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Abdtract. Letj > 3. Given any two coloring (consisting of say red dlue colors) of the
edges of a complete graph.s, we say thakj.s— (C4,G), if there exists a copy of a red
C,or a copy of blué in it. Let m(C,,G) denote the smallest positive integesuch that
Kixs— (C4,G). This paper deals with finding the exact valug&C,,G) for all possible
proper subgraphs of K,.
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1. Introduction

All graphs listed in this paper are graphs withiooips or parallel edges. L& H andK
represent three graphs. Given any two coloringgisting of say red and blue colors) of
the edges of a grapgh, we say thaG — (H,K) if there exists a red copy éf in G or a
blue copy ofK in G. The Ramsey numbe(H,K) is defined as the smallest positive in-
tegert such thak,— (H,K). The diagonal classical Ramsey numidem) is defined as
the smallest positive integesuch thatK,— (K,,K.). In the last four decades most of the
Ramsey numberR(H,K) have been studied in detail f&f (H)| <7 and Y (K)| <7 (see
[6]). The size Ramsey multipartite numbey(H,K) is defined as the smallest natural
numbert such thak;..— (H,K) (see [1,3,5,7]). In this paper we concentratel@ermin-
ing multipartite Ramsey numberg(C,,G) for all possible proper subgrap8of K,.

2. Notation

The vertices oK.sare labeled as{;| 1<i<s, 1<k <}, with the m"partite set consist-
ing of {Vm;| 1< i< s}. It is worth noting that all values ofin, (C,, P,) andm(C,,Cs) (see
[4])are currently known. Also all values ofi(CsKy3 + X) are known asn(C,Cs) =
m(C4,Ky3+ X) for any integey.

3. Some useful lemmas on connected proper subgraphs of K,
Theorem 1. If j > 3, then

1 j=6
m(C,C,) =¢ 2 j={4.5
3 j=3
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Proof. If j > 6 (see [2]), since(C,,Cs) = 6 we getm(C,C,) = 1. So we are left with the
caseg = 3,j =4 andj = 5. Ifj = 4 orj = 5, consider the coloring &f., = Hx ©Hsg, gen-
erated byHg = Cs andHg = Csrespectively. TherK.; has no redC, or a blueC,. There-
fore, we obtain thaty(C,,Cs) > 2 andms(C,,Cy) > 2.

In order to showms(C,,C,) < 2 andmy(C,,C,) < 2, first note that it suffices only
to show thatny(C,,C,) < 2. Consider any red/blue coloring givenKiy,= Hr @Hg, such
thatHgcontains no re€,andHgcontains no blu€,.

In the first possibility thaHris a regular graph of order 3, we get from the abov
remark thatHgr must contain a re@;. Without loss of generality assume that this red 3
cycle is incident to the first three partite satdl @onsists of sawi 1, Vo1, Vs1. Then both
V41 andv,, have to be adjacent to two verticesof, v,1, Va1 in blue in order to avoid a
red C,;. Without loss of generality assumg, andv,, are adjacenVsi, Vo1 andvsg, Vi

respectively. But then aegr(vi) = 3, (1.1,V22) and {11,vs2) will have to be blue edges.
This is illustrated in the following figure.

Vi1

V41

V12
V42

Figure 1: In the first possibility, the derived red/blue gnap

As there is no blu€,, (v2,,v31) and {42,v21) have to be red edges. Next as there is no red
C4, (V22,V41) has to be a blue edge. But then if we consideretige \,,,vs2) we see that

it can be neither a red edge or a blue edge adl ifjiwe rise to a redC, or a blueC,, a
contradiction.In the second possibility thdis not a regular graph of order 3, by sym-
metry we can assume that red degree of a vertgx{gais greater than or equal to 4 and
without loss of generality; , is connected in red t@1, V25, V31 andv,; as illustrated in

the following figure (note if/;,is adjacent ta, 1, Voo, Va1 @ndvs,, it would clearly force a
monochromic.

Figure 2: In the first possibility, the derived red/blue gha
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If v is connected in red to two vertices Mg(vi,) will result in a redC,. Therefore,
without loss of generality get eithey; to connected in blue ta 3, Va1, V41 0r elsevy; to
connected in blue ta,1, V25, V31. In the first scenario, as the induced subgraph ©f/,
V41 Will contains 2 red edges or 2 blue edges and ttveseedges will be contained in a
C, of that same color, a contradiction. In the seceeeharioy,, will be adjacent to two
vertices ofv, 1, Va,, V31in SOMe color and then this would force these tediees to be
contained in a monochromatiX in that same color, a contradiction.

If j = 3, consider the coloring &, = Hr ©Hg, generated byr = 2K;. Then,
Kixzhas no red,or a blueC,. Therefore, we obtain thak(C,Cy) > 3.

To show,my(C,,C,) < 3. Consider any red/blue coloring given Ky: = Hgr @Hg, such
thatHg contains no re€,andHg contains no blu€,. By handshaking lemma all vertices
cannot have red degree 3.

Therefore, without loss of generality, using symmyetve may assume thet, is
adjacent to at least 4 vertices in red. \/die any subset of size 4 Wi(vy4). In order to
avoid a redC,, bothv;, andv; 3 must be adjacent to at least three vertice¥ of blue.
This will result in a blueC, containingv, , andv; 3 contrary to our assumption. Therefore,
we could conclude thats(C,4,C,) = 3.

Theorem 2.
1 |27
_]2 j={5,6}
mj(C4’BZ) - 3 j:4
4 j=3

Proof. Clearlym(C4,B,) = 1 ifj > 7, sincer(C4B,) = 7 (see [2]).

Letj € {5,6}. Consider the coloring df;«; = Hr @ Hp, generated bilr= CsandHg= 2K;
whenj = 5 andj = 6 respectively. Therk;.; has no redC, or a blueB,. Therefore, we
obtain thatms(C,4,B,) > 2 andmg(C,4,B,) > 2. Next we have to shoms(C,,B,) < 2 . For
this consider any coloring consisting of (red, blgiren byKsx,= Hr @Hg, such thaty
contains no red, andHg contains no re®,. Then sincang(C,,Cs) = 2, without loss of
generality we may assume thaf(v»1,vs;) is a blue cycle. Defifle= {V,1,V42,Vs1,V52}
andS= {vi11,V21,v31}. Then, if any vertex off is adjacent to two vertices &in blue, it
will result blueB,, contrary to our assumption. Therefore, we willléfé with the option
every vertex ofT is adjacent to at least two verticesSih red. But then as§| = 3 there
will be twovertices ofT adjacent in red to the same pair of verticeS ihis will result
in a redC,, a contradiction. From this we can conclude th#€,,B,) < 2 if j € {5,6}.
That is,m(C,,B,) = 2 if j € {5,6}.We are left with the following two cases, namgly
4(case 1) anfl= 3(case 2).

Cael.j=4

Consider the coloring df4«.= Hr @Hz, generated birillustrated in the following fig-
ure.
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V4,1

Figure3: Case 1

ThenHg will contain three disjoint triangles except forawriangles containing a com-
mon vertex. Thus the red-blue coloring generatethbyfigure will be such thatiz con-
tains no redC,andHg contains no blud,. Therefore, we will getny(C4,B,) > 3. To show
that mg(C4,B2) < 3 consider any coloring consisting of (red , blge)en byKaz«, = Hg
@®Hs, such thaHg contains no redC, and Hg contains no blud,. Sincemy(C,,Cs) = 2
without loss of generality, we get that;Vo1vaivi1 iS a blue cycle. Defines =
{Vi1,Vo1,va1} and T = {Vv41,Va0,Va3}. If any vertex of T has adjacent in blue to 2 vertices of
Swe will get a blueB, and if any two vertex of has adjacent in red to the same 2 vertic-
es ofSwe will get a redC,. Therefore, we may assume thigtis adjacent in blue te, ;
and in red tos,; andvsg; Vs, is adjacent in blue t@,; and in red tos;; andvs;; V43is ad-
jacent in blue ta;; and in red tos ; andvy ;.

Figure 4: The first scenario

Also in the remaining 6 vertices (81N T°) must contain a bluB;asmg(C,,Ps) = 2. Thus,
without loss of generality we may assume thav,svs3is a bluePs. In order to avoid a
red C,, all three vertices of\f 3,V23,V33} must be adjacent in blue to at least two vertices
of T. Thus, without loss of generality this gives risgwo possible scenarios illustrated
in Figure 5 and Figure 6 respectively.

In the first scenario, in order to avoid a bBigboth {/13,v42) and {/1,3,vs3) must
be a red edges. Then in order to avoid aGgdvi 1,vs3) must be a blue edge; in order to
avoid a blueB,, (vs3V21) and {11,V23) must be red edges; in order to avoid a red
Ca,(V31,V23), (V13,Va3) and {13,V41) must be a blue edges.But then in order to avdilie
B., (V23,V43) must be red. In order to avoid a @4 (v»3,v41) must be a blue edge.
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Figure5: The final graph generated by the first scenario

In order to avoid a bluB,, (vs3,v41) must be a red edge and in order to avoid aQgd
(V13,V21) must be a blue edge. The red/blue graph genematildstrated in the above
figure.

But then if {13,v31) is red we get a re@,and if is blue we get a blue we geBa
a contradiction.

In the second scenario, we may assumevfias adjacent in blue t@,z andvss;
V42is adjacent in blue t@,z;andvsz; va3is adjacent in blue te; sandvsz. Next in order to
avoid a blueB,, (Va3,Va3), (V23,Va2), (Via,Va1) and {3,v31) must be a red edges.Then in
order to avoid a red, (vi1,V23) must be a blue edge; in order to avoid a tBge
(va3,v11) Must be a red edge.In order to avoid aCgdv»1,v33) must be a blue edge; in
order to avoid a blu8,, (vi3,V2;) must be a red edge; and in order to avoid aGgd
(v13,v31) must be a blue edge. But then the verticesip ¥z 1,Va3,V23} Will induce a blue
B,, a contradiction.

Figure 6: The second scenario

Case2:j=3

Consider the coloring dfs.,= Hr @Hg, generated bidzandHgillustrated in the follow-
ing figure. The red blue coloring generated by ftikowing figure will be such thaHg
contains no re@€,andHgcontains no red@,. Therefore, we will getn(Cy4,B,) > 4.
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.3

l - e o Uz o . Te Uzl
Figure7: Case 2

To show thaimy(C,4,B,) < 4, consider any coloring consisting of (red,blgeen by Ksx
= Hg @Hg such that there is no ré&} in Hror a redB,in Hg. Subject to these conditions
will first show the following three claims.

Notation: Let1 <i,j < 4. A vertexv € K3, having blue degreé+ j is said to con-
sists of a bluei(j) split if vis adjacent in blue tbvertices of one particle set anpdertic-
es of the other partite set.

Claim 1: All vertices ofKs«4have blue degree at most five.

Proof. Supposer; 4 has blue degree at least 6. Without loss of gebgrhere are two
possibilities. Then one of the following two scenarmust be true. The first ,is adja-
cent in blue to all vertices &= {V,1,V22,V23,V24,V33,V34} @nd the second, ; is adjacent in
blue to all vertices 06= {szl,szz,V2’3,V3’1,V312,V3’3}.

In the first scenario to avoid a blBg, bothv;zandvs,will have to be adjacent in
red to at least three vertices of the second pasét. This will result in a red, contain-
ing vszandvs,, a contradiction. Hence the claim follows.

In the second scenario, In order to avoid a Byl edges betweenv{;,v,,,V, 3}
and {v31,V32,Va3}. Next, applyingms(C,,Cs) = 3 toKsys consisting of the first three ele-
ments of the three partite sets, we obtain a Blusntainingv, 4. Hence the claim fol-
lows.

Claim 2: Ksx4has at least one vertex of blue degree five.

Proof. Applying m(C,4,Cs) = 3 toKa«sconsisting of the first three elements of the three
partite sets, without loss of generality we obtaiblueC; containingS = {vy1,V21,V31}.
Next, as there is no blug, each vertex outsid8 will have to be adjacent in red to at
least one vertex &. Thus by pigeon-hole principle at least one venterst have degree
greater than 5. Thus by Claim 1, we can concludéSthas at least one vertex of blue
degree five as required.

Claim 3: Ksx4has at least one vertex of blug)3split.
Proof. Suppose that the claim is false. kgtbe a vertex having a blue, {4 split. In par-
ticular, suppose that 4is adjacent in blue to all vertices of
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S = {Va1,V22,V23,V24,V34} and adjacent in red to all vertices ©f= {vs1,V32,Va3}. Since
there is no blu®, without loss of generality we may assume thgadjacent in red to all
vertices ofT = {V,1,V»,,V»3}. Next we deal with 2 possible cases.

Casea: vi,4is adjacent in blue to at least one vertex\afi {1 ,,v1 3} (sayvi3). Then, since
there is no re€,and by Claim 1, we would get thats will be a blue () split.

Caseb: v3,4is adjacent in red to all three vertices wf{vi,,v13}. Then, since there is no
redC,and by Claim 1, we would get that, will be a blue () split.

Now let us try to complete the proof jof 3 case. According to lemma\3,, be a vertex
having a blue (2) split.

In particular, suppose thet,is adjacent in blue to all vertices 8f {V,,,V23,V24,V33,V3.4}
and adjacent in red to all verticesTof {V,1,V31,V32}-

Since there is no blug, or a redC,,without loss of generality we may assume that
adjacent in red tw,3,v>4and thatvs sadjacent in red t@,,,v, 3. Next as there is no rel,
we would get thatw 4,Va3) and {,,Va4) are blue edges. This is illustrated in the folow
ing figure.

Lo =
Ll =
/7 -

F S e e

foe
b= 4 T
p = _ e e

Figure8: The generated graph for both cases 1 and 2, jvhén

Next we get that as in claim 3, there are two fssiases to consider.

Case 2.1: (V23,v13) is red. First in order to avoid a r€d both {/13,v25) and {13,V 4) will
have to be blue. Next in order to avoid a HBiéoth (/13,vs3) and {13,vs4) Will have to
be red. But this would give wg3Vs4V»3V33Vy3iS a redC,.

Case 2.2: v,3is adjacent in blue to all three vertices of {v;,,v13}. Next, as there is no
redC,, Vo3 Will be adjacent to at least one vertex @ {vs,} in blue. Without loss of ge-
nerality assumevfs,vs,)is blue. Then, by Claim 1y{s,vs,) will be red.Next, as there is
no redCy, (V22,v31) and {.4,vs1) Will have to be blue.

In order to avoid a blu®, the vertexvs, must be adjacent to two vertices of
{v11,v12,v1 3} in red. Without loss of generality assume thap {1 ,) and {/3,,v13) are red.
But then in order to avoid a rég}, (vs1,Vi2) and {/31,v13) are blue. Consider four vertic-
es,Vs, is adjacent to in blue, given W = {v,,v13,V22,V24}. In order to avoid a blud,
there can be at most one blue edge among them.isTtare are three red edges in the
subgraph induced by. Exhaustive search will show that in each of tbegibilities ei-
therV1,2V3,2V1,3V2’2V1’2 OrV1’2V3’2V1’3V2,4V1’2Wi“ be a redC4, a contradiction.
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U3 1

Figure 9: The final graph of case 2, whega 3

4. Disconnected graphsup to 4 vertices

It is worth noting that ifG andH are two graphs with at most 4 vertices satisfygthg H
UK. Then clearlym(C4,G) = m(C4H) for j > 4. In the case gf= 3, asms(C,,H) >1 for
all connected graphd up to 3 vertices wen(C4,G) = mg(Cy,H). Therefore, by this re-
mark we are left are left only to consiag(C,,2K;). However, this follows directly from

m, (C,,R,) asm,(C,,2K,) <m, (C,,P,)for any integej.
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