Annals of Pure and Applied Mathematics Vol. 14, No. 1, 2017, 39-44 ISSN: 2279-087X (P), 2279-0888(online) Published on 25 June 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n1a5

Line Set Dominating Set with Reference to Degree

P.Solai Rani¹ and R.Poovazhaki²

¹Department of Mathematics, R.V.S.College of Arts and Science, Sulur Coimbatore Tamil Nadu, India Corresponding author. Email: prsolairani@gmail.com ²Principal, E.M.G.Yadava Women's College, Madurai, Tamil Nadu, India Email: rpoovazhaki@yahoo.co.in

Received 12 May 2017; accepted 2 June 2017

Abstract. A set $D^{l} \subseteq E(G)$ is said to be a Strong Line Set Dominating set (*slsd*-set) of G. If for every set $R \subseteq E - D^{l}$. There exists an edge $e \in D^{l}$, such that the sub graph $\langle R \cup \{e\} \rangle$ is induced by $R \cup \{e\}$ is connected and $d(e) \ge d(f)$ for all $f \in R$ where d(e) denote the degree of the edge. The minimum cardinality of a *slsd*-set is called the strong line set dominating number of G and is denote by $\vartheta_{sl}^{'}(G)$. In this paper Strong Line set Dominating set are analyse with respect to the strong domination parameter for separable graphs. The characterization of separable graphs with *slsd* number is derived.

Keywords: Separable graph, line set dominating set, strong line set dominating set.

AMS Mathematics Subject Classification (2010): 05C69

1. Introduction

Domination is an active subject in graph theory. Let G = (V, E) be a graph. A set $D \subseteq V(G)$ of vertices in a graph G = (V, E) is a dominating set. if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of dominating set in G. A dominating set D is called a minimal dominating set if no proper subset of D is a dominating set [3, 4].

Let G = (V, E) be a graph. A set $F \subseteq E(G)$ is an edge dominating set of G. if and only if every edge in E-F is adjacent to some edge in F. The edge domination number $\gamma'(G)$ is the minimum of cardinalities of all edge dominating sets of G.[4]

A dominating set S is a strong dominating set if for every vertex u in V-S, There is a vertex v in S with $deg(v) \ge deg(u)$ and u is adjacent to v [1, 2].

Let G be a graph. A set $D \subseteq V(G)$ is a point set dominating set (PSD-set) of G. if for each set $S \subseteq V - D$, there exists a vertex $u \in D$ such that the sub graph $\langle S \cup \{u\} \rangle$ induced by $S \cup \{u\}$ is connected. The point set domination number (PSD-number) $\gamma'_{v}(G)$ of G is the minimum cardinalities of all PSD-Set of G.[6]

P.Solai Rani and R.Poovazhaki

Let G be a graph. A set $D \subseteq V(G)$ is said to be a strong point set dominating set (spsd-set) of G. if for each set $S \subseteq V - D$, there exists a vertex $u \in D$ such that the sub graph $\langle S \cup \{u\} \rangle$ induced by $S \cup \{u\}$ is connected and $d(u) \ge d(s)$ for all $s \in S$ where d(u) denote the degree of the vertex u. The Strong point set domination number (spsd) $\gamma'_{sp}(G)$ of G is the minimum cardinalities of all spsd-set [7, 8].

Rao and Vijayalakmi introduced the concept of Line set domination set and derived results parallel to those of Sampathkumar and Pushpalatha [5].

Let G be a graph. A set $F \subseteq E(G)$ is a line set dominating set (lsd-set) of G, if for each set $S \subseteq E - F$, there exists an edge $e \in F$ such that the sub graph $\langle S \cup \{e\} \rangle$ is induced by $S \cup \{e\}$ is connected. The line set domination number $v'_{l}(G)$ (lsd-number) is the minimum cardinalities of all lsd-set of G.

Let x,y in E(G) of an isolates free graph G(V,E), then an edge x, e-dominates an edge if y in $\langle N(x) \rangle$. A line graph L(G) is the graph whose vertices corresponds to the edges of G and two vertices in L(G) are adjacent iff the corresponding edges in G are adjacent (V(L(G))=q). For any edge e, let

 $N'(e) = \{e \in F : e \text{ and } f \text{ have a vertex in common}\}$

and $N'[e] = N'(e) \bigcup \{x\}$. For a set $F \subseteq E(G)$ Let $N'(F) = \bigcup N'(e)$. The degree of an edge e=uv of G is defined by deg(e) = deg(u) +deg(v)-2. The maximum and minimum degree among the edge of graph G is denote by $\Delta'(G)$ and $\lambda(G)$ (the degree of an edge is the number of edges adjacent to it) A connected graph with at least one cut edge is called a separable graph. That is an edge e such that $G = \{E - \{e\}\}$ is disconnected [4].

2. Results and bound

Definition 2.1. A set $D^{l} \subseteq E(G)$ is said to be a strong line set dominating set (*slsd*-set) of G. If for every set $R \subseteq E - D^{l}$. There exists an edge $e \in D^{l}$, such that the sub graph $\langle R \cup \{e\} \rangle$ is induced by $R \cup \{e\}$ is connected and $d(e) \ge d(f)$ for all $f \in R$ where d(e) denote the degree of the edge. The minimum cardinality of a *slsd*-set is called the Strong Line Set Dominating Number of G and is denote by $\vartheta_{sl}^{'}(G)$.

Theorem 2.2. If a connected graph G with n edge, then

 $\vartheta'(G) \le \vartheta'_{l}(G) \le \vartheta'_{sl}(G) \le q - \Delta'(G)$ where $\Delta'(G)$ is the maximum degree of G.

Proof: Since every slsd-set of G is line set dominating set and we known that every line set dominating set of G is a edge dominating set of G and Let e be a edge of maximum degree $\Delta'(G)$. Then e is adjacent to N'(e), such that $\Delta'(G) = N'(e)$. Hence E - N'(e) is a slsd- set. Therefore $\vartheta_{sl}'(G) \le |E - N'(e)|$. Hence

$$\vartheta(G) \le \vartheta_l(G) \le \vartheta_{sl}(G) \le q - \Delta(G).$$

In this next result, we list the exact values of $\vartheta_{sl}(G)$ for some standard graphs.

Line Set Dominating Set with Reference to Degree

Observation 2.3. For any complete graph K_n , then

$$\vartheta_{ls}^{'}(G) = \begin{cases} \frac{n}{2} & \text{for any positive even integer} \\ \frac{n-1}{2} & \text{for any positive odd integer} \end{cases}$$

Observation 2.4. For any star K_1 , n-1, then

$$\vartheta_{sl}(K_{1,n-1})=1.$$

Observation 2.5. For any path P_n , then

$$\vartheta_{sl}^{'}(P_{n}) = \begin{cases} 1 & n = 3, 4 \\ 3 & n = 5 \\ n - 3 & n \ge 6 \end{cases}$$

Observation 2.6. For any cycle C_n, then

$$\vartheta_{sl}^{'}(C_n) = \begin{cases} 1 & n = 3 \\ 2 & n = 4,5 \\ n-2 & \text{for any positive int } eger n \ge 6 \end{cases}.$$

Observation 2.7. If $(K_{n,m})$ is a complete bi-partite graph of m, n>2 vertices, then

$$\vartheta_{sl}^{'}(K_{n,m}) = \begin{cases} \frac{m+n}{2} & \text{for } m = n \\ \frac{m+n-1}{2} & \text{for } m < n \end{cases}.$$

In the next result, Strong line set dominating set in graph G is the Strong Point set dominating number of the line graph L(G).

Observation 2.8. For any path P_n , for any positive integer $n \ge 5$ vertices $\vartheta_{sl}(P_n) = \gamma_{sl}(L(P_n) = \gamma_{sl}(P_{n-1}) = n - 3.$

Observation 2.9. For any cycle C_n , for any positive integer $n \ge 5$ vertices $\vartheta_{sl}(C_n) = \gamma_{sp}(L(C_n) = \gamma_{sp}(C_n)$.

Observation 2.10. For any star $K_{1,n}$ for any positive integer with $n \ge 2$ vertices $\vartheta_{sl}^{'}(L(K_{1,n})) = \vartheta_{sl}^{'}(K_{n-1}).$

P.Solai Rani and R.Poovazhaki

Theorem 2.11. Let G be a connected graph and $D^{l} \subseteq E(G)$ be a strong line set dominating set of G. then for every subset $R \subseteq E - D^{l}$ in $\bigcup_{e \in D^{l}} \langle N^{'}(e) \rangle$. There exists an edge $e \in D^{l}$, such that $\langle E - N(r) \rangle$ for all $r \in R$ is maximal edge dominating set.

Lemma 2.12. Let G(V, E) be any graph and D^{l} be any strong line set dominating set. Then $(E - D^l)$ is a proper sub graph of a component H(G).

Proof: Suppose there exists e and f belonging to two different components of G. Since D^{l} is a strong line set dominating set of G. There must exists $w \in D^{l}$, such that $\langle e, f, w \rangle$ is connected and $d(w) \ge d(f)$ for all $f \in E - D^{l}$. Contrary to the assumption, This implies $E - D^{l} \subseteq E(H)$ for some component H of G. Further, since D^{l} is a sls-dominating set of $D^{l} \cap E(H) \in \vartheta_{sl}^{l}(H)$. Hence $D^{l} \cap E(H) = \phi$, which implies that (E - F) is a proper sub graph of H.

Theorem 2.13. Let G be a finite graph of order n, and C_G denote the set of its components. Then

$$\vartheta_{sl}^{'}(G) = q - \max_{H \in C_{G}} \left\{ E(H) - \vartheta_{sl}^{'}(H) \right\}$$
(1)

Proof: Let D^l be a $\vartheta_{sl}(G)$ G. By lemma 2.12 it follows that there exists $H \in C_{G}$ such that $E - D^{l} \subseteq E(H)$. Clearly $D^{l} \cap E(H) \in \vartheta_{sl}(H)$ and since

$$\left|D^{l}\right| = \left|D^{l} \cap E(H)\right| + q - \left|E(H)\right|$$

$$\tag{2}$$

We have $\vartheta_{el}(G) \ge q - |E(H)| + \vartheta_{el}(H) \Longrightarrow \vartheta_{el}(G) \ge q - \max\{E(H) - \vartheta_{el}(H)\}$ (3) On the other hand,

$$\vartheta_{sl}^{'}(G) \le q - \left| E(G) - \vartheta_{sl}^{'}(H) \right| \implies \vartheta_{sl}^{'}(G) \ge q - \max\left\{ E(H) - \vartheta_{sl}^{'}(H) \right\}$$

$$\tag{4}$$

From inequalities [3] and [4], we have $\vartheta_{sl}^{'}(G) = q - \max_{H \in C_G} \left\{ E(H) - \vartheta_{sl}^{'}(H) \right\}$ In the remaining discussion of this paper, a graph G always means a separable graph.

Observation 2.15. If G is separable graph with sls-dominating set S. Then $B \cap D^{l}$ is a sls-dominating set of B for any block $B \in B_G$ (where B_G is the set of all blocks.)

Proof: Let $T \subseteq B - B \cap D^{l}$. Then that $T \subseteq E - D^{l}$ and D^{l} is a *slsd*-set. Therefore there exists $e \in D^{l}$ such that $T \subseteq N(e)$. Hence e is adjacent to more than one edge in B and $d(e) \ge d(t)$ $\forall t \in T(G)$, i.e. $e \in B \cap D^{l}$. Therefore $B \cap D^{l}$ is a *slsd*-set of B.

Observation 2.16. If a block B has a slsd-set B containing all cut edge belonging to BThen $(E-B) \cup B'$ is a slsd-set.

Line Set Dominating Set with Reference to Degree

Remark 2.17. If D^{l} is an $\vartheta_{d}(G)$ set of separable graph, then there are two cases:

- *i*) $\mathcal{D}_{sl}(G:X) = \left\{ D^l \in D_{sl}(G) : \exists a \ B \in B_G \ with \ E D^l \subseteq E(B) \right\}$
- *ii*) $\mathcal{D}_{sl}(G:Z) = \left\{ D^l \in D_{sl}(G): E D^l \text{ contain edges of different blocks} \right\}$

Definition 2.18. Let G=(V,E) be any graph with cut vertices, $D^l \in \mathcal{D}_{sl}$ (G) and $E - D^l \subseteq E(B)$,

Define
$$L(B, D^l) = \left\{ e \in E - D^l : \mathcal{N}(e) \cap (D^l \cap E(B)) \right\}$$
.

Remark 2.19. If $L(B, D^{l}) \neq \phi$ then $E(B) \cap D^{l} \in \mathcal{D}_{sl}$ (B). This yields, $|B \cap D^{l}| < \vartheta_{sl}^{\prime}(B)$. This, in fact, we have

$$L(B, D^{l}) \neq \phi \Longrightarrow \vartheta_{sl}(G) = n - \Delta(G)$$

Theorem 2.20. If $L(B, D^l) \neq \phi$, then $\vartheta_{sl}(G) = q - k_{sl}$. where $k_{sl} = \max\{E(B) - \vartheta_{sl}(B)\}.$

Proof: Let $L(B, D^l) \neq \phi$ implies $B \cap D^l$ is a slsd set of B and hence $\vartheta_{sl}(B) \leq |B \cap D^l|$ Also $\vartheta_{sl}(B) \geq |B \cap D^l|$. For, if $\vartheta_{sl}(B) \leq |B \cap D^l|$, then

 $(E-B) \bigcup B'$ is a slsd set of G where $|B'| = \vartheta_{sl}(B)$. Then

 $|D^{l}| = (E - B) \bigcup (B \cap D^{l}) \ge |(E - B) \bigcup B^{'}|$. That is, there exists a slsd set $(E - B) \bigcup B^{'}$ of G with cardinality less than equal to $|D^{l}|$ which is a contradiction. Hence

$$\begin{split} \vartheta_{sl}^{'}(B) &\geq \left| B \cap D^{l} \right|. \text{ Therefore, } \vartheta_{sl}^{'}(B) = \left| B \cap D^{l} \right|. \text{ Hence} \\ \vartheta_{sl}^{'}(G) &= \left| D^{l} \right| = \left| (E - B) \bigcup (B \cap D^{l}) \right| = \left| (E - B) \bigcup B^{'} \right| \geq q - k_{sl}. \end{split}$$
Therefore, $\vartheta_{sl}^{'}(G) = q - k_{sl}.$

Remark 2.21.

- i) $\mathcal{D}_{sl}(G:X_1)$ denotes the set of all slsd-set F of G with $E D^l \subseteq E(B)$ and
 - $L(B, D^{l}) \neq \phi$ for some $B \in \mathcal{B}_{G}$.
- ii) $\mathcal{D}_{st}(G:X_1)$ denotes the set of all slsd-set F of G with $(E-F) L(B,F) \neq \phi$.

Theorem 2.21. $\mathcal{D}_{sl}(G; X_1) \neq \emptyset$ if and only if $\Delta'(G) \leq k_{sl} + 1$.

Proof: Let $D^{l} \in \mathcal{D}_{sl}(G;X_{1}) \neq \emptyset$), Then by definition of $\mathcal{D}_{sl}(G;X_{1})$ there exist $B \in B_{G}$ such that $E - D^{l} \subseteq E(B)$ for some block B of G and $L(B, D^{l}) \neq \emptyset$, Also,

P.Solai Rani and R.Poovazhaki

 $E(B) \cap D^{l}$ is slsd-set of $B - L(B, D^{l})$. By the definition of $L(B, D^{l})$, one can easily see that $(E(B) \cap D^{l}) \cup \{e\}, e \in L(B, D^{l})$ is a slsd-set for B so that

$$\vartheta_{sl}^{'}(B) \le \left| B \cap D^{l} \right| + 1 \tag{1}$$

Also,
$$|B \cap D^l| \le \vartheta_{sl}(B)$$
 (2)

For otherwise, $\{E(G) - E(B)\} \cup \vartheta_{sl}^{'}(G)$ would be a slsd-set of G having less than $|D^{l}|$ edges contrary to the fact D^{l} is a $\vartheta_{sl}^{'}(G)$ By (1) and (2). We get

$$\vartheta_{sl}^{'}(B) - 1 \le \left| B \cap D^{l} \right| \le \vartheta_{sl}^{'}(B) \tag{3}$$

Now, $|D^{l}| = n - |E(B)| + |B \cap D^{l}| \ge n - |E(B)| + \vartheta_{sl}(B) - 1$. That is $n - \Delta'(G) \ge n - |E(B)| + \vartheta_{sl}(B) - 1$

Or, equivalently, $\Delta'(G) \leq |E(B)| - \vartheta_{sl}(B) + 1 \leq k_{sl} + 1$. Thus, we have $\vartheta_{sl}(G;X_1) \neq \emptyset$, $\Rightarrow \Delta' \in \{k_{sl}, k_{sl} + 1\}$.

Acknowledgement. The authors are graceful to the referees and editors whose valuable suggestions resulted in a better organized and improved paper.

REFERENCES

- 1. B.D.Acharya and P.Gupta, On point-set domination in graphs, in; *Proc. Nat. Seminar on Recent Development in Mathematics*, N.M. Bujurke (Ed.), Karnataka University Press, Dharwad, 1996,106-108.
- 2. B.D.Acharya and P.Gupta, On point set domination in graphs: IV Separable graphs with unique minimum psd-sets, *Discrete Mathematics*, 195 (1999) 1-13.
- 3. F.Harary, Graph theory, Addison Wesley, 1969.
- 4. T.Haynes, S.T.Hedetniemi and P.J.Slater, *Fundamentals of domination in graphs*, Marcel Dekker Inc, New York, 1998.
- 5. I.H.Nagaraja Rao and B.VijayaLaxami, *Line set domination number of a graph, Indian J. Pure Appl. Math.*, 30(7) (1999) 709-713.
- 6. E. Sampathkumar and L. Pushpalatha, *Point set domination number of a graph*, *Indian J. Pure Appl. Math.*, 24(4) (1993) 225 229.
- 7. E.Sampathkumar, *Graph Theory Research Report No:3*, Karnatak University, Dharwad, 1972.
- 8. E.Sampathkumar and L.Pushpalatha, Strong weak domination and domination balance in a graph, *Discrete Math.*. 161 (1996) 235-242.
- 9. H.B.Walikar, B.D.Acharya and E.Sampathkumar, *Recent advances in the theory of domination in graphs and its applications*, MRI Lecture Notes in Mathematics, Allahabad, No. 1, 1979.