Annals of Pure and Applied Mathematics Vol. 14, No. 1, 2017, 63-68 ISSN: 2279-087X (P), 2279-0888(online) Published on 6 July 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n1a8

Annals of **Pure and Applied Mathematics**

On Solutions to the Diophantine Equation $p^x + q^y = z^4$

Nechemia Burshtein

117 Arlozorov Street, Tel Aviv 6209814, Israel Email: anb17@netvision.net.il

Dedicated to Ali Burshtein

Received 17 June 2017; accepted 4 July 2017

Abstract. It is shown for all primes $p \ge 2$ and y = 1, that for each and every value $x \ge 2$ 1, the title equation has infinitely many solutions. When x is even, then for p = 2, 3, the equation has exactly one solution in which q is prime, and in all other solutions when $p \ge 2$ q is composite. When x is odd, then for $p \ge 2$ the equation has solutions in which q is either prime or composite. Numerical solutions are also exhibited for $p \ge 2$ with odd and even values x.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is very old, very large, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are for example [1, 3, 4, 5, 7, 8, 10, 13]. The title equation stems from $p^{x} + q^{y} = z^{2}$.

In this paper we discuss solutions to the Diophantine equation

 $p^x + q^y = z^4$ for all primes $p \ge 2$ when q is odd, prime or composite, and x, y, z are positive integers.

In Section 2 for p = 2 with y = 1, and in Section 3 for all primes $p \ge 3$ with y = 11, the infinitude of solutions for each and every integer $x \ge 1$ is established.

In both Sections 2 and 3, we consider even values x as x = 2n, whereas odd values x as x = 2n + 1 when $n \ge 1$ is an integer. Although, in some places we could use x even or x odd instead of x = 2n or x = 2n + 1, for the sake of uniformity of each theorem the notation is kept throughout.

2. The equation $p^x + q^y = z^4$ when p = 2 and y = 1

In this case our main interest is to determine the solutions of this equation and in particular when q is prime. Nevertheless, solutions in which q is composite are also established. This is done in the following Theorem 2.1.

Nechemia Burshtein

Theorem 2.1. Suppose in equation (1) p = 2 and y = 1. Then the equation $2^x + q = z^4$ (2)

has:

- (a) For each and every even value x exactly one solution in which q is prime, and infinitely many solutions in which q is composite.
- (b) For each and every odd value x infinitely many solutions in which q is prime or composite.

Proof: A priori q is odd, therefore $z \ge 3$ is odd.

(a) Suppose that x is even. Denote x = 2n where $n \ge 1$ is an integer. From (2) we have

 $2^{2n} + q = z^4$ (3) implying that $q = z^4 - (2^n)^2 = (z^2 - 2^n)(z^2 + 2^n)$. If q is prime, then $z^2 - 2^n = 1$ and $z^2 + 2^n = q$. Since $z^2 - 2^n = 1$ yields $z^2 - 1 = (z - 1)(z + 1) = 2^n$, it follows that the only solution of this equation is z = 3 and n = 3. Hence, for x = 6 and q = 17 prime $2^6 + 17 = 3^4$

is the only solution of equation (3) when $x \ge 2$ is even and q is prime.

As a consequence, in every other solution of equation (3), the value q is composite.

We will now show that for each and every value n equation (3) has infinitely many solutions. Let $n \ge 1$ be any fixed value, and hence 2^{2n} is fixed. For each fixed value 2^{2n} , denote by \overline{z} the smallest possible value z, such that \overline{z}^4 exceeds 2^{2n} for the first time. Respectively, denote $\overline{q} = \overline{z}^4 - 2^{2n}$. For each value \overline{z} , there exist infinitely many consecutive odd values $z > \overline{z}$, and respectively odd values $q > \overline{q}$, such that equation (3) is satisfied. Thus, the fixed value n implies the existence

of infinitely many solutions to equation (3). Since we consider each and every value $n \ge 1$, it therefore follows that equation (3) has infinitely many solutions for each and every value $n \ge 1$ in which q is composite as asserted.

It is noted that in the solution $2^6 + 17 = 3^4$, $\overline{q} = 17$ and $\overline{z} = 3$.

The above argument may now be illustrated for example in the cases: n = 1 (x = 2), n = 2 (x = 4) and n = 3 (x = 6).

<i>n</i> = 1:	$2^2 + 77 = 3^4$	$\overline{z} = 3$	$\bar{q} = 77$	composite.
	$2^2 + 621 = 5^4$	<i>z</i> = 5	<i>q</i> = 621	composite.
<i>n</i> = 2:	$2^4 + 65 = 3^4$	$\overline{z} = 3$	$\bar{q} = 65$	composite.
	$2^{4} + 609 = 5^{4}$ $2^{4} + 2385 = 7^{4}$	z = 5 $z = 7$	$\begin{array}{l} q = 609 \\ q = 2385 \end{array}$	composite. composite.
<i>n</i> = 3:	$2^6 + 561 = 5^4$	<i>z</i> = 5	<i>q</i> = 561	composite.

Part (a) is complete.

On Solutions to the Diophantine Equation $p^{x} + q^{y} = z^{4}$

(b) Suppose that x is odd. If x = 1, we have from equation (2)

$$2+q = z$$

For each and every odd value $z \ge 3$, certainly there exists an odd value q so that the above equation is satisfied. For the first five odd consecutive values z, we demonstrate the following five solutions, namely:

 $2+79=3^4$, $2+2399=7^4$, $2+14639=11^4$, and 79, 2399, 14639 are primes. Whereas $2+623=5^4$, $2+6559=9^4$,

and 623, 6559 are composites.

Hence, when x = 1, equation (2) has infinitely many solutions in which q is either prime or composite.

If
$$x > 1$$
, denote $x = 2n + 1$ where $n \ge 1$ is an integer. From (2) we have $2^{2n+1} + q = z^4$.

(4)

where q, z are odd. The proof that equation (4) has infinitely many solutions for each and every value n is the same as the proof of equation (3) when x = 2n (2n is replaced by 2n + 1), with one distinction, namely: the prime q occurs more than once.

We exhibit this case for the following two values n = 1 (x = 3) and n = 2 (x = 5).

<i>n</i> = 1 :	$2^{3} + 73 = 3^{4}$ $2^{3} + 617 = 5^{4}$	$\overline{z} = 3$ z = 5	$\overline{q} = 73$ q = 617	prime. prime.
	$2^3 + 2393 = 7^4$	<i>z</i> = 7	q = 2393	prime.
n = 2:	$2^5 + 49 = 3^4$	$\overline{z} = 3$	$\overline{q} = 49$	composite.
	$2^{5} + 593 = 5^{4}$ $2^{5} + 2369 = 7^{4}$	z = 5 $z = 7$	$\begin{array}{l} q = 593 \\ q = 2369 \end{array}$	prime. composite.

Evidently, equation (4) has infinitely many solutions for each and every value $n \ge 1$. For any given value $n \ge 1$ in equation (4), the question when is \overline{q} or q equal to a prime is still unsettled.

This concludes part (**b**), and the proof of Theorem 2.1.

Remark 2.1. Following part (b) of Theorem 2.1., we conjecture that for each odd value $z \ge 3$, there exists at least one odd value x and q prime satisfying $2^x + q = z^4$.

3. The equation $p^x + q^y = z^4$ when $p \ge 3$ is prime and y = 1In the following Theorem 3.1., we consider the equation $p^x + q^y = z^4$ when $p \ge 3$ is prime and y = 1. The infinitude of solutions for each and every fixed prime $p \ge 3$ with every value $x \ge 1$ is established.

Theorem 3.1. Let y = 1 in equation (1). The equation $p^{x} + q = z^{4}$ $p \ge 3$ is prime (5) for each and every prime $p \ge 3$ has:

(a) For each and every even value x exactly one solution when p = 3 and q prime, and infinitely many solutions in which q is composite.

Nechemia Burshtein

(b) For each and every odd value x infinitely many solutions in which q is prime or composite.

Proof: The value q is odd, therefore $z \ge 2$ is even. (a) Suppose that x is even. Denote x = 2n where $n \ge 1$ is an integer. From (5) we have

nave $p^{2n} + q = z^4,$ (6) and hence $q = z^4 - (p^n)^2 = (z^2 - p^n)(z^2 + p^n)$. If q is prime, it follows that $z^2 - p^n = 1$ 1 and $z^2 + p^n = q$. When $z^2 - p^n = 1$, then $z^2 - 1 = p^n$ or $(z-1)(z+1) = p^n$. Let c be a non-negative integer. Denote $z - 1 = p^c$ and $z + 1 = p^{n-c}$. Then we obtain $p^c \cdot (p^n - 2)$. 2^{c} - 1) = 2 where n > 2c. Hence, $p^{c} = 1$ or $p^{c} = 2$. If $p^{c} = 1$, then c = 0 and z = 02. Thus, $z + 1 = 3 = p^n$ implies that p = 3 and n = 1. The case $p^c = 2$ is impossible.

For all primes $p \ge 3$, x = 2n, and q is prime, equation (6) has the only solution p = 3, n = 1 (x = 2), q = 7 and z = 2, namely: $3^2 + 7 = 2^4$

Except for the above values, for all other values $p \ge 3$ and $n \ge 1$, the value q in equation (6) is composite. The first few such numerical solutions are: $3^{2} + 247 = 4^{4}$, $3^{4} + 175 = 4^{4}$, $5^{2} + 231 = 4^{4}$, $5^{4} + 671 = 6^{4}$, $7^{2} + 207 = 4^{4}$. Evidently, equation (6) has infinitely many solutions with q composite as asserted. This concludes part (a).

(b) Suppose that x is odd. If x = 1, we have from equation (5) $p+q=z^4$.

Certainly, for each and every fixed prime $p \ge 3$, there exists a value q prime or composite, such that the above equation is satisfied. The solutions for the first three consecutive primes p with primes q and the respective values z = 2, 4, 6 are:

 $3 + 13 = 2^4$, $5 + 251 = 4^4$, $7 + 1289 = 6^4$.

Whereas, for p = 3, 5, 7 and q is composite, we have: $7 + 9 = 2^4$. $3 + 253 = 4^4$, $5 + 9995 = 10^4$,

Thus, for each and every prime $p \ge 3$, the above equation has infinitely many solutions in which q is either prime or composite.

If
$$x > 1$$
, denote $x = 2n + 1$ where $n \ge 1$ is an integer. From (5) we have

$$q^{n+1} + q = z^4$$
.

 $p^{2n+1} + q = z^4$. (7) We will show that equation (7) has infinitely many solutions for every prime p with each and every value n. Let p and n be any fixed values. Thus p^{2n+1} is fixed. For each fixed value p^{2n+1} , denote by \overline{z} the smallest possible value z, such that \overline{z}^4 exceeds p^{2n+1} for the first time. Respectively, denote $\overline{q} = \overline{z}^4 - p^{2n+1}$. For each value z, there exist infinitely many consecutive even values z > z, and respectively odd values q > q, so that equation (7) is satisfied. Hence, for the fixed prime p, the fixed value n implies that there exist infinitely many solutions to equation (7). Since we consider the infinite set of all primes $p \ge 3$, and the infinite set of all values $n \ge 1$, it follows for every prime p with each and every value n, that equation (7) has infinitely many solutions. The value q is either prime or composite.

On Solutions to the Diophantine Equation $p^{x} + q^{y} = z^{4}$

The above argument may now be illustrated for example in the following three solutions of $p^{2n+1} + q = z^4$ when p = 5 is fixed, and n = 1, 2, 3 (x = 3, 5, 7).

<i>n</i> = 1:	$5^3 + 131 = 4^4$	$\overline{z} = 4,$	$\bar{q} = 131$	prime.
<i>n</i> = 2:	$5^5 + 971 = 8^4$	$\overline{z} = 8$,	$\bar{q} = 971$	prime.
<i>n</i> = 3:	$5^7 + 26851 = 18^4$	$\bar{z} = 18,$	$\overline{q} = 26851$	composite.

Hence, for each and every fixed prime $p \ge 3$ and n = 1, 2, ..., k, ..., there exist infinitely many respective values $z \ge \overline{z}$ satisfying equation (7) in which the value $q \ge \overline{q}$ is either prime or composite.

For $p \ge 3$ and $x \ge 1$, the question when is q prime or composite is not pursued here since it is beyond the scope of our study.

This completes the proof of part (b) and of Theorem 3.1. \Box

4. Conclusion

In the following six solutions the value q is prime. $3^1 + 13 = 2^4$, $3^3 + 229 = 4^4$, $3^5 + 13 = 4^4$, $5^1 + 11 = 2^4$, $5^3 + 131 = 4^4$, $5^5 + 971 = 8^4$. Two questions may now be raised.

Question 1. Does $p^x + q = z^4$ has at least one solution for each and every prime $p \ge 3$, $x \ge 1$ odd and q prime ? The answer is affirmative for p = 3, 5, 7.

Question 2. Does $p^x + q = z^4$ has a solution for any fixed prime $p \ge 3$, with each and every odd $x \ge 1$ and q prime ? The answer is affirmative for p = 5 when x = 1, 3, 5.

We presume that other interesting questions concerning equation (1) may be raised.

REFERENCES

- 1. J.B.Bacani and J.F.T.Rabago, The complete set of solutions of the diophantine equation $p^{x} + q^{y} = z^{2}$ for Twin Primes *p* and *q*, *Int. J. Pure Appl. Math.*,104 (2015) 517 521.
- 2. N.Burshtein, On solutions of the diophantine equation $p^x + q^y = z^2$, Annals of Pure and Applied Mathematics, 13 (1) (2017) 143 149.
- 3. N.Burshtein, On the infinitude of solutions to the diophantine equation $p^x + q^y = z^2$ when p=2 and p=3, Annals of Pure and Applied Mathematics, 13 (2) (2017) 207 210.
- 4. N.Burshtein, On the diophantine equation $p^x + q^y = z^2$, Annals of Pure and Applied Mathematics, 13 (2) (2017) 229 233.
- 5. S.Chotchaisthit, On the diophantine equation $4^x + p^y = z^2$, where p is a prime number, *Amer. J. Math. Sci.*, 1 (1) (2012) 191 193.
- 6. S.Chotchaisthit, On the diophantine equation $2^x + 11^y = z^2$, *Maejo Int. J. Sci Technol.*, 7 (2013) 291 293.

Nechemia Burshtein

- 7. Md. A.- A.Khan, A.Rashid and Md.S.Uddin, Non-Negative Integer solutions of two diophantine equations $2^x + 9^y = z^2$ and $5^x + 9^y = z^2$, *Journal of Applied Mathematics and Physics*, 4 (2016) 762 765.
- 8. B.Poonen, Some diophantine equations of the form $x^n + y^n = z^m$, Acta Arith., 86 (1998) 193 205.
- 9. J.F.T.Rabago, A note on two diophantine equations $17^{x} + 19^{y} = z^{2}$ and $71^{x} + 73^{y} = z^{2}$, *Math. J. Interdisciplinary Sci.*, 2 (2013) 19 24.
- 10. B.Sroysang, More on the diophantine equation $8^x + 19^y = z^2$, Int. J. Pure Appl. Math., 81 (4) (2012) 601 604.
- 11. B.Sroysang, On the diophantine equation $3^x + 17^y = z^2$, Int. J. Pure Appl. Math., 89 (2013) 111 114.
- 12. B.Sroysang, On the diophantine equation $5^x + 7^y = z^2$, Int. J. Pure Appl. Math.,89 (2013) 115 118.
- 13. A.Suvarnamani, Solutions of the diophantine equation $2^x + p^y = z^2$, Int. J. Math. Sci. Appl., 1 (3) (2011) 1415 1419.
- 14. A.Suvarnamani, Solution of the diophantine equation $p^x + q^y = z^2$, Int. J. Pure Appl. Math., 94 (4) (2014) 457 460.
- 15. A.Suvarnamani, On the diophantine equation $p^x + (p+1)^y = z^2$, Int. J. Pure Appl. Math., 94 (5) (2014) 689 692.
- 16. A.Suvarnamani, A.Singta and S.Chotchaisthit, On two diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, *Science and Technology RMUTT Journal*, 1 (1) (2011) 25 28.