Annals of Pure and Applied Mathematics Vol. 14, No. 1, 2017, 77-85 ISSN: 2279-087X (P), 2279-0888(online) Published on 10 July 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n1a10

Annals of **Pure and Applied Mathematics**

Fixed Point Theorems for Kannan Contractions and Weakly Contractive Mappings on a Modular Metric Space Endowed with a Graph

Prerna Pathak¹, Aklesh Pariya², V. H. Badshah³ and Nirmala Gupta⁴

^{1,3}School of Studies in Mathematics Vikram University, Ujjain (M.P.), India Email: prernapathak20@yahoo.com

²Department of Mathematics, Medi-caps University, Indore (M.P.), India Email: akleshpariya3@yahoo.co.in

⁴Department of Mathematics, Govt. Girls Degree College, Ujjain (M.P.), India Email:gupta.nirmala70@gmail.com Corresponding author. Email: prernapathak20@yahoo.com

Received 13 June 2017; accepted 29 June 2017

Abstract. The notion of a modular metric spaces were introduced by Chistyakov [5, 6]. Abdou and Khamsi [1] gave the analog of Banach contraction principle in modular metric spaces. More recently, Alfuraidan [3] gave generalization of Banach contraction principle on a modular metric space endowed with a graph which is the modular metric version of Jachymski [8] fixed point results.

In this paper, we generalize and prove some fixed point results for Kannan contraction and weakly contractive mappings in a modular metric space endowed with a graph. The result of this paper is new and improving the previously known result in modular metric spaces endowed with a graph.

Keywords: Modular metric spaces, common fixed point, connected graph, Banach contraction, Kannan contraction.

AMS Mathematics Subject Classification (2010): 47H09, 46B20, 47H10, 47E10

1. Introduction

The existence of fixed points for single valued mappings in partially ordered metric spaces was initially considered by Ran and Reurings [15]. Fixed point theorems for monotone single valued mappings in a metric space endowed with a partial ordering have been widely investigated. Recently, many results appeared giving sufficient condition for *f to* be a PO if (X, d) is endowed with a partial ordering \leq . These results are the hybrid of two fundamental and useful theorems in fixed point theory, Banach Contraction Principle and the Knaster-Tarski theorem (see[7]). Jachymski [8] obtain some useful result for mappings defined on a complete metric spaces endowed with a graph instead of partial ordering. Bojor [4] proved fixed point result for Kannan mappings in metric spaces endowed with a graph. Samreen and Kamran [16] proved fixed point theorems for

weakly contractive mappings on a metric space endowed with a graph. After that many researchers have investigated in this direction by weakly contractive condition and analyzing connectivity condition of graph.

The notion of modular spaces was introduce by Nakano [13] and was intensively develop by Koshi and Shimogaki [11], Yamamuro [17] and by Musielak and Orlicz [12]. Recently, Aghanians and Nourozi [2] discuss the existence and uniqueness of the fixed point for Banach and Kannan contraction defined on modular spaces endowed with a graph.

The notion of a modular metric spaces was introduced by Chistyakov [5,6]. Further Abdou and Khamsi [1] gave the analog of Banach contraction principle in modular metric spaces. More recently, Alfuraidan [3] gave generalization of Banach contraction principle on a modular metric space endowed with a graph which is the modular metric version of Jachymski [8] fixed point results for mappings on a metric space with a graph.

Ran and Reurings [15] proved the following fixed points result.

Theorem 1.1. [15] Let (X, \leq) be a partially ordered set such that every pair $x, y \in X$ has an upper and lower bound. Let d be a metric on X such that (X, d) is a complete metric space. Let $f: X \to X$ be a continuous monotone (either order preserving or order reversing) mapping. Suppose that the following condition hold:

(1) There exist a $k\epsilon$ (0,1) with

 $d(f(x), f(y)) \leq kd(x, y), \quad \text{for all } x \geq y.$ (2) There exist an $x_0 \in X$ with $x_0 \leq f(x_0)$ or $x_0 \geq f(x_0)$.

Then f is a Picard operator (PO), that is, f has a unique fixed point $x_* \in X$ and for each $x \in X$, $\lim_{n \to \infty} f^n x = x_*$.

Nieto et al. in [14], proved the following fixed point theorem.

Theorem 1.2. [14] Let (X,d) be a complete metric spaces endowed with a partial ordering \leq .Let $f: X \to X$ be an order preserving mapping such that there exists a $k \in [0,1)$ with

 $d(f(x), f(y)) \leq kd(x, y),$ for all $x \geq y$.

Assume that one of the following conditions holds:

- (1) *f* is continuous and there exists an $x_0 \in X$ with $x_0 \leq f(x_0)$ or $x_0 \geq fx_0$;
- (2) (X,d, \leq) is such that for any non decreasing $(x_n)_{n \in N}$, if $x_n \to x$, then $x_n \leq x$ for $n \in N$, and there exist an $x_0 \in X$ with $x_0 \leq f(x_0)$;
- (3) (X,d, \leq) is such that for any non-decreasing $(x_n)_{n \in N}$, if $x_n \to x$, then $x_n \geq x$ for $n \in N$, and there exist an $x_0 \in X$ with $x_0 \geq f(x_0)$;

then f has a fixed point. Moreover, if (X, \leq) is such that every pair of elements of X has an upper or a lower bound, then f is a PO.

Jachymski [9] obtained the contraction principle for mappings on a metric spaces endowed with a graph.

Theorem 1.3. [9] Let (X,d) be a complete metric space and let the triplet(X,d,G) have the following property:

(P) for any sequence $(x_n)_{n \in N}$ in X as $n \to \infty$ and $(x_n, x_{n+1}) \in E(G)$, then $(x_n, x) \in E(G)$, for all n. Let $f: X \to X$ be a G-contraction. Then the following statements hold:

- (1) $F_f \neq \emptyset$ if and only if $X_f \neq \emptyset$;
- (2) if $X_f \neq \emptyset$ and G s weakly connected, then f is a Picard operator, i.e. $F_f = \{x^*\}$ and sequence $\{f^n(x)\} \rightarrow x^*$ as $n \rightarrow \infty$, for all $x \in X$;
- (3) for any $x \in X_f$, $f|_{[x]_{\widetilde{G}}}$ is a Picard operator ;
- (4) if $X_f \subseteq E(G)$, then f is a weakly Picard operator, i.e., $F_f \neq \emptyset$ and, for each $x \in X$, we have a sequence $\{f^n(x)\} \to x^*(x) \in F_f$ as $n \to \infty$.

Bojor [4] proved fixed points of Kannan mappings in metric spaces endowed with a graph.

Theorem 1.4. [4] Let (X, d) be a complete metric space endowed with a graph G and $T: X \rightarrow X$ be a G-Kannan mapping. We suppose that:

(i) G is weakly T–connected;

(ii) for any $(x_n)_{n \in N}$ in X, if $x_n \to x$ and $(x_n, x_{n+1}) \in E(G)$ for $n \in N$ then there is a subsequence $(x_{k_n})_{n \in N}$ with $(x_{k_n}, x) \in E(G)$ for $n \in N$.

Then T is a PO.

Samreen and Kamran [16] proved fixed point theorem for weakly contractive mappings on a metric space endowed with a graph.

Theorem 1.5. [16] Let (X, d) be a completed metric space endowed with a graph G and f be a weakly G- contractive mapping from X into X. Suppose that the following condition holds.

(i) G satisfies property (p'),

(ii) there exist some $x_0 \epsilon X_f := \{x \epsilon X : (x, fx) \epsilon E(G)\}.$

Then $f|_{[x_0]_{\widetilde{G}}}$ has a unique fixed point $\xi \in [x_0]_{\widetilde{G}}$ and $f^n y \to \xi$ for any $y \in [x_0]_{\widetilde{G}}$.

Aghaninas and Nourouzi [2] proved Banach and Kannan contraction in modular spaces with a graph.

Theorem 1.6. [2] Let X be a ρ -complete modular space endowed with a graph G and the triple (X, ρ, G) . Moreover, this fixed point is unique if $k < \frac{1}{2}$ and X satisfies the following condition For all $x, y \in X$, there exists a $z \in X$ such that $(x, z), (y, z) \in E(\tilde{G})$. Then a Kannan $\tilde{G} - \rho$ contraction $f: X \to X$ has a fixed point if and only if $C_f \neq \emptyset$.

Alfuraidan [3] proved the contraction principle for mappings on a modular metric space with a graph.

Theorem 1.7. [3] Let (X, ω) be a modular metric space with a graph G_{ω} . Suppose that ω is a convex regular modular metric which satisfies the Δ_2 – type condition. Assume that $M = V(G_{\omega})$ is a nonempty ω – bounded, ω – complete subset of X_{ω} and the triple $(M, d_{\omega}^*, G_{\omega})$ has property (P) Let $T: M \to M$ be G_{ω} -contraction map and $M_T := \{x \in M; (x, Tx) \in E(G_{\omega})\}.$

If $(x_0, T(x_0)) \in E(G_\omega)$, then the following statement holds:

(i) For any $x \in M_T$, $T|_{[x]_{\widetilde{G}_{\omega}}}$ has a fixed point.

Prerna Pathak, Aklesh Pariya, V. H. Badshah and Nirmala Gupta

- (ii) If G_{ω} is weakly connected, then T has a fixed point in M.
- (iii) If $M' := \bigcup \{ [x]_{\widetilde{G_{W}}} : x \in M_T \}$, then $T|_{M'}$ has a fixed point in M.

2. Basic definition and preliminaries

Let X be a nonempty set. Throughout this paper for a function $\omega : (0, \infty) \times X \times X \rightarrow (0, \infty)$ will be written as $\omega_{\lambda}(x, y) = \omega(\lambda, x, y)$ for all $\lambda > 0$ and $x, y \in X$.

Definition 2.1. [5,6] Let X be a non-empty set. A function $\omega : (0, \infty) \times X \times X \rightarrow [0, \infty]$ is said to be a metric modular on X if it satisfies the following three axioms:

(i) given $x, y \in X, \omega_{\lambda}(x, y) = 0$ for all $\lambda > 0$ if and only if x = y;

(ii) $\omega_{\lambda}(x, y) = \omega_{\lambda}(y, x)$ for all $\lambda > 0$ and $x, y \in X$;

(iii) $\omega_{\lambda+\mu}(x,y) \le \omega_{\lambda}(x,z) + \omega_{\mu}(z,y)$ for all $\lambda, \mu > 0$ and $x, y, z \in X$.

If instead of (i), we have only the condition

 $\omega_{\lambda}(x, x) = 0$ for all $\lambda > 0$ and $x \in X$.

Then ω is said to be a (metric) pseudo modular on X. A modular ω on X is said to be regular if the following weaker version of (i) is satisfied:

x = y if and only if $\omega_{\lambda}(x, y) = 0$ for some $\lambda > 0$.

Finally ω is said to be convex if for $\lambda, \mu > 0$ and x, y, $z \in X$, it satisfies the inequality

$$\omega_{\lambda+\mu}(x,y) = \frac{\lambda}{\lambda+\mu}\omega_{\lambda}(x,z) + \frac{\mu}{\lambda+\mu}\omega_{\mu}(z,y) \, .$$

Note that for a pseudo modular ω on a set X and any $x, y \in X$, the function $\lambda \to \omega_{\lambda}(x, y)$ is non increasing on $(0, \infty)$. Indeed, if $0 < \mu < \lambda$, then

$$\omega_{\lambda}(x, y) \le \omega_{\lambda-\mu}(x, x) + \omega_{\mu}(x, y) = \omega_{\mu}(x, y)$$

Definition 2.2. Let X_{ω} be a modular metric space.

(1) The sequence $(x_n)_{n \in \mathbb{N}}$ in X_{ω} is said to be convergent to $x \in X_{\omega}$ if

 $\omega_{\lambda}(x_n, x) \to 0 \text{ as } n \to \infty \text{ for all } \lambda > 0.$

(2) The sequence $(x_n)_{n \in \mathbb{N}}$ in X_{ω} is said to be Cauchy if $\omega_{\lambda}(x_m, x_n) \to 0 \text{ asm, } n \to \infty \text{ for all } \lambda > 0.$

(3) A subset C of X_{ω} is said to be closed if the limit of the convergent sequence of C always belong to C.

(4) A subset C of X_{ω} is said to be complete if any Cauchy sequence in C is a convergent sequence and its limit in C.

(5) A subset C of X_{ω} is said to be bounded if for all $\lambda > o$

$$\delta_{\omega}(C) = \sup\{\omega_{\lambda}(x, y); x, y \in C\} < \infty.$$

We will use following notations and terminology of graph theory (see [3]) related to the rest of our result.

Let (X, ω) be a modular metric space and M be a non empty subset of X_{ω} . Let Δ denote the diagonal of the Cartesian product $M \times M$. Consider a directed graph G_{ω} such that the set $V(G_{\omega})$ of its vertices coincide with M, and the set $E(G_{\omega})$ of its edges contain all loops, i.e. $E(G_{\omega}) \supseteq \Delta$. We assume G_{ω} has no parallel edges (arcs), so we can identify G_{ω} with the pair $(V(G_{\omega}), E(G_{\omega}))$. Our graph theory notation and terminology are standard and can be found in all graph theory books, like [14]. Moreover, we may treat G_{ω} as a weighted graph (see [10]) by assigning to each edge the distance between its vertices.

By G^{-1} we denote the conversion of a graph G, i.e., the graph obtained from G by reversing the direction of edges. Thus we have

$$E(G^{-1}) = \{(y, x) | (x, y) \in E(G)\}.$$

A diagraph G is called an oriented graph if whenever $(u, v) \in E(G)$, then $(v, u) \notin E(G)$. The letter \tilde{G} denotes the undirected graph obtain from G by ignoring the direction of edges.

Actually, it will be more convenient for us to treat \tilde{G} as a directed graph for which the set of its edges is symmetric. Under this convention,

 $E(\tilde{G}) = E(G) \cup E(G^{-1}).$

We call (V', E') a sub graph of $V' \subseteq V(G), E' \subseteq E(G)$, and for any edge $(x, y) \in E', x, y \in V'$.

If x and y are vertices in a graph G, then a (directed) path in G from x to y of length N is a sequence $(x_i)_{i=1}^N$ of N + 1 vertices such that $x_0 = x, x_N = y$ and $(x_{n-1}, x_n) \in E(G)$ for i = 1, ..., N. A graph G is connected if there is a directed path between any two vertices. G is a weakly connected if \tilde{G} is connected. If G is such that E(G) is symmetric and x is a vertex in G, then the sub graph G_x consisting of all edges and vertices which are contained in some path beginning at x is called the component of G containing x. In this case $V(G_x) = [x]_G$, where $[x]_G$ is the equivalence class of the following relation \mathcal{R} defined on V(G) by the rule:

 $y\mathcal{R}z$ if there is a (directed) path in G from y to z.

Clearly G_x is connected.

Definition 2.3. [3] Let (X, ω) be a modular metric space and M be a non empty subset of X_{ω} . A mapping $T : M \to M$ is called

(i) G_{ω} - contraction if T preserve edges of G_{ω} , i.e.,

 $\forall x, y \in M ((x, y) \in E(G_{\omega}) \Longrightarrow (T(x), T(y)) \in E(G_{\omega})),$

and if there exists a constant $\alpha \in [0,1)$ such that

 $\omega_1(T(x), T(y)) \le \alpha \omega_1(x, y) \text{ for any } (x, y) \epsilon E(G_{\omega}).$

(ii) $(\varepsilon, \alpha) - G_{\omega}$ -uniformly locally contraction if T preserve edges of G_{ω} and there exists a Constant $\alpha \in [0,1)$ such that for any $(x, y) \varepsilon E(G_{\omega})$ $\omega_1(T(x), T(y)) \le \alpha \omega_1(x, y)$ whenever $\omega_1(x, y) < \varepsilon$.

Definition 2.4. [3] A point $x \in M$ is called a fixed point of T whenever x = T(x). The set of fixed points of T will be denoted by Fix(T).

Now we introduce the G_{ω} Kannan contraction and weakly G_{ω} contractive mappings in a modular metric space endowed with a graph as follows.

Definition 2.5. Let (X, ω) be a modular metric space with a graph G_{ω} . Amapping $T: M \to M$ is called

(1) G_{ω} -Kannan contraction if T preserve the edges of G_{ω} , i.e., for all $x, y \in M$ ($(x, y) \in E(G_{\omega}) \Longrightarrow (Tx, Ty) \in E(G_{\omega})$) and if there exists positive number $k \in (0, \frac{1}{2})$ such that Prerna Pathak, Aklesh Pariya, V. H. Badshah and Nirmala Gupta

 $\omega_{\lambda}(Tx, Ty) \leq k(\omega_{\lambda}(Tx, x) + \omega_{\lambda}(Ty, y))$ for any $x, y \in M$ with $(x, y) \in E(G_{\omega})$.

(2) weakly G_{ω} contractive if T preserve the edges of G_{ω} , i.e. for all $x, y \in M((x, y) \in E(G_{\omega}) \longrightarrow (Tx, Ty) \in E(G_{\omega})$

i.e., for all $x, y \in M((x, y) \in E(G_{\omega}) \Longrightarrow (Tx, Ty) \in E(G_{\omega}))$

and $\omega_{\lambda}(Tx, Ty) \leq \omega_{\lambda}(x, y) - \psi(\omega_{\lambda}(x, y))$

whenever $\psi: [0, \infty) \to [0, \infty)$ is continuous non decreasing such that ψ is positive on $(0, \infty)$ and $\psi(0) = 0$.

Our first result can be seen as an extension of Jachymski [9] fixed point theorems to modular metric spaces. As Jachymski [8] did, we introduce the following property. We say that the triple $(M, d_{\omega}^*, G_{\omega})$ has property (P) if

(P) For any sequence $\{x_n\}_{n \in \mathbb{N}}$ in M, if $x_n \to x$ as $n \to \infty$ and $(x_n, x_{n+1}) \in E(G_{\omega})$, then $(x_n, x) \in E(G_{\omega})$, for all n.

Note that property (P) is precisely the Nieto et al. [14] hypothesis relaxing continuity assumption as in Theorem 1.2 ((2) and (3)) rephrased in terms of edges.

Lemma 2.1. [16] Let (X, d) be a metric space and $T: X \to X$ be a weakly *G*-contractive map. Then for any $x \in X$ and $y \in [x]_{\tilde{G}}$ we have

$$\lim_{n\to\infty} d(T^n x, T^n y) = \lim_{n\to\infty} r(T^n x, T^n y) = 0.$$

Proposition 2.2. [16] Let (X, d) be a metric space and T be a weakly G-contractive mapping from X into X. Let there exist $x_0 \in X$ such that $Tx_0 \in [x_0]_{\tilde{G}}$ then the sequence $\{T^n x_0\}$ is Cauchy.

3. Main results

Theorem 3.1. Let (X, ω) be a modular metric space with a graph G_{ω} . Suppose that ω is a convex regular modular metric which satisfies the Δ_2 - type condition. Assume that $M = V(G_{\omega})$ is a nonempty ω – bounded, ω –complete subset of X_{ω} and the triple $(M, d_{\omega}^*, G_{\omega})$ has property (P). Let $T : M \to M$ be Kannan contraction map and $M_T := \{x \in M; (x, Tx) \in E(G_{\omega})\}$.

If $(x_0, T(x_0)) \in E(G_{\omega})$, then the following statements hold:

(i) For any $x \in M_T$, $T|_{[x]_{\widetilde{G}_{\omega}}}$, has a fixed point.

(ii) If G_{ω} is weakly connected, then T has a fixed point in M.

(iii) If $M' = \bigcup\{[x]_{\widetilde{G}_{\omega}} : x \in M_T\}$, then $T|_{M'}$ has a fixed point in M.

Proof (i): As $(x_0, T(x_0)) \in E(G_\omega)$ and $(y_0, T(y_0)) \in E(G_\omega)$ then $x_0, y_0 \in M_T$. Since T is a Kannan-contraction, there exists a constant $k \in (0, \frac{1}{2})$ such that $(T(x_0), T(y_0)) \in E(G_\omega)$ and $\omega_1(Tx_0, Ty_0) \le k[\omega_1(x_0, Tx_0) + \omega_1(y_0, Ty_0)]$ (3.1.1) By induction we can construct a sequence $\{x_n\}$ such that $x_{n+1} = Tx_n$ and $(x_n, x_{n+1}) \in E(G_\omega)$

$$\begin{split} \omega_1(x_{n+1}, x_n) &= \omega_1(Tx_n, Tx_{n-1}) \\ \omega_1(x_{n+1}, x_n) &\leq k[\omega_1(Tx_n, x_n) + \omega_1(Tx_{n-1}, x_{n-1})] \\ &\leq k[\omega_1(x_{n+1}, x_n) + \omega_1(x_n, x_{n-1})] \\ (1-k) \ \omega_1(x_{n+1}, x_n) &\leq k \ \omega_1(x_n, x_{n-1}) \\ \omega_1(x_{n+1}, x_n) &\leq \frac{k}{(1-k)} \ \omega_1(x_n, x_{n-1}) \text{ where } \alpha = \frac{k}{(1-k)} < 1 \\ &\qquad \omega_1(x_{n+1}, x_n) \leq \alpha \ \omega_1(x_n, x_{n-1}) \end{split}$$

So by induction, we construct a sequence $\{x_n\}$ such that $(x_{n+1}, x_n) \in E(G_{\omega})$ and $\omega_1(x_{n+1}, x_n) \le \alpha^n \omega_1(x_0, x_1)$ for any $n \ge 1$. Since *M* is ω -bounded, we have $\omega_1(x_{n+1}, x_n) \leq \delta_{\omega}(M)k^n$ for any $n \ge 1$. Then by lemma 2.2. \Rightarrow { x_n } is ω -Cauchy. Since M is ω – Complete, therefore { x_n } is ω - convergence to some point ϵM . By property (P), $(x_n, x) \in E(G_{\omega})$ for all *n* and hence $\omega_1(x_{n+1}, T(x)) = \omega_1(Tx_n, Tx)$ $\leq k(\omega_1(Tx_n, x_n) + \omega_1(Tx, x))$ Taking limit $n \to \infty$ both sides we get $\omega_1(x, Tx) \le k(\omega_1(x, x) + \omega_1(Tx, x))$ i.e. $\omega_1(x, Tx) \le k\omega_1(Tx, x)$ which is a contradiction. Hence $\omega_1(x, Tx) = 0$. Therefore x = Tx. i.e. *x* is a fixed point of T. As $(x_0, x) \in E(G_\omega)$, we have $x \in [x_0]_{\widetilde{G_\omega}}$. Uniqueness. Let x and y be two fixed point of T. Consider $\omega_1(x, y) = \omega_1(Tx, Ty) \le k[\omega_1(x, Tx) + \omega_1(y, Ty)]$ $\leq k[\omega_1(x,x) + \omega_1(y,y)]$

This gives

$$\omega_1(x, y) = 0 \Longrightarrow x = y$$

Hence point is unique.

(ii) Since $M_T \neq \emptyset$, there exists an $x_0 \in M_T$ and since G_{ω} is weakly connected, then $[x_0]_{\widetilde{G}_{\omega}} = M$ and by M and by (i), mapping T has a fixed point.

(iii) It follows easily from (i) and (ii).

Theorem 3.2. Let (X, ω) be a modular metric space with a graph G_{ω} . Suppose that ω is a convex regular modular metric which satisfies the Δ_2 - type condition. Assume that $M = V(G_{\omega})$ is a nonempty ω - bounded, ω - complete subset of X_{ω} and the triple $(M, d_{\omega}^*, G_{\omega})$ has property (P). Let $T: M \to M$ be weak contraction mapping and $M_T :=$ $\{x \in M; (x, Tx) \in E(G_{\omega})\}.$

If $(x_0, T(x_0)) \in E(G_\omega)$, then the following statements hold:

For any $x \in M_T$, $T|_{[x]_{\widetilde{G}_{\omega}}}$, has a fixed point. (iv)

If G_{ω} is weakly connected, then T has a fixed point in M. (v)

If $M' = \bigcup\{[x]_{\widetilde{G_{\omega}}} : x \in M_T\}$, then $T|_{M'}$ has a fixed point in M. (vi)

Proof: As $(x_0, T(x_0)) \in E(G_\omega)$ and $(y_0, T(y_0)) \in E(G_\omega)$ then $x_0, y_0 \in M_T$. Since T is a weak contraction, there exists a constant $k \in (0, \frac{1}{2})$ such that $(T(x_0), T(y_0)) \in E(G_{\omega})$ and

 $\omega_1(Tx_0, Ty_0) \le \omega_1(x_0, y_0) - \Psi(\omega_1(x_0, y_0))$ By induction we can construct a sequence $\{x_n\}$ such that $x_{n+1} = Tx_n$ and $(x_n, x_{n+1}) \in E(G_n) \omega_1(x_{n+1}, x_n) = \omega_1(Tx_n, Tx_n)$

$$\begin{aligned} &(x_n, x_{n+1}) \in E(G_{\omega}) \omega_1(x_{n+1}, x_n) = \omega_1(Ix_n, Ix_{n-1}) \\ &\omega_1(x_{n+1}, x_n) \le \omega_1(x_n, x_{n-1}) - \psi(\omega_1(x_n, x_{n-1})) \\ &\omega_1(x_{n+1}, x_n) \le \omega_1(x_n, x_{n-1}) \end{aligned}$$

Similarly

Prerna Pathak, Aklesh Pariya, V. H. Badshah and Nirmala Gupta

$$\begin{split} \omega_1(x_{n+2}, x_{n+1}) &= \omega_1(Tx_{n+1}, Tx_n) \\ \omega_1(x_{n+2}, x_{n+1}) &\leq \omega_1(x_{n+1}, x_n) - \Psi(\omega_1(x_{n+1}, x_n)) \\ \omega_1(x_{n+2}, x_{n+1}) &\leq \omega_1(x_{n+1}, x_n) \\ \omega_1(x_{n+3}, x_{n+2}) &= \omega_1(Tx_{n+2}, Tx_{n+1}) \\ \omega_1(x_{n+3}, x_{n+2}) &\leq \omega_1(x_{n+2}, x_{n+1}) - \Psi(\omega_1(x_{n+2}, x_{n+1})) \\ \omega_1(x_{n+3}, x_{n+2}) &\leq \omega_1(x_{n+2}, x_{n+1}) \end{split}$$

Hence in general

 $\omega_1(x_{i+1}, x_n) \le \omega_1(x_i, x_{i-1}) - \Psi(\omega_1(x_i, x_{i-1}); \qquad \forall i = 1, 2, 3 \dots n$ Since Ψ is non decreasing and this shows that $\{x_i\}_{i=1}^n$ is a ω -cauchy sequence

$$\omega_1(x_{n+1}, x_n) \le \omega_1(x_n, x_{n-1}) \le \dots \le \omega_1(x_1, x_0)$$

Since $\omega_1(x_{n+1}, x_n)$ is non increasing sequence of non-negative real number bounded below by 0, thus convergent.

Taking limit as $n \to \infty$, $\lim_{n\to\infty} \omega_1(x_{n+1}, x_n) = 0$;

 $\forall i = 1, 2, 3 \dots n.$

Uniqueness: Let *x* and *y* be two fixed point of T. Consider $\omega_1(x, y) = \omega_1(Tx, Ty) \le \omega_1(x, y) - \psi \omega_1(x, y)$]

$$\omega_1(x,y) = 0 \Longrightarrow x = y.$$

Hence point is unique.

(ii) Since $M_T \neq \emptyset$, there exists an $x_0 \in M_T$ and since G_{ω} is weakly connected, then $[x_0]_{\widetilde{G_{\omega}}} = M$ and by M and by (i), mapping T has a fixed point. (iii) It follows easily from (i) and (ii).

REFERENCES

- 1. A.N.Abdou and M.A.Khamsi, Fixed points of multi valued contraction mappings in modular metric spaces, *Fixed Point Theory Appl.*, 249 (2014). doi:10.1186/1687-1812-2014-249.
- 2. A.Aghanians and K.Nourouzi, Fixed point for Banach and Kannan contractions in modular spaces with a graph, *Int. J. Nonlinear Anal. Appl.*, 5(2) (2014) 50-59.
- 3. M.R.Alfuraidan, The contraction principle for mappings on a modular metric space with a graph, *Fixed Point Theory and Applications* (2015) 2015:46 DOI 10.1186/s13663-015-0296-3
- 4. F.Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, *An. St. Univ. Ovidius Constanta*, 20(1) (2012) 31-40.
- 5. V.V.Chistyakov, Modular metric spaces, I, basic concepts, *Nonlinear Anal.*, 72 (1) (2010) 1-14.
- 6. V.V.Chistyakov, Modular metric spaces, II, Application to superposition operators, *Nonlinear Anal.*, 72(1) (2010) 15-30.
- 7. A.Granas and J.Dugundji, Fixed Point Theory, Springer, New York (2003).
- J.Jachymski, Order-theoretic aspects of metric fixed point theory, Handbook of Metric Fixed Point Theory (eds., W. A. Kirk and B. Sims), 613–641, Kluwer Acad. Publ.,Dordrecht, 2001. MR1904289 (2003f:54094).
- 9. J.Jachymski, The contraction principle for mappings on a metric space with graph, *Proc. Am. Math. Soc.*, (2008) 1359-1373.
- 10. R.Johnsonbaugh, Discrete Mathematics, Prentice Hall, New York (1997).

- 11. S.Koshi and T.Shimogaki, On F-norms of quasi-modular spaces, *J Fac Sci Hokkaido Univ Ser I*, 15(3-4) (1961) 202–218.
- 12. J.Musielak and W.Orlicz, Some remarks on modular spaces, *Bull Acad Polon Sci Sr Sci Math Astron Phys.*, 7 (1959) 661–668.
- 13. H.Nakano, Modulared Semi-Ordered Linear Spaces, i+288 PP. Maruzen, Tokyo (1950).
- 14. J.J.Nieto, R.L.Pouso and R.Rodriguez-Lopez, Fixed point theorems in ordered abstract spaces, *Proc. Am. Math. Soc.*, 135 (2007) 2505-2517.
- 15. A.C.M.Ran, M.C.B.Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Am. Math. Soc.*, 132 (2004) 1435-1443.
- 16. M.Samreen and T.Kamran, Fixed point theorems for weakly contractive mappings on a metric space endowed with a graph, *Filomat*, 28(3) (2014) 441–450.
- 17. S.Yamamuro, On conjugate spaces of Nakano spaces, *Trans Amer Math Soc.*, 90 (1959) 291–311. Doi: 10.1090/S0002-9947-1959-0132378-1.