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Abstract. The notion of a modular metric spaces were introduced by Chistyakov [5, 6]. 
Abdou and Khamsi [1] gave the analog of Banach contraction principle in modular 
metric spaces. More recently, Alfuraidan [3] gave generalization of Banach contraction 
principle on a modular metric space endowed with a graph which is the modular metric 
version of Jachymski [8] fixed point results. 

In this paper, we generalize and prove some fixed point results for Kannan 
contraction and weakly contractive mappings in a modular metric space endowed with a 
graph. The result of this paper is new and improving the previously known result in 
modular metric spaces endowed with a graph. 

Keywords: Modular metric spaces, common fixed point, connected graph, Banach 
contraction, Kannan contraction. 
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1. Introduction 
The existence of fixed points for single valued mappings in partially ordered metric 
spaces was initially considered by Ran and Reurings [15]. Fixed point theorems for 
monotone single valued mappings in a metric space endowed with a partial ordering have 
been widely investigated. Recently, many results appeared giving sufficient condition for 
f to be a PO if (X , d) is endowed with a partial ordering ≼. These results are the hybrid 
of two fundamental and useful theorems in fixed point theory, Banach Contraction 
Principle and the Knaster-Tarski theorem (see[7]). Jachymski [8] obtain some useful 
result for mappings defined on a complete metric spaces endowed with a graph instead of 
partial ordering. Bojor [4] proved fixed point result for Kannan mappings in metric 
spaces endowed with a graph. Samreen and Kamran [16] proved fixed point theorems for 
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weakly contractive mappings on a metric space endowed with a graph. After that many 
researchers have investigated in this direction by weakly contractive condition and 
analyzing connectivity condition of graph.  

The notion of modular spaces was introduce by Nakano [13] and was intensively 
develop by Koshi and Shimogaki [11], Yamamuro [17] and by Musielak and Orlicz [12]. 
Recently, Aghanians and Nourozi [2] discuss the existence and uniqueness of the fixed 
point for Banach and Kannan contraction defined on modular spaces endowed with a 
graph.  

The notion of a modular metric spaces was introduced by Chistyakov [5,6]. 
Further Abdou and Khamsi [1] gave the analog of Banach contraction principle in 
modular metric spaces. More recently, Alfuraidan [3] gave generalization of Banach 
contraction principle on a modular metric space endowed with a graph which is the 
modular metric version of Jachymski [8] fixed point results for mappings on a metric 
space with a graph. 

Ran and Reurings [15] proved the following fixed points result. 
 
Theorem 1.1. [15] Let (X,≼) be a partially ordered set such that every pair �, �	�	� has 
an upper and lower bound. Let d be a metric on X such that (X, d) is a complete metric 
space. Let �: � → � be a continuous monotone (either order preserving or order 
reversing) mapping. Suppose that the following condition hold: 

(1) There exist a ��	(0,1) with   
���(�), �(�)� ≼ ��(�, �),																���	���	� ≽ �. 

(2) There exist an ���	� with �� ≼ �(��) or	�� ≽ �(��). 

Then f is a Picard operator (PO), that is, f has a unique fixed point �∗�	� and for each 
��	�, lim�→� ��� = �∗. 

Nieto et al. in [14], proved the following fixed point theorem. 
 
Theorem 1.2. [14] Let (X,d) be a complete metric spaces endowed with a partial 
ordering≼.Let �: � → � be an order preserving mapping such that there exists a �	�	[0,1) 
with  

���(�), �(�)� ≼ ��(�, �),																���	���	� ≽ �. 
Assume that one of the following conditions holds: 
(1) f  is continuous and there exists an ���	� with �� ≼ �(��) or �� ≽ ���; 
(2) (X,d,	≼) is such that for any non decreasing (��)�#	$ , if �� → �, then �� ≼ � 

for	%�	&, and there exist an ���	� with �� ≼ �(��); 
(3) (X,d,	≼) is such that for any non-decreasing(��)�#	$ , if �� → �, then �� ≽ � 

for	%�	&, and there exist an ���	� with �� ≽ �(��); 
then f has a fixed point. Moreover, if (X,	≼) is such that every pair of elements of X has 
an upper or a lower bound, then f is a PO. 

Jachymski [9] obtained the contraction principle for mappings on a metric spaces 
endowed with a graph. 
 
Theorem 1.3. [9] Let (X,d) be a complete metric spaceand let the triplet(X,d,G) have the 
following property: 
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(P) for any sequence (��)�#	$ in X as % → ∞ and (��, ��())�*(+),	then (��, �)�*(+), 
for all n. Let �: � → � be a G-contraction. Then the following statements hold: 
(1) ,- ≠ ∅ if and only if �- ≠ ∅; 
(2) if �- ≠ ∅ and G s weakly connected, then f is a Picard operator, i.e. ,- = {�∗}and 

sequence {��(�)} → �∗ as % → ∞, for all ���; 
(3) for any ���-, �|[3]56  is a Picard operator ; 

(4) if �- ⊆ *(+), then f is a weakly Picard operator, i.e.,,- ≠ ∅ and, for each ���, we 
have a sequence	{��(�)} → �∗(�)�	,- as % → ∞. 

Bojor [4] proved fixed points of Kannan mappings in metric spaces endowed with a 
graph. 
 
Theorem 1.4. [4] Let (X, d) be a complete metric space endowed with a graph G and 
8:	�	 → 	� be a G-Kannan mapping. We suppose that: 

(i) G is weakly T−connected; 
(ii)  for any (��)�∈$in X, if �� → � and (��, ��())�	*(+)for %	 ∈ 	& then 
there is a subsequence (�:�)�∈$ with (�:�, �) 	∈ 	*	(+)for %	 ∈ 	&. 

Then 8 is a PO. 
Samreen and Kamran [16] proved fixed point theorem for weakly contractive 

mappings on a metric space endowed with a graph. 
 
Theorem 1.5. [16] Let (X, d) be a completed metric space endowed with a graph G and f 
be a weakly G- contractive mapping from X into X. Suppose that the following condition 
holds. 
(i) G satisfies property  (;<), 
(ii)  there exist some ���	�- ∶	= {�	�	� ∶ (�, ��)�*(+)}. 
Then �|[3>]56  has a unique fixed point ?	�	[��]@A and 	��� → ? for any �	�	[��]@A. 

Aghaninas and Nourouzi [2] proved Banach and Kannan contraction in modular 
spaces with a graph. 
 
Theorem 1.6. [2] Let X be a B-complete modular space endowed with a graph G and the 

triple (�, B, +).	Moreover, this fixed point is unique if � < )
D
 and	�satisfies the following 

condition For all�, �	��, there exists a E	�� such that (�, E), (�, E)�*(+A). Then a Kannan 
+A − B contraction �:	�	 → 	� has a fixed point ifand only if G- ≠ ∅.  

Alfuraidan [3] proved the contraction principle for mappings on a modular metric 
space with a graph. 
 
Theorem 1.7. [3] Let (�,H) be a modular metric space with a graph+I. Suppose that 
His a convex regular modular metric which satisfies the ∆D − type condition. Assume 
that K = L(+I) is a nonempty H − bounded, H −	complete subset of �I and the triple 
(K, �I∗ , +I) has property (P) Let 8:	K	 → 	K be +I-contraction map and KM ≔
{�	�	K; (�, 8�)�*(+I)}. 
If(��, 8(��))�*(+I), then the following statement holds: 
(i) For any ��KM , 8|[3]5OP has a fixed point. 
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(ii)  If +I is weakly connected, then T has a fixed point in M. 
(iii)  If K< ≔	⋃R[�]@OP : ��KMS,	then 8|TUhas a fixed point in M. 
 
2. Basic definition and preliminaries  
Let X be a nonempty set. Throughout this paper for a function H ∶ (0,∞) × � × � →
(0,∞) will be written as HW(�, �) = H(X, �, �) for all X > 0 and  �, �	��. 

Definition 2.1. [5,6] Let X be a non-empty set. A function H ∶ (0,∞) × � × � → [0,∞] 
is said to be a metric modular on X if it satisfies the following three axioms: 
(i) given  �, �	��, HW(�, �) = 0	���	���	X > 0	Z�	�%�	�%��	Z�	� = �; 
(ii)  HW(�, �) = 	HW(�, �)	���	���	X > 0	and		�, �	��; 
(iii)  HW(^(�, �) ≤ HW(�, E) + H^(E, �)���	���	X, a > 0		and		�, �, E	��. 
If instead of (i), we have only the condition 

HW(�, �) = 0	���	���	X > 0	and		���. 
Then H is said to be a (metric) pseudo modular on X. A modular H on X is said to be 
regular if the following weaker version of (i) is satisfied: 
�	 = 	� if and only if HW(�, �) = 0	���	b�cd	X > 0. 
Finally H is said to be convex if for  X, a > 0 and x, y, z�X, it satisfies the inequality 

HW(^(�, �) = 	
X

X + μ
HW(�, E) +

a
X + μ

H^(E, �)	. 

Note that for a pseudo modularH on a set X and any �, �	��, the function X → HW(�, �) is 
non increasing on (0,∞). Indeed,  if 0 < a < X, then 

HW(�, �) ≤ HWf^(�, �) + H^(�, �) = H^(�, �) 

Definition 2.2. Let �I be a modular metric space. 
(1) The sequence (��)	�#$ in �I is said to be convergent to �	�	�Iif 

HW(��, �) → 0	�b	% → ∞	���	���	X > 0.	 
(2) The sequence (��)	�#$ in �I is said to be Cauchy if 

HW(�g, ��) → 0	�bc, % → ∞	���	���	X > 0.	 
(3) A subset C of �I is said to be closed if the limit of the convergent sequence of C 
always belong to C. 
(4) A subset C of �I is said to be complete if any Cauchy sequence in C is a convergent 
sequence and its limit in C.  
(5) A subset C of �I is said to be bounded if for allX > � 

hI(G) = sup{HW(�, �); �, ��G} < ∞. 

We will use following notations and terminology of graph theory (see [3]) related 
to the rest of our result. 

 Let (�,H) be a modular metric space and M be a non empty subset of �I. Let ∆ 
denote the diagonal of the Cartesian product K	 × 	K. Consider a directed graph  +I such 
that the set L(+I) of its vertices coincide with M, and the set *(+I) of its edges contain 
all loops, i.e.  *(+I) ⊇ ∆. We assume +I has no parallel edges (arcs), so we can identify 
+I with the pair (L(+I), *(+I)). Our graph theory notation and terminology are 
standard and can be found in all graph theory books, like [14]. Moreover, we may treat 
+I as a weighted graph (see [10]) by assigning to each edge the distance between its 
vertices. 
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 By Gf) we denote the conversion of a graph G, i.e., the graph obtained from G by 
reversing the direction of edges. Thus we have 

*(Gf)) = {(�, �)|��, ���	*�+�1. 

A diagraph G is called an oriented graph if whenever �n, o��	*�+�, then�o, n� ∉
	*�+�. The letter +A denotes the undirected graph obtain from G by ignoring the direction 
of edges. 

Actually, it will be more convenient for us to treat +A as a directed graph for 
which the set of its edges is symmetric. Under this convention, 
*�+A� = *�+� ∪ *�Gf)�. 

We call �L<	, *<	� a sub graph of L<	 ⊆ L�+�, *<	 ⊆ *�+�, and for any edge 
��, �� ∈ *<	, �, � ∈ L<	. 

If 	� and � are vertices in a graph G, then a (directed) path in G from	� to � of 
length N is a sequence ��r�rs)

$  of & + 1 vertices such that  �� = �, �$ = � and 
���f), ��� ∈ *�+� for Z = 1,… ,&. A graph G is connected if there is a directed path 
between any two vertices. G is a weakly connected if +A is connected. If G is such that 
*�+� is symmetric and � is a vertex in G, then the sub graph +3 consisting of all edges 
and vertices which are contained in some path beginning at � is called the component of 
G containing �. In this case L�+3� = !�4@ , where !�4@ is the equivalence class of the 
following relation ℛ defined on L�+� by the rule: 

 �ℛE if there is a (directed) path in G from � to E. 

Clearly +3 is connected. 

Definition 2.3. [3] Let ��,H� be a modular metric space and M be a non empty subset of 
�I. A mapping 8 ∶ K → K	is called  
�i�	+I- contraction if T preserve edges of +I, i.e., 

∀	�, �	�	K	���, ���*�+I� ⟹ �8���, 8�����*�+I��, 
and if there exists a constant x�!0,1� such that  

H)�8���, 8���� ≤ xH)��, ��	for	any	��, ���*�+I�. 
(ii) �}, x� − +I-uniformly locally contraction if T preserve edges of +I and there exists a                          
Constant x ∈ !0,1� such that for any ��, ���*�+I� 
H)�8���, 8���� ≤ xH)��, �� whenever H)��, �� < }. 
 
Definition 2.4. [3] A point �	�	K	is called a fixed point of T whenever � = 8���.	The set 
of fixed points of T will be denoted by Fix(T). 

Now we introduce the	+I Kannan contraction and weakly +I contractive 
mappings in a modular metric space endowed with a graph as follows. 

Definition 2.5. Let (X,	H) be a modular metric space with a graph +I. Amapping 
	8 ∶ K → K is called 
(1) 	+I- Kannan contraction if T preserve the edges of	+I , 

 i.e., for all	�, �	�K	�	��, ��	�	*�+I� ⟹ �8�, 8���*�+I�� 
and if there exists positive number ���0, )

D
� such that  
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	HW�8�, 8�� ≤ ��HW�8�, �� + HW�8�, ��� for any	�, �	�K with ��, ���	*�+I�. 
(2) weakly +I contractive if T preserve the edges of 	+I , 

 i.e., for all	�, �	�K	���, ��	�	*�+I� ⟹ �8�, 8���*�+I�� 
and	HW�8�, 8�� ≤ HW��, �� − ~�HW��, ��� 
whenever ~: !0,∞� → !0,∞� is continuous non decreasing  such that ~ is positive 
on�0,∞� and ~�0� = 0. 

Our first result can be seen as an extension of Jachymski [9] fixed point theorems 
to modular metric spaces. As Jachymski [8] did, we introduce the following property. 
We say that the triple �K, �I∗ , +I� has property (P) if 
(P) For any sequence {��	1�∈$in M, if ��	 → � as % → ∞ and ���	, ��()	��*�+I�, then 
���	, ���*�+I�, for all n. 
             Note that property (P) is precisely the Nieto et al. [14] hypothesis relaxing 
continuity assumption as in Theorem 1.2 ((2) and (3)) rephrased in terms of edges. 
 
Lemma 2.1. [16] Let ��, �� be a metric space and 8: � → � be a weakly +-contractive 
map. Then for any ��	� and ��!�4@A we have  

lim
�→�

�� 8� �, 8��� = lim
�→�

�� 8� �, 8��� = 0. 

 
Proposition 2.2. [16] Let ��, �� be a metric space and 8 be a weakly +-contractive 
mapping from X into X. Let there exist ���	� such that 8���!��4@A then the sequence 
{8���1 is Cauchy. 
 
3. Main results 
Theorem 3.1. Let (X,	H) be a modular metric space with a graph +I. Suppose that H	is a 
convex regular modular metric which satisfies the ∆D- type condition. Assume that 
K = L�+I� is a nonempty H − bounded, H −complete subset of �I and the triple 
�K, �I∗ , +I� has property (P). Let 8 ∶ K → K be Kannan contraction map and KM ∶=
{�	�	K; ��, 8���*�+I�1. 

If  ���	,8���	���*�+I�,	 then the following statements hold: 
(i) For any  �	�	KM, 8|[3]5OP  , has a fixed point. 

(ii)  If +I is weakly connected, then T has a fixed point in M. 
(iii)  IfK< = ⋃{[�]@OP : �	�	KM}, then 8|TU has a fixed point in M. 
Proof (i): As (��, 8(��))�	*(+I) and (��, 8(��))�	*(+I) then��, ��	�	KM. Since T is a 

Kannan-contraction, there exists a constant � ∈ (0, )
D
) such that (8(��), 8(��))�	*(+I) 

and H)(8��, 8��) ≤ �[H)(��, 8��) + H)(��, 8��)]                                                 (3.1.1) 
By induction we can construct a sequence {��} such that ��() = 8�� and 
(��	, ��())	�	*(+I) 

H)(��(), ��) = H)(8��, 8��f)) 
	H)(��(), ��) ≤ �[H)(8��, ��) + H)(8��f), ��f))]

≤ �[H)(��(), ��) + H)(��, ��f))] 
	(1 − �)	H)(��(), ��) ≤ �	H)(��, ��f)) 

		H)(��(), ��) ≤
:

()f:)
H)(��, ��f)) where x = :

()f:)
< 1 

			H)(��(), ��) ≤ xH)(��, ��f)) 
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So by induction, we construct a sequence  {��1 such that ���(), ����	*�+I� and                                                                                      
	H)���(), ��� ≤ x�H)���, �)� for any % ≥ 1. Since K is H-bounded, we have 

	H)���(), ��� ≤ hI�K��� 
for any % ≥ 1. Then by lemma 2.2 . 
⟹ {��1 is	H -Cauchy. Since K is H − Complete, therefore	{��1 is H - convergence to 
some point 	�	K. 
By property (P),  ���, ���	*�+I� for all % and hence  

		H)���(), 8���� = H)�8��, 8�� 
≤ ��H)�8��, ��� + H)�8�, ��� 

Taking limit % → ∞ both sides we get  
H)��, 8�� ≤ ��H)��, �� + H)�8�, ��� 

i.e. H)��, 8�� ≤ �H)�8�, ��� which is a contradiction. 
Hence H)��, 8�� = 0. 
Therefore � = 8�. 
i.e. � is a fixed point of T.  
As ���, ���	*�+I�,	we have �	�!��4@OP . 
Uniqueness. Let � and y be two fixed point of T. 
Consider H)��, �� = 	H)�8�, 8�� ≤ �!H)��, 8�� + H)��, 8��4 

≤ �!H)��, �� + H)��, ��4 
This gives  

H)��, �� = 0 ⟹ � = �. 
Hence point is unique. 
(ii) Since 	KM ≠ ∅, there exists an ���	KM and since +I is weakly connected, then 
!��4@OP = K and by M and by (i), mapping T has a fixed point. 
 (iii) It follows easily from (i) and (ii). 

Theorem 3.2. Let (X,	H) be a modular metric space with a graph +I. Suppose that H	is a 
convex regular modular metric which satisfies the ∆D- type condition. Assume that 
K = L�+I� is a nonempty H − bounded, H − complete subset of �I and the triple 
�K, �I∗ , +I� has property (P). Let 8 ∶ K → K be weak contraction mapping and KM ∶=
{�	�	K; ��, 8���*�+I�1. 

If  ���	,8���	���*�+I�,	 then the following statements hold: 
(iv) For any  �	�	KM, 8|[3]5OP  , has a fixed point. 

(v) If +I is weakly connected, then T has a fixed point in M. 
(vi) IfK< = ⋃{[�]@OP : �	�	KM}, then 8|TU has a fixed point in M. 
Proof: As (��, 8(��))�	*(+I) and (��, 8(��))�	*(+I) then��, ��	�	KM. Since T is a 

weak contraction, there exists a constant � ∈ (0, )
D
) such that (8(��), 8(��))�	*(+I) and  

H)(8��, 8��) ≤ H)(��, ��) − Ψ(H)(��, ��)) 
By induction we can construct a sequence{��}such that ��() = 8�� and  

(��	, ��())�	*(+I)H)(��(), ��) = H)(8��, 8��f)) 
H)(��(), ��) ≤ H)(��, ��f)) − ψ(H)(��, ��f))) 

H)(��(), ��) ≤ H)(��, ��f)) 
Similarly 
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	H)���(D, ��()� = H)�8��(), 8��� 
H)���(D, ��()� ≤ H)���(), ��� − Ψ�H)���(), ���� 

H)���(D, ��()� ≤ H)���(), ��� 
	H)���(�, ��(D� = H)�8��(D, 8��()� 

H)���(�, ��(D� ≤ H)���(D, ��()� − Ψ�H)���(D, ��()�� 
H)���(�, ��(D� ≤ H)���(D, ��()� 

Hence in general  
H)��r(), ��� ≤ H)��r , �rf)� − Ψ�H)��r , �rf)�;																							∀	Z = 1,2,3…% 

Since Ψ is non decreasing and this shows that {�r1rs)
�  is a H-cauchy sequence 

H)���(), ��� ≤ H)���, ��f)� ≤ ⋯ ≤ H)��), ��� 
Since H)���(), ��� is non increasing sequence of non-negative real number bounded 
below by 0, thus convergent. 
Taking limit as n →∞, 
lim�→�H)���(), ��� = 0;																																																														 ∀	Z = 1,2,3… %. 
Uniqueness: Let � and y be two fixed point of T. 
Consider H)��, �� = 	H)�8�, 8�� ≤ H)��, �� − ~H)��, ��4 
This gives  

H)��, �� = 0 ⟹ � = �. 
Hence point is unique. 
(ii) Since 	KM ≠ ∅, there exists an ���	KM and since +I is weakly connected, then 
!��4@OP = K and by M and by (i), mapping T has a fixed point. 
 (iii) It follows easily from (i) and (ii). 
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