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Abstract. Circulant graphs are an important class of topological structures of 
interconnection networks which have been used for decades in the design of computer 
and telecommunication networks due to their optimal fault tolerance and routing 
capabilities. In this paper, we consider the problem of embedding the circulant networks 
into gear and helm graphs to minimize the wirelength. 
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1. Introduction 
The geometrical structure of any communication system including internet is based on 
graph. The logical setup of a computer is designed with the help of graph [13]. An 
interconnection network can be modelled as a graph. It consists of hardware and software 
entities that are interconnected to facilitate efficient computation and communication. 
These entities can be in the form of processors, processes, memory modules or computer 
systems. In other words, an interconnection network of a system provides logically a 
specific way in which all components of the system are connected. In this, the simulation 
of one architecture by another is important. The problem of simulating one network by 
another is modelled as a graph embedding problem. The need for efficient embedding 
stems from at least two different directions. If a network A can be embedded in a network 
B, then all the algorithms developed for parallel processing with network A can be easily 
transported onto another processor network B. Secondly, mapping parallel algorithms 
onto parallel architectures often leads to embedding of the control or data flow graphs of 
the algorithms into the underlying graph of the network. While the general problem of 
graph embedding is difficult, by exploiting the special structure of the interconnection 
schemes, a number of results relating to optimal embedding of one class of networks into 
another have been developed. Embedding the structures may result in substantial savings 
in communication time. The transmission delay is an important measure for the global 
communication efficiency of an interconnection network. 

Circulant graphs are an important class of topological structures of interconnection 
networks which have been used for decades in the design of computer and 
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telecommunication networks due to their optimal fault tolerance and routing capabilities. 
They also constitute the basis for designing certain data alignment networks for complex 
memory systems. Undirected circulant networks arise in the context of Mesh Connected 
Computer suited for parallel processing of data, such as the well-known ILLIAC type 
computers. By using circulant graph, we can adapt the performance of the network to the 
user needs. 

The quality of an embedding can be measured by certain cost criteria, namely 
dilation, expansion, congestion and wirelength. The dilation of an embedding is the 
maximum distance between the images of adjacent nodes. It is the measure for the 
communication time needed when simulating one network on another. The bandwidth is 
the dilation if the host graph is a path. The expansion of an embedding  f  is the ratio of 
the number of vertices of H to the number of vertices of G.  
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Figure 1: Circulant graph G(8; {1, 2, 3}) 

 
The congestion of an embedding f of G into H is the maximum number of edges of 

the graph G that are embedded on any single edge of H and the wirelength is nothing but 
the congestion sum. The problem of embedding is NP-complete[6]. 

There are several results on the congestion problem of various architectures such as 
complete trees in hypercubes [1], hypercubes into grids [2], ladders and caterpillars into 
hypercubes [3], binary trees into hypercubes [4], complete binary trees into grids and 
extended grids with total vertex congestion 1 [12], incomplete hypercube in books [5], m-
sequencialk-ary trees into hypercubes [15], ternary tree into hypercube [7], enhanced and 
augmented hypercube into complete binary tree [9], embeddings of circulant networks 
[14] and hypercubes into cylinders, snakes and caterpillars [10] . 

In this paper, we consider the problem of embedding the circulant networks into gear 
and helm graphs to minimize the wirelength. 
 
2. Basic concepts 
In this section, we discuss the preliminaries required for this paper. 
 
Definition 2.1. [2] Let G and H be finite graphs with n vertices. V (G) and V (H) denote 
the vertex sets of G and H respectively. E (G) and E (H) denote the edge sets of G and H 
respectively. An embedding f of G into H is defined as follows: 
(i) fis a injective map from V (G) → V (H) 
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(ii) Pf is an injective map from E (G) to {Pf( f (u), f (v)) : Pf( f (u), f (v)) is a path in H 
between f (u) and f (v)}. The graph G that is being embedded is called a virtual graph or a 
guest graph and H is called a host graph. Some authors use the name labeling instead of 
embedding.  
 
Definition 2.2. [2] The edge congestion of an embedding f of G into H is the maximum 
number of edges of the graph G that are embedded on any single edge of H. Let ECf(G, 
H(e)) denote the number of edges (u, v) of G such that e is in the path Pf  (u, v) between f 
(u) and f (v) in H. In other words, 

ECf(G, H(e)) = ����, �	 ∈ ���	: � ∈  ����, �	�� 
where Pf  (u, v) denotes the path between f (u) and f (v) in H with respect to f. 

The edge congestion problem of a graph G into H is to find an embedding of G 
into H that induces EC(G, H).  
 
Definition 2.3. [11] The wirelength of an embedding  f of G into H is given by  ���(�, �	 = ∑ ������	, ���		 =  ∑ �����, ���		� ∈ ���	��,�	 ∈ �� 	  
where������	, ���		 denotes the length of the path Pf (u, v) in H. Then the wirelength of 
G into H is defined as,  �� ��, �	 = min �����, �	 
where the minimum is taken over all the embeddings. 
 
Definition 2.4. [14, 16] A circulant undirected graph, denoted by G(n;±S) where 

S⊆{1,2,· ··, %&'(}, n ≥ 3 is defined as a graph consisting of the vertex set V = {0, 1, · · ·,n 

− 1} and the edge set E = {( i, j) : |j − i| ≡ s (mod n), s∈S}. See Figure 1. 
 
Definition 2.5. [8] A wheel graph Wn of order n is a graph that contains an outer cycle of 
order n − 1, and for which every vertex in the cycle is connected to one other vertex 
(which is known as the hub). The edges of a wheel which include the hub are called 
spokes. See Figure 2(a). This plays an important role in the circuit layout and 
interconnection network designs. 
 
Definition 2.6. [8] A gear graph, denoted by Gn is a graph obtained by inserting an extra 
vertex between each pair of adjacent vertices on the perimeter of a wheel graph Wn. Thus, 
Gn has 2n + 1 vertices and 3n edges. Gear graphs are also known as cogwheels and 
bipartite wheels. See Figure 2(b). 

 
Definition 2.7. [8] The helm graph Hn is the graph obtained from an wheel graph Wn, by 
adjoining a pendent edge at each node of the cycle. See Figure 2(c). 
 
Lemma 2.8. (Congestion lemma) [11] Let G be an r-regular graph and f be an embedding 
of G into H. Let S be an edge cut of H such that the removal of edges of S leaves H into 2 
components H1 and H2 and let G1 = f−1(H1) and G2 = f−1(H2). Also S satisfies the following 
conditions: 
(i) For every edge �), *	  ∈  �+ , , =  1, 2, �� �� �)	, � �*		 has no edges in S. 
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(ii) For every edge �), *	 in G with ) ∈ �/and * ∈  �', �� �� �)	, � �*		 has exactly one 
edge in S. 
(iii) G1 is a maximum subgraph on k vertices where k= |V(G1)|. 
Then ECf (S) is minimum and ECf (S) = 01 −  2 |���/	|.  
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Figure 2:(a) Wheel graph (b) Gear graph (c) Helm graph 
 
Lemma 2.9. (Partition lemma) [11] Let f:G→ H be an embedding. Let {S1, S2, ...,Sp} be a 
partition of E(H) such that each Si is an edge cut of H. Then, 

�����, �	  =  4 ����5+	.
7

+8/ 
 

Lemma 2.10. (k-Partition Lemma) [11] Let f:G→H be an embedding. Let [kE(H)] denote 
a collection of edges of H with each edge in H repeated exactly k times. Let {S1, S2, ...,Sp} 
be a partition of [kE(H)] such that each Si is an edge cut of H. Then 

�����, �	  =  11 4 ����5+	.
7

+8/ 
 

3. Embedding algorithms 
Theorem 3.1. [14] The number of edges in a maximum subgraph on k vertices of 
G(n;±S), S={1, 2, · · ·, j}, 1 ≤ j ≤ ⌊n/2⌋, n ≥ 3 is given by, 

; =
<=
>
=?

1�1 −  1	2 , 1 ≤  A +  1
1A − A�A +  1	2 , A +  1 <  1 ≤  D −  A

E12F G�D −  1	H +  �4A +  1	1 − �2A +  1	DJ, D −  A < 1 ≤  D
K 

 
Theorem 3.2. [14] A set of k consecutive vertices of G(n;±1), 1≤k≤n induces a maximum 
subgraph of G(n; ±S) where S = {1, 2, · · ·, j}, 1 ≤ j ≤ ⌊n/2⌋, n ≥ 3. 
 
Embedding Algorithm A 
Input: A circulant network, G(2n + 1; {1, 2, · · ·, j}), 1 ≤ j ≤ ⌊n/2⌋, n ≥ 3 and a gear 
graph, G2n+1 
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Output: An embedding f of G(2n+ 1;{1,2,·  ·  ·, j}) into G2n+1 given by f(x) =x with 
minimum wirelength. 
Algorithm: Label the consecutive vertices of G(2n+ 1;{1,2,· · ·, j}), 1≤j≤⌊n/2⌋, n≥3 as 0, 
1, ..., 2n in the clockwise sense. Label the outer cycle vertices of G2n+1 as 0, 1, ..., 2n − 1 
and label the hub vertex as 2n. 
 
Proof of correctness of Algorithm A 
Let Si={(2i−2,2i−1), (2i+ 1,2i+ 2), (2n,2i)}, 1≤i≤n where the labels are taken mod (2n) 
except the label of the hub vertex be the edge cuts of the given graph. The edge sets 
namely {(2i−2,2i−1),(2i+ 1,2i+ 2), (2n,2i)}, 1≤i≤n constitutes all the edges of G2n+1. Thus 
{ Si,: 1 ≤ i ≤ n} is a partition of [E(G2n+1)]. Thus {S1, S2, · · ·, Sn} is a partition of 
[E(G2n+1)]. See Figure 3(a). For each i, E(G2n+1 \Si) has two components Hi1 and Hi2. 
Without loss of generality, let Hi1 = {( i, i + 1), (i + 1, i + 2)}. Let Gi1 = f−1(Hi1) and Gi2 = f 
−1(Hi2). Then Gi1 induces an edge of G which by Theorem 3.2 is an optimal set. Thus each 
Si satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore, ECf (Si) is 
minimum. The Partition Lemma implies that the wirelength is minimum. 
 

The proof of the following theorem is an easy consequence of Embedding Algorithm 
A. 
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Figure 3(a): Edge cuts of gear graph 

Theorem 3.3. The exact wirelength of G(2n+ 1;{1,2,· · ·, j}) into G2n+1, n≥3, is given by 
W L(G(2n+ 1;{1,2,· · ·, j}), G2n+1) = 2(3nj –ξ). 

 
Embedding Algorithm B 
Input: A circulant network, G(2n+ 1;{1,2,· · ·, j}), 1 ≤ j ≤ ⌊n/2⌋, n ≥ 3 and a helm graph, 
H2n+1. 
Output: An embedding f of G(2n+ 1;{1,2,· · ·,j}) into H2n+1 given by f(x) =x with 
minimum wirelength. 
Algorithm: Label the consecutive vertices of G(2n+ 1;{1,2,·  · ·, j}),1≤j≤⌊n/2⌋, n≥3 as 0, 
1, ..., 2n in the clockwise sense. Label the vertices of H2n+1 as follows: 

(i) Label the pendant vertices consecutively as 0, 2, ..., 2n − 2 in the clockwise sense. 
(ii)  Label the vertices on the cycle consecutively as 1, 3, ..., 2n − 1 in the clockwise 

sense. 
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(iii)  Label the hub vertex as 2n. 
 

Proof of correctness of Algorithm B 
Let Si={(2 i−2,2i−1)}, 1≤i≤n, and let Si

′={(2 i−1,2i+ 1), (2i+3, 2i + 5), (2n, 2i + 1), (2n, 2i 
+ 3)}, 1 ≤ i ≤ n, where the labels are taken mod(2n), except the label of the hub vertex be 
the edge cuts of the given graph. The edge set {Si, (2i − 1, 2i + 1), (2n, 2i + 1) : 1 ≤ i ≤ n} 
constitutes all the edges of H2n+1 exactly once. Similarly, the edge set {Si, (2i+ 3, 2i+ 5), 
(2n, 2i+ 3) : 1 ≤ i ≤ n} constitutes all the edges of H2n+1 exactly once. Thus {Si, Si

′ : 1 ≤ i ≤ 
n} is a partition of [2E(H2n+1)]. See Figure 3(b). For each i, 1 ≤ i ≤ n, E(H2n+1\Si) has two 
components Hi1 and Hi2. Without loss of generality, let Hi1 = {(2i − 2)}. Let Gi1 = f−1(Hi1) 
and Gi2 = f −1(Hi2). Then Gi1 induces an edge of G which by Theorem 3.2 is an optimal 
set. Thus each Si satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. 
Therefore, ECf (Si) is minimum. Similarly, for each i, 1 ≤ i ≤ n, E(H2n+1\Si

′) has two 
components Hi

′
1 and Hi

′
2. Without loss of generality, let Hi

′
1 = {(2i, 2i + 1), (2i + 2, 2i + 

3)} for 1 ≤ i ≤ n. Let G′
i1 = f−1(Hi

′
1) and G′

i2 = f −1(Hi
′
2). Then G′

i1 induces an edge of G 
which by Theorem 3.2 is an optimal set. Thus each Si

′ satisfies conditions (i), (ii) and (iii) 
of the congestion lemma. Therefore, ECf (Si

′) is minimum. The 2-Partition Lemma 
implies that the wirelength is minimum. 
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Figure 3(b): Edge cuts of helm graph 

The proof of the following theorem is an easy consequence of Embedding Algorithm B. 
 
Theorem 3.4.The exact wirelength of G(2n+ 1;{1,2,· · ·, j}) into H2n+1, n≥3, is given by 

WL(G(2n + 1; {1, 2, · · ·, j}), H2n+1 ) = 6jn – ξ. 
 
4. Conclusion 
In this paper, we have produced the exact wirelength of circulant network on certain 
wheel related graphs namely, gear and helm graphs. 
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