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Abstract. In this paper, collocation method using recursive form of Ninth degree B-spline 
functions as basis is developed and employed to find the numerical solution for ninth 
order boundary value problems. Numerical examples are considered to test the 
performance, stability and accuracy of the present developed method.   
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1. Introduction 
This paper is concerned with the numerical solution of ninth order linear boundary 
value problem by using ninth degree B-spline collocation solution. 
    The ninth order linear differential equation with boundary conditions is given as  

2

2

73

3

64

4

55

5

46

6

37

7

28

8

19

9

)()()()()()()()(0
dx

Ud
xP

dx

Ud
xP

dx

Ud
xP

dx

Ud
xP

dx

Ud
xP

dx

Ud
xP

dx

Ud
xP

dx

Ud
xP +++++++          

           )()()( 98 xQUxP
dx

dU
xP =++  � ∈ ��, ��,                                                   (1) 

with the boundary conditions           
,)(,)(,)(,)()(,)( 6

''
5

''
4

'
3

'
21 dbUdaUdbUdaUdbUdaU ======                   

98
'''

7
''' )(,)(,)( dbUdbUdaU iv ===                                                                    (2) 

where 987654321 ,,,,,,,,,, dddddddddba  are  constants.  

)(0 xP , )(),( 21 xPxP , )(),( 43 xPxP , )(),( 65 xPxP , )(),(),(),( 987 xQxPxPxP  are function 

of x. 
 
    Different methods have been developed by many authors to solve the ninth order 
boundary value problems. Homotopy perturbation method was applied to obtain the 
solution for ninth and tenth order boundary value problems by Tauseef and Ahmet 
[1]. Samir presented spectral collocation method to solve ninth order boundary value 
problems [2].  
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    In this paper, recursive form of ninth degree B-spline is employed as basis 
function in collocation method to solve the ninth order boundary value problems of 
the type (1)-(2). 
 
2.  Description of method 
The solution domain a ≤  x ≤ b is partitioned into a mesh of uniform length   
h = x j+1 - x j ,  where j=0,1,2,…, N-1,N . Such that a= x0 < x1< x2 ……< xn-1< xn=b. 
       In the ninth degree B-spline collocation method the approximate solution is 
written as the linear combination of ninth degree B-spline basis functions for the 
approximation space under consideration. The proposed numerical solution for 
solving Eq. (1) using the collocation method with ninth degree B-spline is to find an 

approximation solution )(xU h  to the exact solution )(xU  in the form: 
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where iC ’s are constants to be determined from the boundary conditions and 

collocation from the differential equation.  
           A zero degree and other than zero degree B-spline basis functions [3, 4] are 

defined at ix  recursively over the knot vector space 
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where p is the degree of the B-spline basis function and x is the parameter belongs 
to X .When evaluating these functions, ratios of the form 0/0 are defined as zero.                                                                                                                             
 
Derivation of B-splines 
     If p=9 
we have 
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       The six '  are known as nodes, the nodes are treated as knots in collocation B-

spline method where the B-spline basis functions are defined and these nodes are 

used to make the residue equal to zero to determine unknowns siC '  in (3).Nine 

extra knots are taken into consideration besides the domain of problem to maintain 
the partition of unity when evaluating the ninth degree B-spline basis functions at 
the nodes which are within the considered domain.  
       Substituting the equations (3) to (6) in equation (1) for U (x) and derivatives of 
U (x). Then system of (n+1) linear equations are obtained in (n+9) constants. 
Applying the boundary conditions to equation (2), eight more equations are 
generated in constants. Finally, we have (n+10) equations in (n+10) constants. 
       Solving the system of equations for constants and substituting these constants in 
equation (3) then assumed solution becomes the known approximation solution for 
equation (1) at corresponding the collocation points.  
       This is implemented using the Matlab programming.            

 
3. Numerical scheme 
Example 1. A ninth order differential equation with boundary conditions [5] is 
considered to test the performance of the proposed method.  
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      The exact solution for the example is  
xexxy )1( −=  

 
Figure 1: Comparison of ninth degree B-spline collocation solution with exact 
solution for 11 collocation points 
 



Y.Rajashekhar Reddy 

186 
 

 
Table 1: Absolute relative errors at nodes 

 
      The obtained numerical solution is compared with the exact solution which is 
shown graphically in Figure 1. Absolute relative errors are evaluated at different 
node points and presented in Table 1. 

 
Example 2. Let us consider the following equation. 
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 with the boundary conditions 0)0( =y  1cos)1( =y  1)0(' =y  

1sin1cos)1(' −=y  0)0('' =y  1cos1sin2)1('' −−=y  3)0(''' −=y
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The exact solution for example 2 is given as .cosxxy =  

 

Table 2: Comparison of B-spline collocation solution with exact solution 
 
Clearly from Table 1 we have seen that the B-spline collocation solution values are 
meeting with the exact values accurately. Absolute relative errors are presented 
graphically in Figure 2. 
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Figure 2: 

 
4. Conclusions 
In this article, developed collocation method by using the ninth degree B-spline as 
basis function in collocation method is applied to ninth order linear differential 
equations with boundary condition problems. It is observed that obtained values are 
very close to the exact values and further absolute relative errors are very less at the 
nodes. This shows that the proposed method is effective and useful to find the 
numerical solutions for ninth order linear differential equation with boundary value 
problems. 
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