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Abstract. We consider the following questions:  (i) number of characteristic subgroups of 
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to subgroup lattice of �� . 
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1. Introduction 
In 1939, Baer [1] considered the following question “When two groups have isomorphic 
subgroups lattices?”  Since this is a very difficult problem. Here authors consider a 
related question “When two groups have isomorphic lattices of characteristic 
subgroups?”  In general problem considered by Baer [1] or related question consider by 
authors seems to very difficult. We will consider only the particular case of finite Abelian 
group of rank two i.e.,	�� × ��.  

A subgroup N of a group G is called a Characteristic Subgroup if Ф (N)=N for all 
Automorphism Ф of G.  This term was first used by Frobenius in 1895. 

 
Theorem 1.1. If gcd�|�|, |�|� = 1. � × � is characteristic subgroup of G if and only if 
H and K are  characteristic subgroup of G.  
Proof: Let � ∈ � × � 
∴  x is uniquly expreesed as product of ℎ ∈ � and � ∈ � such that � = ℎ�.  
Then ���� = ��ℎ�� = ��ℎ�����			∀� ∈ ������ 
It is given that H and K is characterstic subgroups of G, therefore ��ℎ� ∈ � and ���� ∈
�.  
∴  ���� ∈ ��  
Here  �� = � × � [ Because H ⊲G, K⊲G and � ∩ � = {"}] 
∴  � × � is characterstic subgroup of G.  
Converse :- Let ℎ�≠ "� ∈ �, then ℎ = ℎ" ∈ � × �.  
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∴  ��ℎ� ∈ � × � 			∀� ∈ ������   [Because � × � is characterstic subgroup of G].  
Therefore f(h) is uniquly expressed as product of elements of H and K, then ��ℎ� =
��ℎ�". 
If possible ��ℎ� ∈ �	 ⇒ |��ℎ�|||�|                                                                                  (1) 
 But |ℎ|||�| and |��ℎ�| = |ℎ| ⇒|��ℎ�|||�|                                                                     (2) 
From (1) and (2), we have 
|��ℎ�||�|�|, |�|�  ⇒ |��ℎ�||1 ⇒ ��ℎ� = " ⇒ℎ = " . This contradiction shows that 
��ℎ� ∈ �. 
Hence H is characterstic subgroup of G. 
Similarly, K is characterstic subgroup of G. 

 If we denote NC(G) the number of characterstic subgroups of the group G, then by 
use of theorem 1.1 we have, &'��� × ��� = ∏ &'���)*) × ��)*)�

+
,-.  where  

n =/.01/203/405 ……/+07 . Now our problem is reduced to find number of 
characteristic subgroups of a finite abelian of type ��* × ��*.  

2. Partition  
Firstly we partition the set S (non-trivial cyclic subgroups of ��8 × ��� �1 ≤ : ≤ ;�) 
into (p+1) partitions.  

Two cyclic subgroups H and K in S are equivalent, denoted by �~�, if and only 
if � ∩ � contains a subgroup of order p (clearly such subgroup is unique and cyclic)   

Lemma 2.1. The relation ~ between elements of the S is an equivalence relation on S.  
Proof: Reflexive. Since H is a non-trivial cyclic subgroup of ��*1 × ��*3 , then H 
contains a subgroup of  order p. Hence � ∩ � = � contains a subgroup of order p, then 
�~�.  
Symmetric. If �~�, then � ∩ � contains a subgroup of order p, since � ∩ � = � ∩ �. 
We deduce that � ∩ � contains a subgroup of order p and consequently �~�.  
Transitive.  If �~� and	�~=, then � ∩ � and � ∩ = contains a subgroup of order p. By 
using result “every cyclic subgroup of order /0�> ≥ 1� has unique subgroup of order p”, 
hence H and L contains same cyclic subgroup of order p which is contained by K. 
Therefore � ∩ = contains a subgroup of order p and consequently �~=.   
          Hence relation ~ is called equivalence relation.  
 
Theorem 2.2. An equivalence relation ~ on a non-empty set S partitions the set S into 
the disjoint union of distinct equivalence class.  
           Here group ��8 × ��� has only p+1 cyclic subgroups of order p , using above 
theorem we can partition set S into p+1 distinct equivalence class and these partition are 
as follows:  

(a) @〈�0, /�C.�〉E = {� ∈ F|�~〈�0, /�C.�〉}  and denoted by class-0  
(b)  @〈�/GC., H/�C.�〉E = {� ∈ F|�~〈�/GC., H/�C.�〉}  and denoted by class-i where  

�1 ≤ H ≤ /�.  
 

3. Main theorem  
Theorem 3.1.  Prove that there is exactly one characteristic subgroup of order p  in 
group	��8 × ��� where : < ; i.e., 〈�0, /�C.�〉  which belong to class-0.  
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Proof: From [2], we know that there are exactly p+1 subgroups of order p in group 
��8 × ���  and they are given below:-  

(i)  〈�0, /�C.�〉      from class-0                                  
(ii)  〈�/GC., H/�C.�〉   from class-i where 1 ≤ H ≤ / 

 
Firstly, we prove that 〈�0, /�C.�〉 is a characteristic subgroup of group  ��8 × ���. 
In group ��8 × ��� , order of element (0,1) is /� and therefore in any automorphism 
(0,1) is transferred to element of group ��8 × ��� which has order /�, they are written 
as (j , k) where (k,p)=1.  
Let x be any element of subgroup  〈�0, /�C.�〉, then � = �0, J/�C.�. 
∴ ���� = ��0, J/�C.� = J/�C.��0,1� = J/�C.�K, �� = �JK/�C., J�/�C.� 
Here m<n, then /G|/�C. 
Hence �(�) = (0, J�/�C.) ∈ 〈(0, /�C.)〉 
Therefore, subgroup 〈(0, /�C.)〉 is a characteristic subgroup of group ��8 × ���.  

Secondly, we prove that 〈(/GC., H/�C.)〉  is not a characteristic subgroup of 
group  ��8 × ��� for 1 ≤ H ≤ /.  

In group ��8 × ��� , order of element (1,0) is /G and therefore in any 
automorphism (1,0) is transferred to element of group ��8 × ��� which has order /G 
which belong to class other than-0.  Take (K ≢ 0	(:MN/). Let �O  be an Automorphism of 
group ��8 × ��� such that �O(1,0) = (1, K/�CG) and�O(0,1) = (0,1) 
Then  �O(�/

GC., H�/�C.) = �/GC.�O(1,0) + H�/
�C.�O(0,1) = �/GC.(1, K/�CG) +

H�/�C.(0,1) = (�/GC., �(H + K)/�C.) ∉ 〈(/GC., H/�C.)〉			∀	� ≢ 0(:MN/) 
Hence, subgroup 〈(/GC., H/�C.)〉 is a not characteristic subgroup of group ��8 × ���. 
 
Theorem 3.2.  Prove that there is no subgroup of order p which is characteristic subgroup 
of group  ��� × ���.  
Proof:  From [2], we know that there are exactly p+1 subgroups of order p in group 
��� × ���  and they are given below:-  

(i)  〈(0, /�C.)〉   
(ii)  〈(/�C., H/�C.)〉  where 1 ≤ H ≤ /.  

 
Firstly, we prove that 〈(0, /�C.)〉 is not a characteristic subgroup of group  ��� × ���. 
Let �R be an Automorphism of group ��� × ��� such that �R(1,0) = (0,1) and�R(0,1) =
(1,0).  
     Then 
�R(0, �/

�C.) = �/�C.�R(0,1) = �/�C.(1,0) = (�/�C., 0) ∉ 〈(0, /�C.)〉			∀	� ≢

0(:MN/). 
Secondly, we prove that 〈(/�C., H/�C.)〉  is not a characteristic subgroup of 

group  ��� × ��� for 1 ≤ H ≤ /.  
Let �, be an Automorphism of group ��� × ��� such that �,(1,0) = (/ − H, 1) 

and�,(0,1) = (1,0)  
Then �,(�/

�C., H�/�C.) = �/�C.�,(1,0) + H�/
�C.�,(0,1) = �/�C.(/ − H, 1) +

H�/�C.(1,0) = (�/�, �/�C.) = (0, �/�C.) ∉ 〈(/�C., H/�C.)〉			∀	� ≢ 0(:MN/)  
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Hence there is no subgroup of order p which is characteristic subgroup of group  ��� ×
��� 
 
Theorem 3.3. [3] Characteristic property is transitive. That is, if N is characteristic 
subgroup of K and K is characteristic subgroup of G, then N is characteristic subgroup of 
G. 
 
Theorem 3.4. Number of characteristic subgroup of a group ��� × ���  are U�/��  and 
its characteristic subgroup lattice is isomorphic to subgroup lattice of group ��� . 
Proof:  
Case 1: When subgroup of group �V� × �V� which is isomorphic group �VWX × �VWY  
where X ≤ WX < WY ≤ � 

If possible there exist a characteristic subgroup H from group ��� × ��� which is 
isomorphic group ��*1 × ��*3  where 1 ≤ >. < >2 ≤ ; 
By using theorem 3.2, then there exists a characteristic subgroup K of order p from 
subgroup H.  
Now K is characteristic subgroup of H and H is characteristic subgroup of ��� × ���, by 
use of theorem 3, we conclude that K is a characteristic subgroup of ��� × ���. By use 
of theorem 3.1, K is not a characteristic subgroup of ��� × ���, which contraction with 
fact that there exist a characteristic subgroup H from group ��� × ��� which is 
isomorphic group ��*1 × ��*3  where 1 ≤ >. < >2 ≤ ;. 

Case 2: When subgroup of group	�V� × �V�  which is isomorphic �VW × �VW  where 
Z ≤ W ≤ �   

From [2], there is exactly one subgroup from group ��� × ��� which is isomorphic to 
��* × ��*. This subgroup must be characteristic subgroup. Hence there exist one 
subgroup for each >, therefore total number of characteristic subgroups of group �V� ×
�V� are n+1 or  [�V��. These subgroups are < \/�C, , 0], \0, /�C,] > where H =
0,1,2, . . , ; 
Its characteristic subgroup lattice is as follows:-  
< �0,0� >⊆< �/�C., 0�, �0, /�C.� >⊆< �/�C2, 0�, �0, /�C2� >⊆….⊆  <
�1,0�, �0,1� >=��� × ��� 
Subgroup lattice of group ��� is as follows:-  
< 0 >⊆< /�C. >⊆< /�C2 >⊆….⊆  < 1 >=��� 
Let as define a mapping � from a set of characteristic subgroup of group ��� × ��� to set 
of subgroups of ��� such that �\< \/�C, , 0], \0, /�C,] >] =< /�C, >. This mapping � 
also preserve subset property means < \/�C, , 0], \0, /�C,] >⊆< \/�CO , 0], \0, /�CO] > 
⇔ ��< \/�C, , 0], \0, /�C,] >� ⊆ ��< \/�CO , 0], \0, /�CO] >� 
Hence characteristic subgroup lattice of group ��� × ��� is isomorphic to subgroup 
lattice of group ��� 
 
Theorem 3.5. Number of characteristic subgroup of a group �� × ��  are U�;�  and its 
characteristic subgroup lattice is isomorphic to subgroup lattice of group �� . 
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Proof: We know that &'��� × ��� = ∏ &'���)*) × ��)*)�
+
,-.  where n 

=/.01/203/405……/+07 , hence &'��� × ��� = ∏ U�+
,-. /,0)� = U�;�.  

If LC(G) for characteristic subgroup lattice of G, then LC(�� × ��� ≈ ='\��1*1 ×
��1*1� × ='\��3*3 × ��3*3] × …× ='���7*7 × ��7*7� the direct product of 
corresponding subgroup lattices (Suzuki[5]).  
From theorem 3.4, we have ='���)*) × ��)*)� ≈ =���)*)� where =���)*)� denotes 
subgroup lattice of group ��)*).  
Hence, ='��� × ��� ≈ =\��1*1] × =\��3*3] × …× =���7*7� ≈ =����. 
 
4. Conclusion  
In this paper, we have conclude that Number of characteristic subgroup of a group 
�� × ��  are [��� and its characteristic subgroup lattice is isomorphic to subgroup lattice 
of group �� 
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