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Abstract.  It has been shown in [2] that the title equation has infinitely many solutions 
when  p = 2  and also when  p = 3.  In this article, it is established and demonstrated for  
each  prime   p > 3,  that  the  equation  has a solution for each  and  every  integer  x ≥ 1.  
We  also  discuss  separately  two  distinct  particular cases of the equation. One is related 
to the Sophie Germain conjecture, and the other to the Goldbach conjecture. 
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1.  Introduction 
The history of  Diophantine equations dates back to antiquity. There are endless varieties 
of Diophantine Equations, and there is no general method of solution.   
       Consider the equation  
                                                          px + qy = z2                                                               (1) 
where  p is prime, and  1 < q  is an odd integer. The values  x,  y,  z,  and all other values 
occurring in our discussion represent positive integers. 
        
       We now introduce the relation between equation (1) and  Sophie Germain primes. 
       A Sophie Germain (1776 – 1831) prime is a prime  p  such that  2p + 1  is also  
prime. From  [5]  we also cite: As of  29.2.2016,  the largest known proven Sophie 
Germain  prime   p  is  

p  =  2618163402417 · 21290000 – 1 
having 388342 decimal digits.  
       The  well-known   Sophie  Germain conjecture,  i.e., there  exist  infinitely  many  
Sophie Germain primes is an extremely difficult problem which is still unsolved.  Under 
the assumption that the  Sophie Germain conjecture is indeed true, i.e., there exist 
infinitely many Sophie Germain primes, the author [1] established that each Sophie 
Germain prime with  x = 2 and   y = 1 determines a solution of equation  (1). This is 
discussed in Section 2.  
       The author [2] has proved for  p = 2  and  also  for  p = 3   that  equation  (1)  has 
infinitely many solutions for each integer  x ≥ 1  when   y = 1  or  y = 2.  Therefore, the 
main objective of this article is to show in particular: First (Section  2) that equation  (1)  
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has infinitely many solutions for each prime  p > 3,  and secondly (Section  3)  that a 
relation exists between a certain case of equation (1) and the Goldbach conjecture.  
 
2.   The main result 
In this section, in Theorem 2.1 it is established for every prime  p > 3 that equation  (1) 
has a solution for each integer  x ≥ 1.  
 
Theorem  2.1.   For each and every prime   p  >  3,  the equation  
                                        px + qy = z2                      q  odd,         y  =  1                             (2)  
has a solution for every integer x  ≥ 1,  i.e., the equation has infinitely many solutions. 
Proof:   We shall distinguish two cases in (2),  namely: x = 2n  and  x = 2n+1 for every 
integer  n ≥ 1.  The case  x = 1  will then be demonstrated.  
       Suppose that  x = 2n. From  (2)  we have  p2n  +  q1  =  z2  or 
                                                   (pn)2  +  q  =  z2.                                                              (3)  
 
Set the odd value  q  as  q = 2·pn + 1.  Then  z2  =  (pn + 1)2.  Thus, equation  (3)  has the 
form  

(pn)2 + 2·pn +1  =  (pn +1)2 
which is an identity valid for each prime  p, and every integer n ≥ 1. Hence, the solution 
of  equation  (1)  for each prime  p > 3  and all even values  x ≥  2  is given by 

(p,  q,  x,  y,  z)  =  (p,  2·pn + 1, 2n, 1,  pn +1). 
       The above solution and the Sophie Germain primes are connected as follows.       
When  x = 2 (n = 1),  the solution  yields 

 (p,  q,  x,  y,  z)  =  (p,  2p+1,  2,  1,  p + 1). 
If  p is a Sophie Germain prime, then by definition  q = 2p+1 is also prime. Moreover, 
the primes   p  =  2  and   p  =  3  are also  Sophie Germain primes. Evidently, each  
Sophie Germain prime p ≥ 2 satisfies the above solution of equation (1). Under the 
assumption that there exist infinitely many  Sophie Germain primes, it then follows that 
the above solution is valid for each and every such prime. Hence, when  x = 2  equation  
(1)  has infinitely many  solutions.  
       Suppose that   x  =  2n + 1.  From  (2)  we obtain 
                                                   p2n+1  +   q1  =   z2.                                                           (4) 
Each prime  p > 3  is either of the form  4N + 1 or of the form  4N + 3,  where  N  ≥  1   
is an integer.  We shall consider two cases as follows: 
(a)     p   =   4N + 1, 
(b)     p   =   4N + 3. 
 
(a)    Suppose that   p = 4N + 1. Let  p, hence  N  be fixed.  For every fixed value  n  in  
(4), there exists a respective fixed integer V satisfying  p2n+1 =  (4N + 1) 2n+1 =  4V + 1, 
where  V  is odd or even. Let  T  be an integer. If  q  =   4T + 1,  the left-hand side of  (4)  
is clearly not a square. Therefore   q  =   4T + 3. Then  (4)  yields 
                                  (4V + 1) + (4T + 3)  =  4(V + T + 1)  =  z2.                                 (5) 
Hence   z  is even. Denote   z  =  2R   where  R  is an integer.  Then  (5)  implies   
 
                      V  +  T  +  1  =  R2                                                                                        (6)  
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 For any fixed value  V,  evidently there exists a value  T  odd or even, which satisfies  
(6),  and therefore the values  q,  R,  z  are determined. Moreover, since  q  is odd,  q  may 
also be prime. The conditions for  q  being prime are not pursued here. The above 
argument is illustrated in Table 1 at the end of the theorem. 
       This completes the proof of case (a).  
       The proof of case (b) is in its entirety the same proof as that of case (a).  
Nevertheless, in order to make each case self-contained, we shall present the complete 
proof of case (b).  
 
(b)   Suppose that  p  =  4N + 3. Let  p, hence N  be fixed. For every fixed value  n  in (4),  
there exists therefore a respective fixed integer U satisfying  p2n+1 =  (4N + 3) 2n+1  =  4U 
+ 3,  where  U  is odd or even. Let  S  be an integer. If  q  =  4S + 3,  the left-hand side of  
(4)  is never a square. Hence q  =  4S + 1. Then  (4) implies  
                                  (4U + 3) + (4S + 1)  =   4(U + S+ 1)  =  z2.                                      (7) 
Thus,  z  is even. Denote  z  =  2W  where  W  is an integer. Then  (7)  yields  
                                                  U  +  S +  1  =  W2.                                                           (8) 
For any fixed value U, evidently there exists a value  S  odd or even so that (8) is 
satisfied, and thus the values  q, W, z  are determined. Furthermore, since  q  is odd,  q  
may also be prime. This argument is presented in Table 2 at the end of the theorem. 
       This completes the proof of case (b).  
       In (3) and (4), all values x > 1 were considered. We conclude our proof by showing 
that the assertion is also true when  x = 1.   
     
       From  (2)  when  x = 1, we have  
                                                        p1+ q1 = z2.                                                                 (9) 
    For each prime  p > 3,  one can certainly obtain a value  q,  such that  (9)  is satisfied. If   
p, q  are both of the form  4N  +  1 or both of the form  4M  +  3,  then  (9)  is never equal 
to a square. Therefore,  p  and  q  must be of two different forms. Two examples, one for 
each form of   p  with  q  prime  are given by    

p  =  5,        q  =  11,       p + q  =  16  =  z2, 
and 

p  =  7,        q  =  29,       p + q  =  36  =  z2. 
       This completes the proof of  Theorem  2.1.                                                        □  
 
       As  mentioned  earlier,  we  now  present  the  two  tables  for  cases  (a)  and  (b).   
       In  Table 1 the  first  three  values  of   p  =  4N  +  1  are  provided. When  x  =  3   
(n = 1),  the respective values of  V  odd/even,  T  odd/even,  z,  and  q  prime  are 
demonstrated.   

Table  1. 
p = 4N+1 n V T V+T+1=R2 z2 = 4R2 z q = 4T+3 

5 1 31 4 36 144 12 19     prime 
5 1 31 17 49 196 14 71     prime 
13 1 549 26 576 2304 48 107   prime 
13 1 549 179 729 2916 54 719   prime 
17 1 1228 67 1296 5184 72 271   prime 
17 1 1228 140 1369 5476 74 563   prime 
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       In Table 2,  the first three values of   p = 4N + 3  are given. When  x  =  3 (n = 1),  the  
respective  values of  U  odd/even,   S  odd/even,  z,  and  q  prime  are  presented. 
 

Table  2. 
p = 4N+3 n U S U+S +1=W2 z2 = 4W2 z q =  4S+1 

7 1 85 58 144 576 24 233   prime 
11 1 332 28 361 1444 38 113   prime 
19 1 1714 49 1764 7056 84 197   prime 

 
 
3.   On   px + qy = z2   and  the Goldbach conjecture 
The Goldbach  (1690 – 1764)  Conjecture is one of the oldest, most famous and very 
difficult unsolved problem in Number Theory today. It states the every even integer 
greater than 2 can be expressed as the sum of two primes. 
       The relation between  px + qy = z2  and the Goldbach Conjecture will now be shown 
for a particular case of the equation. 
       Suppose that  A < B  are positive integers of the same parity. Then, for each and 
every even value  z ≥ 4  the equality 

A + B  =  z2 
holds. If indeed the Goldbach Conjecture is true, i.e., every even number greater than  2  
is a sum of two primes, then under this assumption a particular case of equation  (1) is 
now derived from the above equality, namely 

p1 + q1 =  z2. 
The relation mentioned earlier has been shown. For each and every even value  z ≥ 4,  
this equation is satisfied with distinct primes  p and  q. The equation has infinitely many 
solutions. This is an immediate consequence, since the infinite set of all even squares  z2 
≥ 16  is a subset of the infinite set of all even integers. 
 
4.  Conclusion 
It is also observed, that for a given even value  z2,  more than one solution of equation  (1) 
exists when   p < q  are odd  primes and  x = y = 1. For each of the values  z2 = 42,  62,  82, 
102,  we demonstrate all the possible pairs (p, q) of equation  (1) as follows: 
 
3 + 13 = 5 + 11 = 42                                                                                              two pairs 
5 + 31 = 7 + 29 = 13 + 23 = 17 + 19 = 62                                                             four pairs  
3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41 = 82                                            five pairs  
3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53 = 102                        six pairs 
       In view of the above, we may ask:  
 
Question  1. Let   p < q  be odd primes satisfying   p + q =  z2.  For each such value  z2,  
what is the maximal number of pairs (p, q) ? 
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