Annals of Pure and Applied Mathematics Vol. 14, No. 1, 2017, 119-123 ISSN: 2279-087X (P), 2279-0888(online) Published on 27 July 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n1a14

Annals of **Pure and Applied Mathematics**

Characteristic Subgroups of a finite Abelian Group

 $Z_n \times Z_n$

Amit Sehgal¹ and Manjeet Jakhar²

¹Govt. College, Birohar, Haryana, India-124106 ²NIILM University, Kaithal, Haryana, India-136027 Email: ²<u>dr.manjeet.jakahar@gmail.com</u> Corresponding author: email: ¹<u>amit_sehgal_iit@yahoo.com</u>

Received 10 June 2017; accepted 16 July 2017

Abstract. We consider the following questions: (i) number of characteristic subgroups of a finite abelian p-group $Z_{p^n} \times Z_{p^n}$ (ii) number of characteristic subgroups of a finite abelian group $Z_n \times Z_n$ and (iii) characteristic subgroup lattice of $Z_n \times Z_n$ is isomorphic to subgroup lattice of Z_n .

Keywords: Subgroup; cyclic subgroup; characteristic subgroup; group of all automorphism

AMS Mathematics Subject Classification (2010): 20K01, 20K07

1. Introduction

In 1939, Baer [1] considered the following question "When two groups have isomorphic subgroups lattices?" Since this is a very difficult problem. Here authors consider a related question "When two groups have isomorphic lattices of characteristic subgroups?" In general problem considered by Baer [1] or related question consider by authors seems to very difficult. We will consider only the particular case of finite Abelian group of rank two i.e., $Z_n \times Z_n$.

A subgroup N of a group G is called a Characteristic Subgroup if Φ (N)=N for all Automorphism Φ of G. This term was first used by *Frobenius* in 1895.

Theorem 1.1. If gcd(|H|, |K|) = 1. $H \times K$ is characteristic subgroup of G if and only if H and K are characteristic subgroup of G. **Proof:** Let $x \in H \times K$ \therefore x is uniquly expressed as product of $h \in H$ and $k \in K$ such that x = hk. Then $f(x) = f(hk) = f(h)f(k) \quad \forall f \in Aut(G)$ It is given that H and K is characteristic subgroups of G, therefore $f(h) \in H$ and $f(k) \in K$. $\therefore f(x) \in HK$ Here $HK = H \times K$ [Because H \lhd G, K \lhd G and $H \cap K = \{e\}$] $\therefore H \times K$ is characteristic subgroup of G. Converse :- Let $h(\neq e) \in H$, then $h = he \in H \times K$. Amit Sehgal and Manjeet Jakhar

 \therefore $f(h) \in H \times K \quad \forall f \in Aut(G)$ [Because $H \times K$ is characteristic subgroup of G]. Therefore f(h) is uniquly expressed as product of elements of H and K, then f(h) =f(h)e. If possible $f(h) \in K \Rightarrow |f(h)|||K|$ (1)

But |h|||H| and $|f(h)| = |h| \Rightarrow |f(h)|||H|$ (2)From (1) and (2), we have $|f(h)||(|H|, |K|) \Rightarrow |f(h)||1 \Rightarrow f(h) = e \Rightarrow h = e$. This contradiction shows that

 $f(h) \in H$.

Hence H is characterstic subgroup of G.

Similarly, K is characterstic subgroup of G.

If we denote NC(G) the number of characteristic subgroups of the group G, then by use of theorem 1.1 we have, $NC(Z_n \times Z_n) = \prod_{i=1}^r NC(Z_{p_i}\alpha_i \times Z_{p_i}\alpha_i)$ where

n $=p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}\dots p_r^{\alpha_r}$. Now our problem is reduced to find number of characteristic subgroups of a finite abelian of type $Z_{p^{\alpha}} \times Z_{p^{\alpha}}$.

2. Partition

Firstly we partition the set S (non-trivial cyclic subgroups of $Z_{p^m} \times Z_{p^n}$ $(1 \le m \le n)$) into (p+1) partitions.

Two cyclic subgroups H and K in S are equivalent, denoted by $H \sim K$, if and only if $H \cap K$ contains a subgroup of order p (clearly such subgroup is unique and cyclic)

Lemma 2.1. The relation ~ between elements of the S is an equivalence relation on S. **Proof: Reflexive.** Since H is a non-trivial cyclic subgroup of $Z_{p^{\alpha_1}} \times Z_{p^{\alpha_2}}$, then H contains a subgroup of order p. Hence $H \cap H = H$ contains a subgroup of order p, then $H \sim H$.

Symmetric. If $H \sim K$, then $H \cap K$ contains a subgroup of order p, since $H \cap K = K \cap H$. We deduce that $K \cap H$ contains a subgroup of order p and consequently $K \sim H$.

Transitive. If $H \sim K$ and $K \sim L$, then $H \cap K$ and $K \cap L$ contains a subgroup of order p. By using result "every cyclic subgroup of order $p^{\alpha} (\alpha \ge 1)$ has unique subgroup of order p". hence H and L contains same cyclic subgroup of order p which is contained by K. Therefore $H \cap L$ contains a subgroup of order p and consequently $H \sim L$.

Hence relation \sim is called equivalence relation.

Theorem 2.2. An equivalence relation \sim on a non-empty set S partitions the set S into the disjoint union of distinct equivalence class.

Here group $Z_{p^m} \times Z_{p^n}$ has only p+1 cyclic subgroups of order p, using above theorem we can partition set S into p+1 distinct equivalence class and these partition are as follows:

- (a) $[\langle (0, p^{n-1}) \rangle] = \{H \in S | H \sim \langle (0, p^{n-1}) \rangle\}$ and denoted by class-0 (b) $[\langle (p^{m-1}, ip^{n-1}) \rangle] = \{H \in S | H \sim \langle (p^{m-1}, ip^{n-1}) \rangle\}$ and denoted by class-i where $(1 \le i \le p)$.

3. Main theorem

Theorem 3.1. Prove that there is exactly one characteristic subgroup of order p in group $Z_{p^m} \times Z_{p^n}$ where m < n i.e., $\langle (0, p^{n-1}) \rangle$ which belong to class-0.

Characteristic Subgroups of a finite Abelian Group $Z_n \times Z_n$

Proof: From [2], we know that there are exactly p+1 subgroups of order p in group $Z_{p^m} \times Z_{p^n}$ and they are given below:-

- (i) $\langle (0, p^{n-1}) \rangle$ from class-0
- (ii) $\langle (p^{m-1}, ip^{n-1}) \rangle$ from class-i where $1 \le i \le p$

Firstly, we prove that $\langle (0, p^{n-1}) \rangle$ is a characteristic subgroup of group $Z_{p^m} \times Z_{p^n}$. In group $Z_{p^m} \times Z_{p^n}$, order of element (0,1) is p^n and therefore in any automorphism (0,1) is transferred to element of group $Z_{p^m} \times Z_{p^n}$ which has order p^n , they are written as (j, k) where (k,p)=1.

Let x be any element of subgroup $\langle (0, p^{n-1}) \rangle$, then $x = (0, rp^{n-1})$. $\therefore f(x) = f(0, rp^{n-1}) = rp^{n-1}f(0, 1) = rp^{n-1}(j, k) = (rjp^{n-1}, rkp^{n-1})$ Here m<n, then $p^m | p^{n-1}$ Hence $f(x) = (0, rkp^{n-1}) \in \langle (0, p^{n-1}) \rangle$

Therefore, subgroup $\langle (0, p^{n-1}) \rangle$ is a characteristic subgroup of group $Z_{p^m} \times Z_{p^n}$.

Secondly, we prove that $\langle (p^{m-1}, ip^{n-1}) \rangle$ is not a characteristic subgroup of group $Z_{p^m} \times Z_{p^n}$ for $1 \le i \le p$.

In group $Z_{p^m} \times Z_{p^n}$, order of element (1,0) is p^m and therefore in any automorphism (1,0) is transferred to element of group $Z_{p^m} \times Z_{p^n}$ which has order p^m which belong to class other than-0. Take $(j \neq 0 \pmod{p})$. Let f_j be an Automorphism of group $Z_{p^m} \times Z_{p^n}$ such that $f_j(1,0) = (1, jp^{n-m})$ and $f_j(0,1) = (0,1)$

Then $f_j(kp^{m-1}, ikp^{n-1}) = kp^{m-1}f_j(1,0) + ikp^{n-1}f_j(0,1) = kp^{m-1}(1, jp^{n-m}) + ikp^{n-1}(0,1) = (kp^{m-1}, k(i+j)p^{n-1}) \notin \langle (p^{m-1}, ip^{n-1}) \rangle \quad \forall k \neq 0 (modp)$ Hence, subgroup $\langle (p^{m-1}, ip^{n-1}) \rangle$ is a not characteristic subgroup of group $Z_{p^m} \times Z_{p^n}$.

Theorem 3.2. Prove that there is no subgroup of order p which is characteristic subgroup of group $Z_{p^n} \times Z_{p^n}$.

Proof: From [2], we know that there are exactly p+1 subgroups of order p in group $Z_{p^n} \times Z_{p^n}$ and they are given below:-

- (i) $\langle (0, p^{n-1}) \rangle$
- (ii) $\langle (p^{n-1}, ip^{n-1}) \rangle$ where $1 \le i \le p$.

Firstly, we prove that $\langle (0, p^{n-1}) \rangle$ is not a characteristic subgroup of group $Z_{p^n} \times Z_{p^n}$. Let f_0 be an Automorphism of group $Z_{p^n} \times Z_{p^n}$ such that $f_0(1,0) = (0,1)$ and $f_0(0,1) = (1,0)$.

 $\begin{array}{l} f_0(0,kp^{n-1})=kp^{n-1}f_0(0,1)=kp^{n-1}(1,0)=(kp^{n-1},0)\notin\langle(0,p^{n-1})\rangle \ \forall \, k\not\equiv 0 (modp). \end{array}$

Secondly, we prove that $\langle (p^{n-1}, ip^{n-1}) \rangle$ is not a characteristic subgroup of group $Z_{p^n} \times Z_{p^n}$ for $1 \le i \le p$.

Let f_i be an Automorphism of group $Z_{p^n} \times Z_{p^n}$ such that $f_i(1,0) = (p-i,1)$ and $f_i(0,1) = (1,0)$

Then $f_i(kp^{n-1}, ikp^{n-1}) = kp^{n-1}f_i(1,0) + ikp^{n-1}f_i(0,1) = kp^{n-1}(p-i,1) + ikp^{n-1}(1,0) = (kp^n, kp^{n-1}) = (0, kp^{n-1}) \notin \langle (p^{n-1}, ip^{n-1}) \rangle \quad \forall k \neq 0 (modp)$

Amit Sehgal and Manjeet Jakhar

Hence there is no subgroup of order p which is characteristic subgroup of group $Z_{p^n} \times Z_{p^n}$

Theorem 3.3. [3] Characteristic property is transitive. That is, if N is characteristic subgroup of K and K is characteristic subgroup of G, then N is characteristic subgroup of G.

Theorem 3.4. Number of characteristic subgroup of a group $Z_{p^n} \times Z_{p^n}$ are $\tau(p^n)$ and its characteristic subgroup lattice is isomorphic to subgroup lattice of group Z_{p^n} . **Proof:**

Case 1: When subgroup of group $Z_{p^n} \times Z_{p^n}$ which is isomorphic group $Z_{p^{\alpha_1}} \times Z_{p^{\alpha_2}}$ where $1 \le \alpha_1 < \alpha_2 \le n$

If possible there exist a characteristic subgroup H from group $Z_{p^n} \times Z_{p^n}$ which is isomorphic group $Z_{p^{\alpha_1}} \times Z_{p^{\alpha_2}}$ where $1 \le \alpha_1 < \alpha_2 \le n$

By using theorem 3.2, then there exists a characteristic subgroup K of order p from subgroup H.

Now K is characteristic subgroup of H and H is characteristic subgroup of $Z_{p^n} \times Z_{p^n}$, by use of theorem 3, we conclude that K is a characteristic subgroup of $Z_{p^n} \times Z_{p^n}$. By use of theorem 3.1, K is not a characteristic subgroup of $Z_{p^n} \times Z_{p^n}$, which contraction with fact that there exist a characteristic subgroup H from group $Z_{p^n} \times Z_{p^n}$ which is isomorphic group $Z_{p^{\alpha_1}} \times Z_{p^{\alpha_2}}$ where $1 \le \alpha_1 < \alpha_2 \le n$.

Case 2: When subgroup of group $Z_{p^n} \times Z_{p^n}$ which is isomorphic $Z_{p^{\alpha}} \times Z_{p^{\alpha}}$ where $0 \le \alpha \le n$

From [2], there is exactly one subgroup from group $Z_{p^n} \times Z_{p^n}$ which is isomorphic to $Z_{p^{\alpha}} \times Z_{p^{\alpha}}$. This subgroup must be characteristic subgroup. Hence there exist one subgroup for each α , therefore total number of characteristic subgroups of group $Z_{p^n} \times Z_{p^n}$ are n+1 or $\tau(p^n)$. These subgroups are $\langle (p^{n-i}, 0), (0, p^{n-i}) \rangle$ where i = 0, 1, 2, ..., n

Its characteristic subgroup lattice is as follows:-< $(0,0) \ge \subseteq <(p^{n-1},0), (0,p^{n-1}) \ge \subseteq <(p^{n-2},0), (0,p^{n-2}) \ge \subseteq ... \subseteq <$ (1,0), $(0,1) \ge Z_{p^n} \times Z_{p^n}$ Subgroup lattice of group Z_{p^n} is as follows:-

 $<0>\subseteq <p^{n-1}>\subseteq <p^{n-2}>\subseteq \ldots \subseteq <1>=Z_{p^n}$

Let as define a mapping f from a set of characteristic subgroup of group $Z_{p^n} \times Z_{p^n}$ to set of subgroups of Z_{p^n} such that $f(<(p^{n-i}, 0), (0, p^{n-i}) >) = < p^{n-i} >$. This mapping f also preserve subset property means $<(p^{n-i}, 0), (0, p^{n-i}) > \subseteq <(p^{n-j}, 0), (0, p^{n-j}) > \Leftrightarrow f(<(p^{n-i}, 0), (0, p^{n-i}) >) \subseteq f(<(p^{n-j}, 0), (0, p^{n-j}) >)$

Hence characteristic subgroup lattice of group $Z_{p^n} \times Z_{p^n}$ is isomorphic to subgroup lattice of group Z_{p^n}

Theorem 3.5. Number of characteristic subgroup of a group $Z_n \times Z_n$ are $\tau(n)$ and its characteristic subgroup lattice is isomorphic to subgroup lattice of group Z_n .

Characteristic Subgroups of a finite Abelian Group $Z_n \times Z_n$

Proof: We know that $NC(Z_n \times Z_n) = \prod_{i=1}^r NC(Z_{p_i}^{\alpha_i} \times Z_{p_i}^{\alpha_i})$ where n = $p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_r^{\alpha_r}$, hence $NC(Z_n \times Z_n) = \prod_{i=1}^r \tau(p_i^{\alpha_i}) = \tau(n)$. If LC(G) for characteristic subgroup lattice of G, then LC($Z_n \times Z_n$) $\approx LC(Z_{p_1}^{\alpha_1} \times Z_{p_1}^{\alpha_1}) \times LC(Z_{p_2}^{\alpha_2} \times Z_{p_2}^{\alpha_2}) \times \dots \times LC(Z_{p_r}^{\alpha_r} \times Z_{p_r}^{\alpha_r})$ the direct product of corresponding subgroup lattices (Suzuki[5]).

From theorem 3.4, we have $LC(Z_{p_i}^{\alpha_i} \times Z_{p_i}^{\alpha_i}) \approx L(Z_{p_i}^{\alpha_i})$ where $L(Z_{p_i}^{\alpha_i})$ denotes subgroup lattice of group $Z_{p_i}^{\alpha_i}$.

Hence, $LC(Z_n \times Z_n) \approx L(Z_{p_1^{\alpha_1}}) \times L(Z_{p_2^{\alpha_2}}) \times ... \times L(Z_{p_r^{\alpha_r}}) \approx L(Z_n).$

4. Conclusion

In this paper, we have conclude that Number of characteristic subgroup of a group $Z_n \times Z_n$ are $\tau(n)$ and its characteristic subgroup lattice is isomorphic to subgroup lattice of group Z_n

REFERENCES

- 1. R.Baer, The significance of the system of subgroups for structure of a group, *Amer. Journ. Math.*, 61 (1939) 1-44.
- 2. A.Sehgal, S.Sehgal and P.K.Sharma, The number of subgroups of a finite abelian pgroup of rank two, *Journal for Algebra and Number Theory*, 5(1) (2015) 23-31.
- 3. J.A.Gallian, Contemporary Abstract Algebra, Narosa, 1999.
- 4. R.Schmidt, *Subgroup Lattices of Groups,* de Gruyter Expositions in Mathematics 14, de Gruyter, Berlin 1994.
- 5. R.Baer, Types of elements and characteristic subgroups of abelian groups, *Proc. London Math. Soc.*, 39 (1934) 481 514
- 6. B.L.Kerby and E.Rode, Characteristic subgroups of finite abelian groups. *Communications in Algebra*, 39(4) (2011) 1315-1343.