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Abstract. A set )(GED l ⊆  is said to be a Strong Line Set Dominating set (slsd-set) of 

G.  If for every set  lDER −⊆ . There exists an edge lDe∈ , such that the sub graph  

{ }eRU is induced by { }eRU is connected and )()( fded ≥  for all Rf ∈  where 

)(ed  denote the degree of the edge. The minimum cardinality of a slsd-set is called the 

strong line set dominating number of G and is denote by )(' Gslϑ . In this paper Strong 

Line set Dominating set are analyse with respect to the strong domination parameter for 
separable graphs. The characterization of separable graphs with slsd number is derived. 
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1. Introduction 
Domination is an active subject in graph theory. Let ),( EVG =  be a graph. A set 

)(GVD ⊆ of vertices in a graph ),( EVG = ) is a dominating  set. if every vertex in 

DV −  is adjacent to some vertex in D. The domination number )(Gγ  of G is the 
minimum cardinality of dominating set in G.  A dominating set D is called a minimal 
dominating set if no proper subset of D is a dominating   set [3, 4]. 
         Let ),( EVG =  be a graph. A set )(GEF ⊆ is an edge dominating set of G. if and 
only if every edge in  E-F  is adjacent  to some edge in F. The edge domination number 

)(' Gγ is the minimum of cardinalities of all edge dominating sets of G.[4] 
      A dominating set S is a strong dominating set if for every vertex u in V-S, There is a 
vertex v in S with deg(v)≥deg(u) and u is adjacent to v [1, 2]. 
         Let G be a graph. A set )(GVD ⊆  is a point set dominating set (PSD-set) of G. if 

for each set DVS −⊆ , there exists a vertex Du∈  such that the sub graph { }uSU  

induced by { }uSU  is connected. The point set domination number (PSD-number) 

)(' Gpγ  of G is the minimum cardinalities of all PSD-Set of G.[6]  
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       Let G be a graph. A set )(GVD ⊆   is said to be a strong point set dominating set 

(spsd-set) of G. if  for  each  set DVS −⊆ ,  there  exists  a vertex Du∈  such that the 

sub graph { }uSU   induced by { }uSU  is connected and d(u)≥ �(s) for all s∈ � where 

d(u) denote the degree of the vertex u. The Strong point set domination number (spsd)

)(' Gspγ   of G is the minimum cardinalities of  all  spsd-set [7, 8].  

Rao and Vijayalakmi introduced the concept of Line set domination set and 
derived results parallel to those of Sampathkumar and Pushpalatha [5]. 
           Let G be a graph. A set )(GEF ⊆  is a line set dominating set (lsd-set) of G, if 

for each set FES −⊆ , there exists an edge Fe∈ such that the sub graph { }eSU  is 

induced by { }eSU is connected. The line set domination number  )(' Glυ (lsd-number) is 

the minimum cardinalities of all lsd-set of G. 
         Let x,y in E(G) of an isolates free graph G(V,E), then an edge x, e-dominates an 

edge if y in )(xN . A line graph L(G) is the graph whose vertices corresponds to the 

edges of G and two vertices in L(G) are adjacent iff  the corresponding edges in G are 
adjacent (V(L(G))=q). For any edge e, let  
                          �’(	) = {	 ∈ : 	 ��� � ℎ��	 � �	��	� �� ������}  

and { }xeNeN U)(][ '' = . For a set )(GEF ⊆   Let )()( '' eNFN U= .The degree of an 
edge e=uv of G is defined by deg(e) = deg(u) +deg(v)-2. The maximum and minimum 

degree among the edge of graph G is denote by )()(' GandG λ∆  (the degree of an edge 
is the number of edges adjacent to it) A connected graph with at least one cut edge is 
called a separable graph. That is  an edge e such that    G-e = {E-{e}} is disconnected [4]. 
. 
2. Results and bound 
Definition 2.1. A set )(GED l ⊆  is said to be a strong line set dominating set (slsd-set) 

of G.  If for every set  lDER −⊆ . There exists an edge lDe∈ , such that the sub graph  

{ }eRU  is induced by { }eRU  is connected and )()( fded ≥  for all Rf ∈  where 

)(ed  denote the degree of the edge . The minimum cardinality of a slsd-set is called the 

Strong Line Set Dominating Number of G and is denote by )(' Gslϑ .  

 
Theorem 2.2. If a connected graph G with n edge, then 

 )()()()( '''' GqGGG sll ∆−≤≤≤ ϑϑϑ where )(' G∆  is the maximum degree of G. 

Proof: Since every slsd-set of G is line set dominating set and we known that every line 
set dominating set of G is a edge dominating set of G and Let e be a edge of maximum 

degree )(' G∆ . Then e is adjacent to )(' eN , such that ).()(' ' eNG =∆  Hence 

)(' eNE −  is a slsd- set. Therefore )()( '' eNEGsl −≤ϑ . Hence   

).()()()( '''' GqGGG sll ∆−≤≤≤ ϑϑϑ  

In this  next result, we list the exact values of  )(' Gslϑ  for some standard graphs. 
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Observation 2.3. For any complete graph Kn, then   
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Observation 2.4. For any star K1, n−1, then 
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Observation 2.5. For any path Pn , then 
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Observation 2.6. For any cycle Cn, then 
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Observation 2.7. If (Kn,m) is a complete bi-partite graph of m, n>2 vertices, then 
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In the next result , Strong line set  dominating set in  graph G is the Strong  Point set 
dominating number of the line graph L(G). 
 
Observation 2.8. For any path Pn, for any positive integer n≥5 vertices   

 ( ) .3)()(( 1
' −=== − nPPLP nslnslnsl γγϑ  

 
Observation 2.9. For any cycle Cn , for any positive integer  n≥5 vertices 

 ).()(()('
nspnspnsl CCLC γγϑ ==   

 
Observation 2.10. For any star K1,n for any positive integer  with n≥2 vertices  

                       .)())(( 1
'

,1
'

−= nslnsl KKL ϑϑ                                                                                               
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Theorem 2.11. Let G be a connected graph and )(GED l ⊆  be a strong line set 

dominating set of G. then for every subset lDER −⊆ in U
lDe

eN
∈

)(' . There exists an 

edge lDe∈ , such that  )(rNE −  for all Rr ∈  is  maximal edge dominating set. 

 

Lemma 2.12. Let  ),( EVG be any graph and lD  be any strong line set dominating set. 

Then ( )lDE −   is a proper sub graph of a component ).(GH  
Proof: Suppose there exists e and f  belonging to two different components of G.   Since 

lD  is a strong line set dominating set of G.  There must exists lDw∈ , such that 

wfe ,,  is  connected and  )()( fdwd ≥ for all lDEf −∈ . Contrary to the 

assumption, This implies )(HEDE l ⊆− for some component H of  G . Further, since 
lD  is a sls-dominating set of )()( ' HHED sl

l ϑ∈I . Hence  ,)( φ=HED l
I  which 

implies that )( FE − is a proper sub graph of H. 
 
Theorem 2.13. Let G be a finite graph of order n, and GC  denote the set of its 

components. Then  

                                             

{ }.)()(max)( '' HHEqG sl
CH

sl
G

ϑϑ −−=
∈

  .                                                                              (1)                           

Proof: Let lD  be a )(' Gslϑ  G. By lemma 2.12 it follows that there exists GCH ∈ . such 

that ).(HEDE l ⊆−  Clearly  )()( ' HHED sl
l ϑ∈I  and since   

            
)()( HEqHEDD ll −+= I                                                                         (2) 

We have )()()( '' HHEqG slsl ϑϑ +−≥ ⇒ { })()(max)( '' HHEqG slsl ϑϑ −−≥          (3) 

On the other hand,   

)()()( '' HGEqG slsl ϑϑ −−≤  ⇒ { })()(max)( '' HHEqG slsl ϑϑ −−≥                        (4) 

From inequalities [3] and [4], we have  { })()(max)( '' HHEqG sl
CH

sl
G

ϑϑ −−=
∈

  

In the remaining discussion of this paper,  a graph G always means a separable graph. 
            

Observation 2.15. If G is separable graph with sls-dominating set  S. Then lDBI  is a 

sls-dominating set of  B for any block GBB∈  . (where BG  is the set of all blocks.) 

Proof: Let  lDBBT I−⊆ .  Then that  lDET −⊆  and  lD   is a slsd-set. Therefore  

there exists lDe∈  such that  ).(eNT ⊆ Hence e is adjacent to more than one edge in B 

and ).()()( GTttded ∈∀≥  i.e. lDBe I∈ . Therefore  lDBI  is a slsd-set of  B. 
 

Observation 2.16. If a block B has a slsd-set 'B containing all cut edge belonging to B
Then ')( BBE U−  is a slsd- set . 
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Remark 2.17. If lD  is an )(' Gslϑ set of separable graph, then there are two cases: 

i) Dsl (G:X) = { })(:)( BEDEwithBBaGDD l
Gsl

l ⊆−∈∃∈       

ii) Dsl (G:Z) = { }blocksdifferentofedgescontainDEGDD l
sl

l −∈ :)(  

 
Definition 2.18. Let G=(V,E)  be any graph with cut vertices, ∈lD Dsl (G) and  

)(BEDE l ⊆− , 

                       Define { })(()(:),( BEDeNDEeDBL lll
II−∈=  . 

 

Remark 2.19. If φ≠),( lDBL  then ∈lDBE I)(  Dsl (B). This yields, lDBI

).(' Bslϑ<  This, in fact, we have  

                           )()(),( '' GnGDBL sl
l ∆−=⇒≠ ϑφ    

 
Theorem 2.20. If  φ≠),( lDBL  , then  slsl kqG −=)('ϑ  . where 

{ })()(max ' BBEk slsl ϑ−= .   

Proof: Let  φ≠),( lDBL    implies lDBI  is a  slsd set of  B and hence  
l

sl DBB I≤)('ϑ  Also  l
sl DBB I≥)('ϑ . For,  if  l

sl DBB I≤)('ϑ , then 

 ')( BBE U−  is a slsd set of G where )('' BB slϑ= . Then  

lD ')()()( BBEDBBE l
UIU −≥−= . That is, there exists a slsd set 

')( BBE U−  of  G with cardinality less than equal to lD   which is a contradiction. 

Hence 
 l

sl DBB I≥)('ϑ .  Therefore,  l
sl DBB I=)('ϑ . Hence 

)()()(' ll
sl DBBEDG IU−==ϑ  = slkqBBE −≥− ')( U .  

Therefore,  slsl kqG −=)('ϑ .    
 
Remark 2.21. 
i) Dsl(G:X1)  denotes the set of all slsd-set F of G with )(BEDE l ⊆−  and 

φ≠),( lDBL   for some B�BG. 

ii) Dsl(G:X1)  denotes the set of all slsd-set F of G with .),()( φ≠−− FBLFE  

Theorem 2.21. Dsl(G;X1) ≠ Ø  if and only if  .1)(' +≤∆ slkG  

Proof: Let  ∈lD  Dsl(G;X1) ≠ Ø ),Then by definition of Dsl(G:X1) there exist GBB∈   

such that  )(BEDE l ⊆−  for some block B of G  and  φ≠),( lDBL  , Also, 
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lDBE I)(  is slsd-set  of ).,( lDBLB − By the definition of ),( lDBL , one can easily 

see that { }eDBE l
UI ))(( , ),( lDBLe∈  is a slsd-set for B so that   

                                           1)(' +≤ l
sl DBB Iϑ                                                             (1) 

          Also,           )(' BDB sl
l ϑ≤I                                                                                (2) 

   For otherwise, { } )()()( ' GBEGE slϑU−  would be a slsd-set of G having less than 
lD  edges contrary to the fact lD  is a )(' Gslϑ  By (1) and (2) . We get 

                                    )(1)( '' BDBB sl
l

sl ϑϑ ≤≤− I                                                   (3) 

Now, .1)()()( ' −+−≥+−= BBEnDBBEnD sl
ll ϑI

 
That is  

1)()()( '' −+−≥∆− BBEnGn slϑ                               

Or, equivalently, .11)()()( '' +≤+−≤∆ slsl kBBEG ϑ Thus, we  have  Dsl(G;X1) ≠ Ø,

{ }1,' +∈∆⇒ slsl kk  .  
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