Annals of Pure and Applied Mathematics Vol. 13, No. 2, 2017, 211-222 ISSN: 2279-087X (P), 2279-0888(online) Published on 14 April 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v13n2a7

Annals of **Pure and Applied Mathematics**

Interval-valued Q-Fuzzy Ideals Generated by an Interval-valued Q-Fuzzy Subset in Ordered Semi-groups

P. Murugadas¹, A. Arikrishnan² and M.R. Thirumagal³

Department of Mathematics, Annamalai University Annamalainagar-608002, Tamil Nadu, India ¹Corresponding author. E-mail: <u>bodi_muruga@yahoo.com;</u> E-mail: ²<u>malarsan333@yahoo.com;</u>³r.thirumagal@gmail.com

Received 28 February 2017; accepted 14 March 2017

Abstract. This paper expose a study on interval-valued Q-fuzzy ideals generated by an interval-valued Q-fuzzy subset on ordered semi-groups. Some characterizations of such generated interval-valued Q-fuzzy ideals are also discussed.

Keywords: Ordered semi-group, interval-valued Q-fuzzy sub semi-group, interval-valued Q-fuzzy left(right, two-sided) ideal, interval-valued Q-fuzzy interior ideal, interval-valued Q-fuzzy bi-ideal.

AMS Mathematics Subject Classification (2010): 03E72, 08A72,13A15

1. Introduction

The important concept of a fuzzy set introduced by Zadeh in 1965 (see [18]) has opened up keen insights and applications in wide range of scientific fields. Rosenfeld introduced the concept of fuzzy groups [15]. Among others, fuzzy semi-groups were introduced by Kuroki [10]. A theory of fuzzy sets on ordered semi-groups has been recently developed [4,5,6,8,9]. Fuzzy sets in ordered semi-groups were first studied by Kehayopulu and Tsingelis in [5], then they defined fuzzy analogies for several notations, which have proved useful in the theory of ordered semi-group. In [7], they have discussed fuzzy bi-ideals in ordered semi-groups and they discuss fuzzy interior ideals in ordered semi-group in [9]. Fuzzy semi-groups were generalized in two folds: fuzzy ordered semi-groups and fuzzy ternary semi-groups. Since ordered semi-groups are useful for computer science, especially in theory of automata and formal language, fuzzy ordered semi-group has been extensively studied (see [1,2,3,5,6]). Interval-valued fuzzy subsets were proposed thirty years ago as a natural extension of fuzzy sets by Zadeh [18]. In [18], Zadeh also constructed a method of approximate inference using his interval-valued fuzzy subsets. In [13], Narayanan and Manikantan introduced the notions of interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semi-groups. Shabir and Khan [16] have studied about interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in ordered semi-groups. Thillaigovindan and Chinnadurai [17] initiated some study on Interval-valued fuzzy generalized bi-ideals. Some interesting studies are carried out in

[11,12,14] using interval-valued fuzzy set. This paper characterize the ordered semi-groups in terms of interval-valued Q-fuzzy left (right, interior and bi-)ideals.

2. Preliminaries

In [8], Kehayopulu and Tsingelis used the operation \land on the unit interval [0,1] to define an operation ' \circ ' on $\mathcal{F}(S)$ as follows:

$$(f \circ g)(x) = \begin{cases} \bigvee_{y, z \in S_x} f(y) \land g(z) \text{ if } S_x \neq \emptyset, \text{ for all } x \in S, \\ 0 & \text{otherwise,} \end{cases}$$

where $S_x = \{(y, z) \in S \times S : x \le yz\}$

An ordered semi-group is an ordered set S at the same time a semi-group such that a $\leq b \Rightarrow ax \leq bx$ and $xa \leq xb$ for all $\forall a, b, x \in S$.

A non-empty subset A of an ordered semi-group S is called a sub semi-group of S if $AA \subseteq A$.

A non-empty subset A of an ordered semi-group S is called a **right** (**resp. left**) **ideal** of S if

1. $AS \subseteq A$ (resp. $SA \subseteq A$)

2.
$$a \in A, S \ni b \le a \Longrightarrow b \in A$$
.

A is called an **ideal** of S if it is both a right and a left ideal of S.

A sub semi-group A of an ordered semi-group S is called an **interior ideal** of S if $1.SAS \subseteq A$.

$$2. a \in A, S \ni b \le a \Longrightarrow b \in A.$$

A semi-group A of an ordered semi-group S is called a **bi-ideal** of S if

1. $ASA \subseteq A$.

 $2. a \in A, S \ni b \le a \Longrightarrow b \in A.$

A fuzzy subset f of an ordered semi-group S is a function from S to the unit interval [0,1] [5]. Let S be an ordered semi-group. A fuzzy subset f of S is called a **fuzzy sub semi-group** of S if $f(xy) \ge min\{f(x), f(y)\} \quad \forall x, y \in S$.

A fuzzy subset f of an ordered semi-group S is called a fuzzy left (resp. right) ideal of S if

1)
$$x \le y \Longrightarrow f(x) \ge f(y)$$

2)
$$f(xy) \ge f(y)$$
 (resp. $f(xy) \ge f(x)$).

If f is both a fuzzy left ideal and a fuzzy right ideal of S, then f is called a fuzzy ideal of S or a fuzzy two sided ideal of S. Equivalently, f is called a **fuzzy ideal** of S if

1)
$$x \le y \Rightarrow f(x) \ge f(y)$$

2) $f(xy) \ge \sup\{f(x), f(y)\}.$

A fuzzy sub semi-group f of an ordered semi-group S is called a **fuzzy interior ideal** of S if

1) $x \le y \Rightarrow f(x) \ge f(y)$

2) $f(xyz) \ge f(y)$.

A fuzzy sub semi-group f of an ordered semi-group S is called a **fuzzy bi-ideal** of S if

1) $x \le y \Longrightarrow f(x) \ge f(y)$

2) $f(xyz) \ge min\{f(x), f(y)\}.$

3. Interval-valued Q-fuzzy ideals generated by an interval-valued Q-fuzzy subset in ordered semi-groups

We now give the interval-valued Q-fuzzy concepts.

An interval number on [0,1], say a is a closed sub-interval of [0,1], that is $\overline{a} = [a^-, a^+]$ where $0 \le a^- \le a^+ \le 1$. Let D[0,1] denote the family of all closed sub-intervals of [0,1], $\overline{0} = [0,0]$ and $\overline{1} = [1,1]$. For any two elements $\overline{a} = [a^-, a^+]$ and $\overline{b} = [b^-, b^+]$ in D[0,1]. We define

- (i) $\overline{a} \leq \overline{b}$ if and only if $a^- \leq b^-$ and $a^+ \leq b^+$
- (ii) $\overline{a} = \overline{b}$ if and only if $a^- = b^-$ and $a^+ = b^+$,
- (iii) $Min^i \{\overline{a}, \overline{b}\} = [min\{a^-, b^-\}, min\{a^+, b^+\}].$
- (iv) $Max^i \{\overline{a}, \overline{b}\} = [max\{a^-, b^-\}, max\{a^+, b^+\}].$

Similarly we can define inf^i and sup^i in case of family of elements in D[0,1].

A mapping $\overline{A}: X \times Q \to D[0,1]$ is called an interval-valued Q-fuzzy subset of X.

where $\overline{A}(x,q) = [A^{-}(x,q), A^{+}(x,q)]$. $\forall x \in X$ and $q \in Q$.

Let S be an ordered semi-group with identity element 1 and IQF(S) denotes the set of all i-v Q-fuzzy subsets of S.

Definition 3.1. Let \overline{A} , \overline{B} be *i*-v *Q*-fuzzy subsets of S. Then we have the following:

(i) $\overline{A} \leq \overline{B}$ if and only if $\overline{A}(x,q) \leq \overline{B}(x,q)$. (ii) $\overline{A} = \overline{B}$ if and only if $\overline{A}(x,q) = \overline{B}(x,q)$. (iii) $(\overline{A} \cup \overline{B})(x,q) = max^i \{\overline{A}(x,q), \overline{B}(x,q)\}$. (iv) $(\overline{A} \cap \overline{B})(x,q) = min^i \{\overline{A}(x,q), \overline{B}(x,q)\}$, for all $x \in S$ and $q \in Q$.

Definition 3.2. Let " \circ " be a binary composition in *S*. The product $\overline{A} \circ \overline{B}$ of any two *i*-v *Q*-fuzzy subsets $\overline{A}, \overline{B}$ of *S* is defined by

$$(\overline{A} \circ \overline{B})(\mathbf{x},\mathbf{q}) = \begin{cases} \bigvee_{x=ab}^{i} \left\{ Min^{i} \{\overline{A}(a,q), \overline{B}(b,q)\} \right\} & \text{if } x \text{ is expressible as } x = ab \\ \overline{0} & \text{otherwise} \end{cases}$$

Since semi-group S is associative, The operation " \circ " is associative. We denote xy instead of $x \cdot y$ and \overline{AB} for $\overline{A} \circ \overline{B}$. Let B be a subset of a set S.

Define a function (characteristic function) $\overline{\chi}_B : S \times Q \to D[0,1]$ by

$$\overline{\chi}_{B}(x,q) = \begin{cases} \overline{1} \text{ if } x \in B & \forall x \in S \text{ and } q \in Q. \\ \overline{0} & otherwise \end{cases}$$

clearly $\overline{\chi}_B$ is an i-v Q-fuzzy subset of S. Throughout this paper $\overline{\chi}_s$ is denoted by \overline{S} and S will denote a semi-group unless mentioned.

Definition 3.3. Let A be a Q-fuzzy subset of an ordered semi-group S with identity element 1. Then the smallest Q-fuzzy left (right, two sided, interior, bi-)ideal of S containing A is called a Q-fuzzy left (right, twosided, interior, bi-)ideal of S generated by A denoted by $\langle A \rangle_L$ ($\langle A \rangle_R$, $\langle A \rangle_I$, $\langle A \rangle_L$), respectively.

Definition 3.4. An *i*-v Q-fuzzy subset \overline{A} of an ordered semi-group S is called an *i*-v Q-fuzzy sub semi-group of S if for all $x, y \in S$ and $q \in Q$,

 $\overline{A}(xy,q) \ge Min^{i} \{\overline{A}(x,q), \overline{A}(y,q)\}.$

Definition 3.5. An *i*-v Q-fuzzy subset \overline{A} of an ordered semi-group S is called an *i*-v Q-fuzzy left (resp. right) ideal of S if for all $x, y \in S$ and $q \in Q$

i) $x \le y \Rightarrow \overline{A}(x,q) \ge \overline{A}(y,q)$ and $q \in Q$ ii) $\overline{A}(xy,q) \ge \overline{A}(y,q)$ (resp. $\overline{A}(xy,q) \ge \overline{A}(x,q)$).

An i-v Q-fuzzy subset \overline{A} in S is called an interval valued fuzzy two sided ideal of S if it is an i-v Q-fuzzy left ideal and an i-v Q-fuzzy right ideal of S.

Definition 3.6. An *i*-v Q-fuzzy sub semi-group \overline{A} of an ordered semi-group S is called an *i*-v Q-fuzzy interior ideal of S if for all $x, y, z \in S$ and $q \in Q$

i) $x \le y \Longrightarrow \overline{A}(x,q) \ge \overline{A}(y,q)$ ii) $\overline{A}(xyz,q) \ge \overline{y}$.

Definition 3.7. An *i*-v *Q*-fuzzy sub semi-group \overline{A} of an ordered semi-group *S* is called an *i*-v *Q*-fuzzy bi-ideal of *S* if for all $x, y, z \in S$ and $q \in Q$

i) $x \le y \Rightarrow \overline{A}(x,q) \ge \overline{A}(y,q)$ ii) $\overline{A}(xyz,q) \ge Min^i \{\overline{A}(x,q), \overline{A}(z,q)\}.$

Theorem 3.8. An interval-valued Q-fuzzy subset A of an ordered semi-group S is an *i*-v Q-fuzzy sub semi-group (left ideal, right ideal, two sided ideal, interior ideal, bi-ideal) of S iff A^- and A^+ are Q-fuzzy sub semi-group (left ideals, right ideals, interior ideals, bi-ideals) of S.

Proof: Let \overline{A} be an i-v Q-fuzzy sub semi-group of S.

Then for all $x, y \in S$, and $q \in Q$ $\overline{A}(xy,q) \ge Min^i \{\overline{A}(x,q), \overline{A}(y,q)\}$, where $Min^i \{\overline{A}(x,q), \overline{A}(y,q)\} = [min\{A^-(x,q), A^-(y,q)\}, min\{A^+(x,q), A^+(y,q)\}]$. Thus $\overline{A}(xy,q) \ge [min\{A^-(x,q), A^-(y,q)\}, min\{A^+(x,q), A^+(y,q)\}]$. Hence $[A^-(xy,q), A^+(xy,q) \ge [min\{A^-(x,q), A^-(y,q)\}, min\{A^+(x,q), A^+(y,q)\}]$. Thus $A^-(xy,q) \ge min\{A^-(x,q), A^-(y,q)\}$ and $A^+(xy,q) \ge min\{A^+(x,q), A^+(y,q)\}]$. Hence A^-, A^+ are Q-fuzzy sub semi-groups of S. The converse is straightforward. Now suppose \overline{A} is an i-v Q-fuzzy left ideal of S. Then for all $x, y \in S$, and $q \in Q$ $x \le y \Rightarrow \overline{A}(x,q) \ge \overline{A}(y,q)$ and $\overline{A}(xy,q) \ge \overline{A}(y,q)$ Now $\overline{A}(x,q) \ge \overline{A}(y,q) \Rightarrow [A^-(x,q), A^+(x,q) \ge [A^-(y,q), A^+(y,q)]$. That is $A^-(x,q) \ge A^-(y,q)$ and $A^+(xy,q) \ge [A^-(y,q), A^+(y,q)]$. Thus $A^-(xy,q) \ge \overline{A}(y,q) \Rightarrow [A^-(xy,q)], A^+(xy,q) \ge [A^-(y,q), A^+(y,q)]$. Thus $A^-(xy,q) \ge A^-(y,q)$ and $A^+(xy,q) \ge A^+(y,q)$. Hence, A^- and A^+ are Q-fuzzy left ideals of S. The converse is straightforward. Similarly we can prove for other cases.

Definition 3.9. Let \overline{A} be an *i*-v *Q*-fuzzy set. Then the smallest *i*-v *Q*-fuzzy left (right, two sided) ideal of S containing \overline{A} is called an *i*-v *Q*-fuzzy left (right, two sided) ideal of S generated by \overline{A} , denoted by $\langle \overline{A} \rangle_L (\langle \overline{A}_R \rangle, \langle \overline{A} \rangle)$ respectively.

Theorem 3.10. Let \overline{A} be an *i*-v *Q*-fuzzy set. Then $\langle \overline{A} \rangle_I = \overline{J}$,

where $\overline{J} = [J^-, J^+]$ such that

$$J^{-}(x,q) = \sup_{\substack{x \le x_1 x_2 \\ x_1, x_2 \in S}} A^{-}(x_2,q) \text{ and } J^{+}(x,q) = \sup_{\substack{x \le x_1 x_2 \\ x_1, x_2 \in S}} A^{+}(x_2,q) \text{ for all } x \in S \text{ and } q \in Q.$$

Proof: For all $a \in S$ and $q \in Q$,

 $\begin{aligned} J^{-}(a,q) &= \sup_{a \leq x_{1}x_{2}} A^{-}(x_{2},q) \geq A^{-}(a,q), \text{ since } a = 1.a \Rightarrow A^{-}(a,q) \leq J^{-}(a,q). \end{aligned}$ Similarly $A^{+}(a,q) \leq J^{+}(a,q) \Rightarrow \overline{A}(a,q) = [A^{-}(a,q),A^{+}(a,q)] \leq [J^{-}(a,q),J^{+}(a,q)]. \end{aligned}$ Thus $\overline{A} \subseteq \overline{J}$. Now we show that \overline{J} is an interval-valued Q-fuzzy left ideal of S, for this we have to show $(x,q) \leq (y,q) \Rightarrow \overline{J}(x,q) \geq \overline{J}(y,q)$ and $\overline{J}(xy,q) \geq \overline{J}(y,q)$ for all

 $x, y \in S$ and $q \in Q$. Let $x, y \in S$, such that $x \le y$. If $y \le x_3 x_4$, then $x \le x_3 x_4$.

Hence $J^{-}(y,q) = \sup_{y \le x_3 x_4} A^{-}(x_4,q) \le \sup_{x \le x_1 x_2} A^{-}(x_2,q) = J^{-}(x,q)$. Similarly $J^{+}(x,q) \ge J^{+}(y,q) \Longrightarrow \overline{J}(x,q) \ge \overline{J}(y,q)$.

Now if $y \le x_1 x_2$, then $(xy, q) \le ((xx_1)x_2, q)$.

Hence $J^{-}(y,q) = \sup_{y \le x_1 x_2} A^{-}(x_2,q) \le \sup_{xy \le x_3 x_4} A^{-}(x_4,q) = J^{-}(xy,q)$. Similarly $J^{+}(xy,q) \ge J^{+}(y,q)$. Hence $\overline{J}(xy,q) \ge \overline{J}(y,q)$. Let \overline{B} be any i-v Q-fuzzy left ideal of S such that $\overline{B} \supseteq \overline{A}$. Then for all $a \in S$ and $q \in Q$, $B^{-}(a,q) \ge A^{-}(a,q)$ and $B^{+}(a,q) \ge A^{+}(a,q)$. Now $J^{-}(a,q) = \sup_{a \le a_1 a_2} A^{-}(a_2,q) \le \sup_{a \le a_1 a_2} B^{-}(a_1 a_2,q) \le B^{-}(a,q)$. Similarly, $B^{+}(a,q) \ge J^{+}(a,q)$ for all $a \in S$ and $q \in Q \implies \overline{J} \subseteq \overline{B}$. Hence, $\langle \overline{A} \rangle_L = \overline{J}$.

Theorem 3.11. Let \overline{A} be an *i*-v *Q*-fuzzy set, Then $\langle \overline{A} \rangle_R = \overline{J}$, where $\overline{J} = [J^-, J^+]$ such that $J^-(x,q) = \sup_{\substack{x \le x_1 x_2 \\ x_1, x_2 \in S}} A^-(x_1,q)$ and $J^+(x,q) = \sup_{\substack{x \le x_1 x_2 \\ x_1, x_2 \in S}} A^+(x_1,q)$ for all $x \in S$.

Proof: The proof is similar to the proof of Theorem 3.10.

Theorem 3.12. Let \overline{A} be an *i*-v Q-fuzzy set. An interval-valued Q-fuzzy subset \overline{J} is an *i*-v Q-fuzzy left (right) ideal of S generated by \overline{A} if and only if J^- and J^+ are Q-fuzzy left (right) ideals of S generated by A^- and A^+ respectively. **Proof:** Suppose \overline{J} is an i-v Q-fuzzy left ideal of S generated by \overline{A} . Then by Theorem 3.8, J^+ and J^- are Q-fuzzy left ideals of S. Since $\overline{A} \subseteq \overline{J}$, we have $A^- \subseteq J^-$ and $A^+ \subseteq J^+$. If B is a Q-fuzzy left ideal of S containing A^- , then define $\overline{B}: S \times Q \to D[0,1]$ by $\overline{B}(x,q) = [B^-(x,q), B^-(x,q)]$, where $B^-(x,q) = B(x,q)$ for all $x \in S$ and $B^+(x,q) = 1$ for all $x \in S$ and $q \in Q$. Since B^- and B^+ are Q-fuzzy left ideals of S, by Theorem 3.8, \overline{B} is an i-v Q-fuzzy left ideal of S generated by \overline{A}^- . Similarly we can show that J^+ is Q-fuzzy left ideal of S generated by A^+ .

Conversely, assume that J^- and J^+ are Q-fuzzy left ideals of S generated by A^- and A^+ respectively. Then by Theorem 3.8, \overline{J} is an i-v Q-fuzzy left ideals of S containing \overline{A} . If \overline{B} is an i-v Q-fuzzy left ideal of S containing \overline{A} , then $A^- \subseteq B^-$ and $A^+ \subseteq B^+$. Since B^- and B^+ are Q-fuzzy left ideals of S, we have $J^- \subseteq B^-$ and $J^+ \subseteq B^+$. Hence $\overline{J} \subseteq \overline{B}$. Thus \overline{J} is an i-v Q-fuzzy left ideal of S generated by \overline{A} .

Theorem 3.13. Let \overline{A} be an *i*-v *Q*-fuzzy set, then $\langle \langle \overline{A} \rangle_L \rangle_R = \langle \overline{A} \rangle = \langle \langle \overline{A} \rangle_R \rangle_L$.

Proof: By Theorem 3.11, $\langle \langle \overline{A} \rangle_L \rangle_R$ is an i-v Q-fuzzy right ideal of S. Clearly, $\langle \langle \overline{A} \rangle_L \rangle_R = [\langle \langle A^- \rangle_L \rangle_R, \langle \langle A^+ \rangle_L \rangle_R]$. For all $x, y \in S$, $q \in Q$ $\langle \langle A^- \rangle_L \rangle_R(xy,q) = \sup_{xy \leq a_1 a_2} \langle A^- \rangle_L(a_1,q) = \sup_{xy \leq a_1 a_2} \sup_{a_1 \leq z_1 z_2} A^-(z_2,q)$ and $\langle \langle A^- \rangle_L \rangle_R(xy,q) = \sup_{y \leq y_1 y_2} \langle A^- \rangle_L(y_1,q) = \sup_{y \leq y_1 y_2 y_1 \leq w_1 w_2} A^-(w_2,q)$ Obviously, $\langle \langle A^- \rangle_L \rangle_R(xy,q) \geq \langle \langle A^- \rangle_L \rangle_R(y,q)$. Similarly we have $\langle \langle A^+ \rangle_L \rangle_R(xy,q) \geq \langle \langle A^+ \rangle_L \rangle_R(y,q)$. It follows that, $\langle \langle \overline{A} \rangle_L \rangle_R(xy,q) = [\langle \langle A^- \rangle_L \rangle_R(xy,q), \langle \langle A^+ \rangle_L \rangle_R(xy,q)]$ $\geq [\langle \langle A^- \rangle_L \rangle_R(y,q), \langle \langle A^+ \rangle_L \rangle_R(y,q)] = \langle \langle \overline{A} \rangle_L \rangle_R(y,q)$

Hence $\langle \langle A^{-} \rangle_{L} \rangle$ is an i-v Q-fuzzy left ideal of S.

Hence $\langle\langle \overline{A} \rangle_L \rangle_R$ is an i-v Q-fuzzy ideal of S. Since $\overline{A} \subseteq \langle \overline{A} \rangle_L \subseteq \langle\langle \overline{A} \rangle_L \rangle_R$, we have $\langle\langle \overline{A} \rangle_L \rangle_R \supseteq \overline{A}$. Suppose \overline{B} is any i-v Q-fuzzy ideal of S such that $\overline{B} \supseteq \overline{A}$. Since $\langle \overline{A} \rangle_L$ is the smallest i-v Q-fuzzy left ideal of S containing \overline{A} , we have $\overline{B} \supseteq \langle \overline{A} \rangle_L$. Also $\overline{B} \supseteq \langle\langle A^- \rangle_L \rangle_R$, since $\langle\langle \overline{A} \rangle_L \rangle_R$ is the smallest i-v Q-fuzzy left ideal of S containing $\langle \overline{A} \rangle_L$. This show that $\langle\langle \overline{A} \rangle_L \rangle_R$ is a smallest i-v Q-fuzzy left ideal of S containing \overline{A} . Therefore $\langle\langle \overline{A} \rangle_L \rangle_R = \langle \overline{A} \rangle$. Similarly we can prove that $\langle\langle \overline{A} \rangle_R \rangle_L = \langle \overline{A} \rangle$. Hence $\langle\langle \overline{A} \rangle_L \rangle_R = \langle \overline{A} \rangle = \langle\langle \overline{A} \rangle_R \rangle_L$.

Definition 3.14. Let \overline{A} be an *i*-v Q-fuzzy set. Then the smallest *i*-v Q-fuzzy interior ideal of S containing \overline{A} is called an *i*-v Q-fuzzy interior ideal of S generated by \overline{A} , denoted by $\langle \overline{A} \rangle_I$.

Theorem 3.15. Let \overline{A} be an *i*-v *Q*-fuzzy set, then $\langle \overline{A} \rangle_I = \overline{J}$, where $\overline{J} = [J^-, J^+]$ such that $J^-(x, q) = \sup_{\substack{x \le x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S}} A^-(x_2, q)$

 $J^{+}(x,q) = \sup_{\substack{x \le x_{1}x_{2}x_{3} \\ x_{1},x_{2},x_{3} \in S}} A^{+}(x_{2},q) \text{ for all } x \in S, \ q \in Q.$

Proof: For all $a \in S$ and $q \in Q$, we have $J^{-}(a,q) = \sup A^{-}(x_2,q) \ge A^{-}(a,q)$ because $a \le 1a1$. $a \le x_1 x_2 x_3$ Similarly $J^+(a,q) \ge A^+(a,q)$. Therefore $\overline{J}(a,q) = [J^{-}(a,q), J^{+}(a,q)] \ge [A^{-}(a,q), A^{+}(a,q)] = A(a,q).$ Let $x, y \in S$, and $q \in Q$ such that $(x,q) \leq (y,q)$. If $(y,q) \le (x_1x_2x_3,q)$ then $(x,q) \le (x_1x_2x_3,q)$. Hence $J^{-}(y,q) = \sup A^{-}(x_2,q) \le \sup A^{-}(x_5,q) = J^{-}(x,q)$. $y \le x_1 x_2 x_3$ $x \le x_4 x_5 x_6$ Similarly $J^+(y,q) \leq J^+(x,q)$. Hence $\overline{J}(x,q) = [J^{-}(x,q), J^{+}(x,q)] \ge [J^{-}(y,q), J^{+}(y,q)] = \overline{J}(y,q).$ Also for all $x, y, z \in S$ and $q \in Q$, if $(y,q) \le (a_1a_2a_3,q)$ then $(xyz,q) \le ((xa_1)a_2(a_3z),q)$. Hence $J^{-}(y,q) = \sup_{y \le a_1 a_2 a_3} A^{-}(a_2) \le \sup_{xyz \le b_1 b_2 b_3} A^{-}(b_2,q) = J^{-}(xyz,q).$ Similarly $J^+(y,q) \ge J^+(xyz,q)$. Thus $\overline{J}(y,q) = [J^{-}(y,q), J^{+}(y,q)] \le [J^{-}(xyz,q), J^{+}(xyz,q)] = \overline{J}(xyz,q)$. This shows that \overline{J} is an i-v Q-fuzzy interior ideal of S such that $\overline{B} \supset \overline{A}$. Then for all $a \in S$ and $q \in Q$, $J^{-}(a,q) = \sup A^{-}(a_2,q) \le \sup B^{-}(a_2,q)$ $a \le a_1 a_2 a_3$ $a \leq a_1 a_2 a_3$ $\leq \sup B^{-}(a_1a_2a_3,q) \leq B^{-}(a,q).$ $a \leq a_1 a_2 a_3$ Similarly $J^+(a,q) \leq B^+(a,q)$.

Hence $\overline{J}(a,q) \leq \overline{B}(a,q)$.

This shows that \overline{J} is the smallest i-v Q-fuzzy interior ideal of S containing \overline{A} , that is $\langle \overline{A} \rangle_I = \overline{J}$.

Theorem 3.16. Let \overline{A} be an *i*-v *Q*-fuzzy set. An interval-valued *Q*-fuzzy subset \overline{J} is an *i*-v *Q*-fuzzy interior ideal of S generated by \overline{A} iff J^- and J^+ are fuzzy interior ideals of S generated by A^- and A^+ respectively. **Proof:** The proof is similar to the proof of Theorem 3.12.

Definition 3.17. An *i*-v Q-fuzzy sub semi-group \overline{A} of S is called an *i*-v Q-fuzzy submonoid of S if $\overline{A}(1,q) \ge \overline{A}(x,q)$ for all $x \in S$ and $q \in Q$.

Theorem 3.18. Let \overline{A} be an i-v Q-fuzzy submonoid of S then $\langle \overline{A} \rangle_B = \overline{J}$ where

 $J^{-}(x,q) = \sup \min\{A^{-}(x_1,q), A^{-}(x_3,q)\}$ and $x \le x_1 x_2 x_3$ $J^{+}(x,q) = \sup \min\{A^{+}(x_{1},q), A^{+}(x_{3},q)\}$ for all $x \in S$ and $q \in Q$. $x \le x_1 x_2 x_3$ **Proof:** For all $x \in S$ and $q \in Q$ $J^{-}(x,q) = \sup \min\{A^{-}(x_1,q), A^{-}(x_3,q)\}$ $x \le x_1 x_2 x_3$ $\geq min\{A^{-}(1), A^{-}(x,q)\} = A^{-}(x,q)$ because $x \leq 1.1.x$ and $A(1,q) \geq A(x,q)$ for all $x \in S$. Similarly, we have $J^+(x,q) \ge A^+(x,q)$. Therefore $\overline{J}(x,q) \ge \overline{A}(x,q)$ and so $\overline{J} \supseteq \overline{A}$. Let $x, y \in S$ such that $x \leq y$. If $y \le x_1 x_2 x_3$ then $x \le x_1 x_2 x_3$. Hence $J^{-}(y,q) = \sup \min\{A^{-}(x_1,q), A^{-}(x_3,q)\}$ $y \le x_1 x_2 x_3$ $\leq \sup \min\{A^{-}(a_1,q), A^{-}(a_3,q)\} = J^{-}(x,q).$ $x \le a_1 a_2 a_3$ Similarly, we have $J^+(x,q) \ge J^+(y,q)$. Thus $\overline{J}(x,q) \ge \overline{J}(y,q)$. Also for all $x, y, z \in S$. If $(x,q) \le (x_1 x_2 x_3, q)$ and $(z,q) \le (z_1 z_2 z_3, q)$, then $(xyz, q) \le ((x_1x_2x_3)y(z_1z_2z_3), q)$. Hence $J^{-}(xyz,q) = \sup \min\{A^{-}(a_1,q), A^{-}(a_3,q)\}$ $xyz \le a_1a_2a_3$ $min\{A^{-}(x_1,q),A^{-}(z_3,q)\}.$ \geq sup $xyz \le x_1 (x_2 x_3 yz_1 z_2) z_3$ $x \le x_1 x_2 x_3, z \le z_1 z_2 z_3$

We can write $A^{-}(x_{1},q) \ge min\{A^{-}(x_{1}), A^{-}(x_{3},q)\},\$ $A^{-}(z_{3},q) \ge min\{A^{-}(z_{1},q), A^{-}(z_{3},q)\}.$ It follows that

$$J^{-}(xyz,q) \geq \sup_{\substack{xyz \leq x_1(x_2x_3,yz_1z_2)z_3\\x \leq x_1x_2x_3, z \leq z_1z_2z_3}} \min\{\min\{A^{-}(x_1,q),A^{-}(x_3,q)\}, \min\{A^{-}(z_1,q),A^{-}(z_3,q)\}\}$$

$$= \min\{\sup_{x \leq x_1x_2x_3} \min\{A^{-}(x_1),A^{-}(x_3)\}, \sup_{z \leq z_1z_2z_3} \min\{A^{-}(z_1,q),A^{-}(z_3,q)\}\}$$

$$= \min\{J^{-}(x,q),J^{-}(z,q)\}.$$

Similarly we have $J^+(xyz,q) \ge min\{J^+(x,q), J^+(z,q)\}$. Therefore

$$\overline{J}(xyz,q) = [J^{-}(xyz,q), J^{+}(xyz,q)]$$

$$\geq [min\{J^{-}(x,q), J^{-}(z,q)\}, min\{J^{+}(x,q), J^{+}(z,q)\}]$$

$$= Min^{i}\{\overline{J}(x,q), \overline{J}(z,q)\}$$

and so, $\overline{J}(xyz,q) \ge Min^i \{\overline{J}(x,q), \overline{J}(z,q)\}$. Taking y = 1, we have $\overline{J}(xz,q) \ge Min^i \{\overline{J}(x,q), \overline{J}(z,q)\}$. This shows that \overline{J} is an i-v Q-fuzzy bi-ideal of S. Let \overline{B} be an i-v Q-fuzzy bi-ideal of S such that $\overline{B} \supseteq \overline{A}$.

Then for all $a \in S$, we have

$$J^{-}(a,q) = \sup_{a \le a_1 a_2 a_3} \min \left\{ A^{-}(a_1,q), A^{-}(a_3,q) \right\}$$

$$\leq \sup_{a \le a_1 a_2 a_3} \min \left\{ B^{-}(a_1,q), B^{-}(a_3,q) \right\} \leq \sup_{a \le a_1 a_2 a_3} B^{-}(a_1 a_2 a_3,q) \le B^{-}(a,q).$$

Similarly, we have $J^+(a,q) \leq B^+(a,q)$. Thus $\overline{J} \subseteq \overline{B}$. Hence \overline{J} is a smallest i-v Q-fuzzy bi-ideal of S containing \overline{A} . That is $\langle \overline{A} \rangle_B = \overline{J}$.

Theorem 3.19. Let \overline{A} be an *i*-v *Q*-fuzzy submonoid of S. Then an *i*-v *Q*-fuzzy subset \overline{J} is an *i*-v *Q*-fuzzy bi-ideal of S generated by \overline{A} if and only if J^- and J^+ are *Q*-fuzzy bi-ideals of S generated by A^- and A^+ respectively. **Proof:** The proof is similar to the proof of Theorem 3.18.

Theorem 3.20. Let *S* be regular ordered semi-group and \overline{A} be an *i*-v *Q*-fuzzy set, then $\langle \overline{A} \rangle_{R} = \overline{J}$ where

$$J^{-}(x,q) = \sup_{x \le x_1 x_2 x_3} \min \{A^{-}(x_1,q), A^{-}(x_3,q)\} \text{ and}$$
$$J^{+}(x,q) = \sup_{x \le x_1 x_2 x_3} \min \{A^{+}(x_1,q), A^{+}(x_3,q)\} \text{ for all } x \in S, q \in Q.$$

Proof: From the proof of Theorem 3.18, it enough to prove that $\overline{J} \supseteq \overline{A}$. For all $x \in S$ and $q \in Q$, we have

$$\begin{aligned}
T^{-}(x,q) &= \sup_{x \le x_{1}x_{2}x_{3}} \min\{A^{-}(x_{1},q), A^{-}(x_{3},q)\} \\
&\geq \sup_{x \le xax} \min\{A^{-}(x,q), A^{-}(x,q)\} \\
&= A^{-}(x,q)
\end{aligned}$$

Similarly, we have $J^+(x,q) \ge A^+(x,q)$.

Therefore, $\overline{J}(x,q) \ge \overline{A}(x,q)$ and so $\overline{J} \supseteq \overline{A}$.

Remark 3.21. Theorem 3.19 is also true for an i-v Q-fuzzy subset \overline{A} of a regular ordered semi-group S.

4. Conclusion

Interval-valued Q-fuzzy ideals generated by an interval-valued Q-fuzzy subset on ordered semi-groups has been studied and some characterization are establisted.

REFERENCES

- 1. Y.B.Jun, J.Meng and X.L.Xin, On ordered filters of implicative semi-groups, *Semi-group Forum*, 54 (1997) 75-82.
- 2. N.Kehayopulu, On prime, weakly prime ideals in ordered semi-groups, *Semi-group Forum*, 44(3) (1992) 341-346.
- 3. N.Kehayopulu and M.Tsingelis, On intra-regular ordered semi-groups, *Semi-group Forum*, 46 (1993) 271-278.
- 4. N.Kehayopulu and M.Tsingelis, A note on fuzzy sets in semi-groups, *Sci. Math.*, 5(3) (1999) 411-413.
- 5. N.Kehayopulu and M.Tsingelis, Fuzzy sets in ordered groupoids. *Semi-group Forum*, 65(1) (2002) 128-132.
- 6. N.Kehayopulu and M.Tsingelis, The embedding of an ordered groupid into a poe-groupid in terms of fuzzy sets, *Information Sciences*, 152 (2003) 231-236.
- 7. N.Kehayopulu and M.Tsingelis, Fuzzy bi-ideals in ordered semi-groups, *Information Sciences*, 171 (2005) 13-28.
- 8. N.Kehayopulu and M.Tsingelis, Regular ordered semi-groups in terms of fuzzy sets, *Information Sciences*, 171 (2005) 13-28.
- 9. N.Kehayopulu and M.Tsingelis, Fuzzy interior ideals in ordered semi-groups, *Lovachevskli Journal of Mathematics*, 21 (2006) 65-71.
- 10. N.Kuroki, On fuzzy semi-group, Information Sciences, 53(3) (1991) 203-236.
- 11. M.Pal and H.Rashmanlou, Irregular Interval-valued Fuzzy graphs, *Annals of pure and Applied Mathematics*, 1(2) (2012) 186-191.
- 12. R.Nagarajan and K.Balamurugan, On interval-valued bi-cubic vague subgroups, *Annals of pure and Applied Mathematics*, 6(2) (2014) 125-132.
- 13. A.L.Narayanan and T.Manikantan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semi-groups, *J. App. Maths and Computing*, 20 (2006) 455-465.
- 14. P.Rajarajeswari and P.Dhanalakshmi, Interval-valued fuzzy soft matrix theory, *Annals of pure and Applied Mathematics*, 7(2) (2014) 61-72.

- 15. A.Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications, 35(1971) 51-517
- 16. M.Shabir and Israr Ali Khan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in ordered semi-groups, *Mathware and Soft Computing*, 15 (2008) 263-272.
- 17. N.Thillaigovindan and V.Chinnadurai, Interval-valued fuzzy generalized bi-ideals, Proceedings of the National Conference on Algebra, *Graph theory and their Applications*, Department of Mathematics, Manonmaniam Sundaranar University, Narosa, (2009) 85-98.
- 18. L.A.Zadeh, Fuzzy Sets, Inform. and Control, 8(3)(1965) 338-353.