj×2 has no red C4 or a blue C4. Therefore, we obtain that m3(C4,C4) ≥ 3. 

To show, m3(C4,C4) ≤ 3. Consider any red/blue coloring given by K3×3 = HR ⊕HB, such 
that HR contains no red C4 and HB contains no blue C4. By handshaking lemma all vertices 
cannot have red degree 3. 

Therefore, without loss of generality, using symmetry, we may assume that v1,1 is 
adjacent to at least 4 vertices in red. Let V be any subset of size 4 of NR(v1,1). In order to 
avoid a red C4, both v1,2 and v1,3 must be adjacent to at least three vertices of V in blue. 
This will result in a blue C4 containing v1,2 and v1,3 contrary to our assumption. Therefore, 
we could conclude that m3(C4,C4) = 3. 

Theorem 2. 
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Proof. Clearly mj(C4,B2) = 1 if j ≥ 7, since r(C4,B2) = 7 (see [2]). 
Let j ∈ {5,6}. Consider the coloring of Kj×1 = HR ⊕HB, generated by HR = C5 and HR = 2K3 

when j = 5 and j = 6 respectively. Then, Kj×1 has no red C4 or a blue B2. Therefore, we 
obtain that m5(C4,B2) ≥ 2 and m6(C4,B2) ≥ 2. Next we have to show m5(C4,B2) ≤ 2 . For 
this consider any coloring consisting of (red, blue) given by K5×2 = HR ⊕HB, such that HR 

contains no red C4 and HB contains no red B2. Then since m5(C4,C3) = 2, without loss of 
generality we may assume that (v1,1,v2,1,v3,1) is a blue cycle. DefineT = {v4,1,v4,2,v5,1,v5,2} 
and S = {v1,1,v2,1,v3,1}. Then, if any vertex of T is adjacent to two vertices of S in blue, it 
will result blue B2, contrary to our assumption. Therefore, we will be left with the option 
every vertex of T is adjacent to at least two vertices of S in red. But then as |S| = 3 there 
will be twovertices of T adjacent in red to the same pair of vertices in S. This will result 
in a red C4, a contradiction. From this we can conclude that mj(C4,B2) ≤ 2 if j ∈ {5,6}. 
That is, mj(C4,B2) = 2 if j ∈ {5,6}.We are left with the following two cases, namely j = 
4(case 1) and j = 3(case 2). 

Case 1: j = 4 
Consider the coloring of K4×2 = HR ⊕HB, generated by HR illustrated in the following fig-
ure. 
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Figure 3: Case 1 
 

Then HR will contain three disjoint triangles except for two triangles containing a com-
mon vertex. Thus the red-blue coloring generated by the figure will be such that HR con-
tains no red C4 and HB contains no blue B2. Therefore, we will get m4(C4,B2) ≥ 3. To show 
that m3(C4,B2) ≤ 3 consider any coloring consisting of (red , blue) given by K3×4 = HR 

⊕HB, such that HR contains no red C4 and HB contains no blue B2. Since m4(C4,C3) = 2 
without loss of generality, we get that, v1,1v2,1v3,1v1,1 is a blue cycle. Define S = 
{ v1,1,v2,1,v3,1} and T = {v4,1,v4,2,v4,3}. If any vertex of T has adjacent in blue to 2 vertices of 
S we will get a blue B2 and if any two vertex of T has adjacent in red to the same 2 vertic-
es of S we will get a red C4. Therefore, we may assume that v4,1 is adjacent in blue to v1,1 

and in red to v2,1 and v3,1; v4,2 is adjacent in blue to v2,1 and in red to v1,1 and v3,1; v4,3 is ad-
jacent in blue to v3,1 and in red to v1,1 and v2,1.  

 
Figure 4: The first scenario 

Also in the remaining 6 vertices (in Sc
∩ Tc) must contain a blue P3 as m3(C4,P3) = 2. Thus, 

without loss of generality we may assume that v1,3v2,3v3,3 is a blue P3. In order to avoid a 
red C4, all three vertices of {v1,3,v2,3,v3,3} must be adjacent in blue to at least two vertices 
of T. Thus, without loss of generality this gives rise to two possible scenarios illustrated 
in Figure 5 and Figure 6 respectively. 

In the first scenario, in order to avoid a blue B2 both (v1,3,v4,2) and (v1,3,v3,3) must 
be a red edges. Then in order to avoid a red C4, (v1,1,v3,3) must be a blue edge; in order to 
avoid a blue B2, (v3,3,v2,1) and (v1,1,v2,3) must be red edges; in order to avoid a red 
C4,(v3,1,v2,3), (v1,3,v4,3) and (v1,3,v4,1) must be a blue edges.But then in order to avoid a blue 
B2, (v2,3,v4,3) must be red. In order to avoid a red C4, (v2,3,v4,1) must be a blue edge. 
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Figure 5: The final graph generated by the first scenario 

In order to avoid a blue B2, (v3,3,v4,1) must be a red edge and in order to avoid a red C4, 
(v1,3,v2,1) must be a blue edge. The red/blue graph generated is illustrated in the above 
figure. 

But then if (v1,3,v3,1) is red we get a red C4 and if is blue we get a blue we get a B2, 
a contradiction. 

In the second scenario, we may assume that v4,1 is adjacent in blue to v2,3 and v3,3; 
v4,2 is adjacent in blue to v1,3 and v3,3; v4,3 is adjacent in blue to v1,3 and v3,3. Next in order to 
avoid a blue B2, (v3,3,v4,3), (v2,3,v4,2), (v1,3,v4,1) and (v2,3,v3,1) must be a red edges.Then in 
order to avoid a red C4, (v1,1,v2,3) must be a blue edge; in order to avoid a blue B2, 
(v3,3,v1,1) must be a red edge.In order to avoid a red C4, (v2,1,v3,3) must be a blue edge; in 
order to avoid a blue B2, (v1,3,v2,1) must be a red edge; and in order to avoid a red C4, 
(v1,3,v3,1) must be a blue edge. But then the vertices in {v1,3,v3,1,v4,3,v2,3} will induce a blue 
B2, a contradiction. 

 

Figure 6: The second scenario 

Case 2: j = 3 
Consider the coloring of K3×4 = HR ⊕HB, generated by HR and HB illustrated in the follow-
ing figure. The red blue coloring generated by the following figure will be such that HR 

contains no red C4 and HB contains no red B2. Therefore, we will get m3(C4,B2) ≥ 4. 
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Figure 7: Case 2 

 
To show that m3(C4,B2) ≤ 4, consider any coloring consisting of (red,blue) given by  K3×4 

= HR ⊕HB such that there is no red C4 in HR or a red B2 in HB. Subject to these conditions 
will first show the following three claims. 
 
Notation:  Let 1 ≤ �, � ≤ 4. A vertex 
 ∈ ��×� having blue degree � + � is said to con-
sists of a blue (i, j) split if v is adjacent in blue to i vertices of one particle set and j vertic-
es of the other partite set.  
 
Claim 1: All vertices of K3×4 have blue degree at most five. 

Proof. Suppose v1,4 has blue degree at least 6. Without loss of generality, there are two 
possibilities. Then one of the following two scenarios must be true. The first v1,4 is adja-
cent in blue to all vertices of S = {v2,1,v2,2,v2,3,v2,4,v3,3,v3,4} and the second v1,1 is adjacent in 
blue to all vertices of S = {v2,1,v2,2,v2,3,v3,1,v3,2,v3,3}. 

In the first scenario to avoid a blue B2, both v3,3 and v3,4 will have to be adjacent in 
red to at least three vertices of the second partite set. This will result in a red C4 contain-
ing v3,3 and v3,4, a contradiction. Hence the claim follows. 

In the second scenario, In order to avoid a blue B2 all edges between {v2,1,v2,2,v2,3} 
and {v3,1,v3,2,v3,3}. Next, applying m3(C4,C3) = 3 to K3×3 consisting of the first three ele-
ments of the three partite sets, we obtain a blue B2 containing v1,4. Hence the claim fol-
lows. 

Claim 2: K3×4 has at least one vertex of blue degree five. 
Proof. Applying m3(C4,C3) = 3 to K3×3 consisting of the first three elements of the three 
partite sets, without loss of generality we obtain a blue C3 containing S = {v1,1,v2,1,v3,1}. 
Next, as there is no blue B2, each vertex outside S will have to be adjacent in red to at 
least one vertex of S. Thus by pigeon-hole principle at least one vertex must have degree 
greater than 5. Thus by Claim 1, we can conclude that S has at least one vertex of blue 
degree five as required. 

Claim 3: K3×4 has at least one vertex of blue (3,2) split. 
Proof. Suppose that the claim is false. Let v1,4 be a vertex having a blue (4,1) split. In par-
ticular, suppose that v1,4 is adjacent in blue to all vertices of 
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S = {v2,1,v2,2,v2,3,v2,4,v3,4} and adjacent in red to all vertices of T = {v3,1,v3,2,v3,3}. Since 
there is no blue B2 without loss of generality we may assume that v3,4 adjacent in red to all 
vertices of T = {v2,1,v2,2,v2,3}. Next we deal with 2 possible cases. 

Case a: v3,4 is adjacent in blue to at least one vertex of {v1,1,v1,2,v1,3} (say v1,3). Then, since 
there is no red C4 and by Claim 1, we would get that v1,3 will be a blue (3,2) split. 

Case b: v3,4 is adjacent in red to all three vertices of {v1,1,v1,2,v1,3}. Then, since there is no 
red C4 and by Claim 1, we would get that v2,4 will be a blue (3,2) split. 

Now let us try to complete the proof of j = 3 case. According to lemma 3, v1,4 be a vertex 
having a blue (3,2) split. 
In particular, suppose that v1,4 is adjacent in blue to all vertices of S = {v2,2,v2,3,v2,4,v3,3,v3,4} 
and adjacent in red to all vertices of T = {v2,1,v3,1,v3,2}. 

Since there is no blue B2 or a red C4,without loss of generality we may assume that v3,4 

adjacent in red to v2,3,v2,4 and that v3,3 adjacent in red to v2,2,v2,3. Next as there is no red C4, 
we would get that (v2,4,v3,3) and (v2,2,v3,4) are blue edges. This is illustrated in the follow-
ing figure. 

 

Figure 8: The generated graph for both cases 1 and 2, when j = 3 

Next we get that as in claim 3, there are two possible cases to consider. 

Case 2.1: (v2,3,v1,3) is red. First in order to avoid a red C4 both (v1,3,v2,2) and (v1,3,v2,4) will 
have to be blue. Next in order to avoid a blue B2 both (v1,3,v3,3) and (v1,3,v3,4) will have to 
be red. But this would give us v1,3v3,4v2,3v3,3v1,3 is a red C4. 

Case 2.2: v2,3 is adjacent in blue to all three vertices of {v1,1,v1,2,v1,3}. Next, as there is no 
red C4, v2,3 will be adjacent to at least one vertex of {v3,1,v3,2} in blue. Without loss of ge-
nerality assume (v2,3,v3,2)is blue. Then, by Claim 1, (v2,3,v3,1) will be red.Next, as there is 
no red C4, (v2,2,v3,1) and (v2,4,v3,1) will have to be blue. 

In order to avoid a blue B2 the vertex v3,2 must be adjacent to two vertices of 
{ v1,1,v1,2,v1,3} in red. Without loss of generality assume that (v3,2,v1,2) and (v3,2,v1,3) are red. 
But then in order to avoid a red C4, (v3,1,v1,2) and (v3,1,v1,3) are blue. Consider four vertic-
es, v3,1 is adjacent to in blue, given by W = {v1,2,v1,3,v2,2,v2,4}. In order to avoid a blue B2 

there can be at most one blue edge among them. That is there are three red edges in the 
subgraph induced by W. Exhaustive search will show that in each of the possibilities ei-
ther v1,2v3,2v1,3v2,2v1,2 or v1,2v3,2v1,3v2,4 v1,2will be a red C4, a contradiction. 
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Figure 9: The final graph of case 2, when j = 3 

4. Disconnected graphs up to 4 vertices 
It is worth noting that if G and H are two graphs with at most 4 vertices satisfying G = H 
∪K1. Then clearly, mj(C4,G) = mj(C4,H) for j ≥ 4. In the case of j = 3, as m3(C4,H) >1 for 
all connected graphs H up to 3 vertices we m3(C4,G) = m3(C4,H). Therefore, by this re-
mark we are left are left only to consider mj(C4,2K2). However, this follows directly from 

4 4( , ) jm C P as 4 2 4 4( ,2 ) ( , )j jm C K m C P≤ for any integer j. 

REFERENCES 

1. A.P.Burgerand J.H.van Vuuren, Ramsey numbers in complete balanced multipartite 
graphs. Part II: Size Numbers, Discrete Math., 283 (2004) 45-49. 

2. V.Chv´atal and F.Harary, Generalized Ramsey theory for graphs, III. Small off di-
agonal numbers, Pacific Journal of Mathematics., 41-2 (1972) 335-345. 

3. M.Christou, S.Iliopoulos and M. Miller, Bipartite Ramsey numbers involving stars, 
stripes and trees, Electronic Journal of Graph Theory and Applications, 1(2) (2013) 
89-99. 

4. C.J.Jayawardene and L.Samerasekara, Size multipartie Ramsey numbers for C3 ver-
sus all graphs G up to 4 vertices, Annals of Pure and Applied Mathematics, 13(1) 
(2017) 9-26. 

5. C.J.Jayawardene and L.Samerasekara, Size multipartie Ramsey numbers for K4-e 
versus  for all graphs up to 4 vertices, National Science Foundation, 45(1) (2017) 67-
72. 

6. V.Kavitha and R.Govindarajan, A study on Ramsey numbers and its bounds, Annals 
of Pure and Applied Mathematics, 8(2) (2014) 227-236. 

7. T.Pathinathan and J.Jesintha Rosline, Matrix representation of double layered fuzzy 
graph and its properties, Annals of Pure and Applied Mathematics, 8(2) (2014) 51- 
58. 

 


