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Abstract.  It is shown for all primes   p ≥ 2  and  y = 1,  that for each and every value  x  ≥  
1,  the  title  equation  has  infinitely  many  solutions.  When   x  is even, then for  p = 2, 
3,  the equation has exactly one solution in which   q  is prime, and  in all other solutions 
when   p ≥ 2    q  is composite.  When  x  is odd, then for  p ≥ 2  the equation has 
solutions in which  q  is either prime or composite. Numerical solutions are also exhibited 
for   p ≥ 2   with odd and even values  x.  
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1.   Introduction 
The field of Diophantine equations is very old, very large, and no general method exists 
to decide whether a given Diophantine equation has any solutions, or how many 
solutions.  In most cases, we are reduced to study individual equations, rather than classes 
of equations.   
       The literature contains a very large number of articles on non-linear such individual 
equations involving primes and powers of all kinds.  Among them are for example [1, 3, 
4, 5, 7, 8, 10, 13].   The title equation stems from   px + qy = z2. 
       In this paper we discuss solutions to the Diophantine equation   
                                                               px + qy = z4                                                          (1) 
for  all primes  p ≥ 2  when  q  is odd,  prime or composite, and  x, y, z  are positive 
integers.  
       In  Section 2  for  p = 2  with  y = 1,  and in  Section 3  for all primes  p ≥ 3  with  y = 
1,  the infinitude of solutions for each and every integer  x ≥ 1  is established. 
       In both Sections  2  and  3,  we consider even values  x  as  x  =  2n,  whereas odd 
values  x  as  x  =  2n + 1  when  n ≥ 1  is an integer.  Although, in some places we could 
use  x  even  or  x  odd  instead of  x  =  2n  or  x  =  2n + 1,  for the sake of uniformity of 
each theorem the notation is kept throughout.    
 
2.    The equation   px + qy =  z4  when  p = 2 and  y = 1 
In this case our main interest is to determine the solutions of this equation and in 
particular when  q  is prime. Nevertheless, solutions in which   q  is composite are also 
established. This is done in the following  Theorem  2.1.    
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Theorem  2.1.   Suppose in equation  (1)  p = 2  and   y = 1. Then the equation  

                                                         2x + q  =  z4                                                          (2) 
has:  
(a)     For  each  and every even value  x  exactly  one  solution  in  which   q  is prime,  
         and infinitely many solutions in which   q  is composite. 
(b)    For each and every odd  value  x  infinitely many solutions in which  q  is  prime  
         or composite. 
Proof:  A priori   q  is odd,  therefore  z  ≥ 3  is odd.    
(a)  Suppose that  x  is even.  Denote  x = 2n  where  n ≥ 1  is an integer. From  (2)  we 
have   
                                                         22n + q =  z4                                                               (3) 
implying that  q =  z4 -  (2n)2  = (z2 – 2n)(z2 + 2n).  If  q  is prime, then  z2 – 2n = 1  and  z2 + 
2n = q.  Since  z2 – 2n = 1  yields  z2 – 1 = (z – 1)(z + 1) = 2n,  it  follows  that  the  only 
solution of this equation is  z = 3 and   n = 3. Hence, for  x = 6 and  q = 17  prime  

26 + 17 = 34 
is the only solution of equation  (3)  when  x  ≥  2  is even and  q  is prime. 
       As a consequence, in every other solution of equation (3), the value q is  composite. 
 
       We will now show that for each and every value  n  equation  (3)  has infinitely many 
solutions.  Let  n ≥ 1  be any fixed value, and hence  22n  is fixed.  For each fixed value  

22n,  denote by  z  the smallest possible value  z,  such that  z 4  exceeds  22n  for the first 

time.  Respectively, denote   q  = z 4 - 22n.  For each value  z ,  there exist  infinitely  

many  consecutive  odd  values   z  > z ,  and  respectively odd values   

q > q ,  such that equation  (3)  is satisfied.  Thus, the fixed value  n  implies the existence 
of infinitely many solutions to equation  (3).  Since we consider each and every value  n ≥ 
1,  it therefore follows that equation  (3)  has infinitely many solutions for each and every 
value  n ≥ 1  in which   q  is composite as asserted. 

       It is noted that in the solution   26 + 17 = 34,  q = 17 and  z = 3. 
 
       The  above  argument  may  now  be  illustrated  for example in the cases:  n = 1 (x = 
2),   n = 2 (x = 4)  and   n = 3 (x = 6).  
 

  n = 1: 22 + 77     =  34 z = 3  q  = 77 composite. 

 22 + 621   =  54  z = 5  q  = 621 composite. 
     
  n = 2: 24 + 65     =  34 z = 3  q  = 65 composite. 

   24 + 609   =  54  z = 5  q  = 609 composite. 
 24 + 2385 =  74  z = 7  q  = 2385 composite. 
     
  n = 3: 26 + 561   =  54  z = 5  q  = 561 composite. 

 
       Part  (a)  is complete.   
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(b)   Suppose that  x  is odd.  If  x = 1,  we have from equation  (2)    
2 + q  =  z4. 

For each and every odd value  z ≥ 3, certainly there exists an odd value  q  so that the 
above equation is satisfied. For the first five odd consecutive values  z,  we demonstrate 
the following five solutions, namely: 

2 + 79 = 34,         2 + 2399 = 74,         2 + 14639 = 114, 
and  79,  2399,  14639  are primes.  Whereas 

2 + 623 = 54,           2 + 6559 = 94, 
and   623,  6559  are composites. 
Hence,  when  x = 1,  equation  (2)  has infinitely many solutions in which  q  is either 
prime or composite. 
       If  x > 1, denote  x = 2n + 1  where  n ≥ 1  is an integer.  From  (2)  we have  
                                                         22n+1 + q = z4,                                                            (4) 
where  q,  z  are odd.  The proof that equation  (4)  has infinitely many solutions for each 
and every value  n  is the same as the proof of equation  (3)  when  x = 2n (2n is replaced 
by 2n +1), with one distinction, namely: the prime  q  occurs more than once.   
       We exhibit this case for the following two values  n  = 1 (x = 3) and  n = 2 (x = 5).  
 

  n = 1 : 23 + 73     =  34 z = 3  q  = 73 prime. 

 23 + 617   =  54  z = 5  q  = 617 prime. 
 23 + 2393 =  74  z = 7  q  = 2393 prime. 

 
  n = 2 : 25 + 49     =  34 z = 3  q  = 49 composite. 

 25 + 593   =  54  z = 5  q  = 593 prime. 
 25 + 2369 =  74  z = 7  q  = 2369 composite. 

 
       Evidently,  equation  (4)  has infinitely many  solutions  for  each and every value  

 n ≥ 1.  For any given value  n ≥ 1  in equation  (4),  the question  when is  q  or  q  equal 
to a prime is still unsettled.          
 
       This concludes part  (b),  and the proof of  Theorem  2.1.                    □ 
 
Remark  2.1.   Following  part  (b) of  Theorem 2.1., we  conjecture that for each odd 
 value  z ≥ 3, there  exists at least one odd value x and  q  prime satisfying  2x + q =  z4. 
   
3.    The equation   px + qy =  z4  when  p ≥ 3  is prime and  y = 1 
In the following  Theorem 3.1., we consider the equation  px + qy =  z4  when  p ≥ 3  is 
prime and  y = 1.  The infinitude of solutions for each and every fixed prime  p ≥ 3  with 
every value  x ≥ 1  is established.   
 
Theorem  3.1.   Let  y  = 1  in equation  (1).  The equation   
                                                         px + q =  z4              p ≥ 3    is prime                         (5) 
for each and every prime  p ≥ 3  has: 
(a)   For each and every even value x  exactly one solution when p = 3  and   q  prime, 
        and infinitely many solutions in which   q  is composite.  
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(b)   For each and every odd value  x  infinitely many solutions in which   q  is prime   
       or composite. 
Proof:   The value   q  is odd,  therefore  z  ≥  2  is even. 
(a)   Suppose that  x  is even.  Denote  x = 2n  where  n ≥ 1 is an integer. From (5) we  
have   
                                                          p2n + q =  z4,                                                             (6) 
and  hence  q  =  z4 - (pn)2  =  (z2 - pn)( z2 + pn).  If  q  is  prime, it  follows  that   z2 - pn  = 
1  and   z2 + pn  =  q.  When  z2 - pn  = 1,  then   z2 – 1 =  pn   or   (z – 1)(z + 1) =  pn.  Let  c  
be a  non-negative  integer.  Denote  z – 1 =  pc  and  z + 1 = pn-c.  Then we obtain  pc ∙ (pn-

2c  - 1) = 2  where  n > 2c.  Hence,  pc  =  1 or  pc  =  2.  If  pc  =  1, then  c  =  0  and  z  =  
2.  Thus,  z + 1 = 3  =  pn  implies  that   p = 3  and   n = 1.  The case   pc  =  2  is 
impossible. 
       For all primes  p ≥ 3,  x  =  2n, and  q  is prime, equation (6) has  the only solution  p  
=  3,  n  =  1 (x =2),   q  =  7  and   z  =  2,  namely: 

32  +  7  =  24. 
 
       Except for the above values, for all other values   p ≥ 3  and  n  ≥ 1,  the value  q  in 
equation  (6)  is composite. The first few such numerical solutions are:  
32 + 247 = 44,       34 + 175 = 44,       52 + 231 = 44,        54 + 671 = 64,     72 + 207 = 44. 
Evidently, equation  (6)  has  infinitely many solutions with   q  composite as asserted. 
       This concludes part  (a).  
 
(b)   Suppose  that  x  is odd.  If   x  =  1,  we have from equation  (5)  

p + q =  z4. 
Certainly, for each and every fixed prime  p ≥ 3,  there exists a value  q   prime or 
composite, such that the above equation is satisfied.  The solutions for the first three 
consecutive primes  p  with primes  q  and the respective values  z  =  2, 4, 6  are:  
                         3 + 13  =  24,            5 + 251  =  44,             7 + 1289  =  64. 
Whereas,  for   p = 3, 5, 7   and   q  is composite, we have: 
                         3 + 253 = 44,            5 + 9995  =  104,         7 + 9 = 24. 
Thus, for each and every prime  p ≥ 3,  the above equation has infinitely many solutions 
in which  q  is either prime or composite. 
       If   x  > 1,  denote  x  =  2n + 1  where  n  ≥ 1  is an integer.  From  (5)  we have  
                                                        p2n+1  +  q  =  z4.                                                         (7) 
We will show that equation  (7)  has infinitely many solutions for every prime  p  with 
each and every value  n.  Let   p  and   n   be any fixed values.  Thus  p2n+1  is fixed.  For 

each fixed value  p2n+1,  denote by  z   the smallest possible value  z,  such that  z 4  

exceeds  p2n+1  for the first time.  Respectively, denote  q  = z 4 -  p2n+1.  For each value 

z , there exist infinitely many consecutive even values  z  > z ,  and respectively odd 

values  q > q ,  so that equation  (7)  is satisfied.  Hence, for the fixed prime  p,  the fixed 
value  n  implies that there exist infinitely many solutions to equation  (7).  Since we 
consider the infinite set of all primes  p ≥ 3,  and the infinite set of all values  n ≥ 1,  it 
follows for every prime  p  with each and every value  n,  that equation  (7)  has infinitely 
many solutions.  The value  q   is either prime or composite.   
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       The above argument may now be illustrated for example in the following three 
solutions of   p2n+1  +  q  =  z4   when  p = 5  is fixed,  and   n = 1, 2, 3  (x = 3, 5, 7).   

    n = 1:       53 + 131 = 44             z  =  4,          q  = 131          prime.  

    n = 2:       55 + 971 = 84             z  =  8,          q  = 971          prime. 

    n = 3:       57 + 26851 = 184       z  =  18,        q  = 26851      composite.   
Hence, for each and every fixed prime   p ≥ 3  and  n = 1, 2,…,k,…,  there exist infinitely 

many respective values  z ≥ z   satisfying equation  (7)  in which the value  q  ≥ q    is 
either prime or composite.   
       For   p ≥ 3  and  x ≥ 1,  the question when is  q  prime or composite  is not pursued 
here since it is beyond the scope of our study.   
       This completes the proof of  part  (b)  and of Theorem 3.1.                 □ 
 
4.   Conclusion    
In the following six solutions the value  q  is prime.   
31 + 13 = 24,  33 + 229 = 44,  35 + 13 = 44,   51 + 11 = 24,  53 + 131 = 44,  55 + 971 = 84. 
Two questions may now be raised. 
 
Question  1.   Does    px + q = z4    has at least  one solution for  each and every  prime  
 p ≥ 3,   x ≥ 1 odd  and   q  prime  ? 
The answer is affirmative for   p = 3, 5, 7.   

 
Question  2.    Does  px + q = z4  has a solution for any fixed prime  p ≥ 3,  with each and 
every odd   x ≥ 1  and   q  prime  ?   
The answer is affirmative for   p = 5  when  x = 1, 3, 5.   
  
       We presume that other interesting questions concerning equation (1) may be raised. 
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