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1. Introduction

In the huge field of Diophantine equations, no gahmethod exists to decide whether a
given Diophantine equation has any solutions, @v hwany solutions. In most cases, we
are reduced to study individual equations, rathan classes of equations.

The literature contains a very large nuntdfearticles on non-linear such individual
equations involving primes and powers of all kindgnong them are for example [1, 3,
4,5,6,9, 11, 13]. The title equation stems frggh+ o = Z.

In this paper, the values y, are fixed positive integers. Our main
objective revolves around the existence and thebeumf solutions of the equation

pPProf=2.

2. Themain result
In this section, we determine all the solosiof the equationp® + gf =2, where
p, 0, z, and all other values represent positive integénis is done in Theorem 2.1.

Theorem 2.1. Suppose thatp is prime andq > 1. Then the equation
pPP+g’=2 (1)
has exactly four solutions in all of whiclp = 7. In one solutionq is prime, and in all
other solutions q is composite.
Proof: From (1) we obtain
¢ =2 -p’=(z-p)(p* +pz+2). )

Denote z—p=T where T > 1. Substitutingz = p+T into (2) resultsin

q*=T (3 +3PpT + T), 3)
We distinguish two cases for which equality (3pynbe satisfied, namely: (i) Wheh
>1 and B°+ 3pT + T? are squares simultaneously. (i) Wh&n>1 and 8*+
3pT + T? are not necessarily squares simultaneously.

We will now show that case (i) is actuathpossible.

207



Nechemia Burshtein

(i) Supposethal >1 and B>+ 3pT + T? are squares simultaneously. Denote
T=U? and §°+3pT + T2 = V2 Then

P +U?) = V2 - (U = (V- UV + ). (4)

It follows from (4) that p divides at least one of the value¥ -(U?), (V + U?. We
will now show that this statement does not hold.
If p|V-U?, denotepRr=V-U? or V= pR+ U%. Thenfrom (4) we have
3p(p +U?) = pRE+ 2pRU* + (U?)? - (U?)?

p(R?—3) + pU¥2R-3) = 0
which is impossible for all valueR. Hence pt (V - U?).

or

or

If p|(V+U?, denote pS = V+U? or V=pS-U% From (4) we obtain
pA(S-3)-pu¥2S+3) = 0
implying
25+3
u?- : 5
3 5)

The divisors of p are 1 and p, and sinceT > 1 thereforeT =U? >1 orU > 1.

2
Then from (5) it follows that: either (a):g—s:l and B5+3=p, or (h)U=p

ang U253 _ p@S+3
S°-3 S°-3
= 3 has the only solutiond =1 and S= 2 which is impossible. If (b), then

2
=1.If (a), then%zl or U= -3. But §-U?

2 _ 2 _
w =lorp= S -3 which is impossible sinceu is never an integer.
S°-3 2S+3 2S+3

Thus pt(V+U?, and case (i) is complete.

(i) Suppose that T >1 and P?+ 3pT + T? are not necessarily squares
simultaneously. In equality (3) setp?3 3pT + T as
3p®+ 3T + T = TA? (6)
for some valueA which guarantees that equality (3) is indeesquaref’= (TA)%
Then, from (6) it follows thafl | 3% The valueT may assume all possible divisors of
3p% namely:T=1,T=3, T=p, T=3, T=p% T=3p% The six cases are considered

separately.
The caseT =1. Substituting T=1 in (3) yields
o= P+ 3p+ 1, (7
from which

F-1=6-1)@+1)=P(p+1).
Therefore, eitherp| (@—-1) or p|(@+ 1). Note thatp # 2.

If p|@-1),denoteBp= q—1 whereB> 1. Substituting g=Bp+ 1 into (7)
results in
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B+ 2Bp+1= *°+3p+1,
and after simplifications implies thap = Z;ﬁ The term 3: 2B

is negative for

all valuesB > 1, and therefore is impossible. Thyst (q— 1) andp | (+ 1).
If p|] @+ 1), denoteCp=q+1 whereC>1. Theng= Cp-1, and from (7) it
follows that

q*=(Cp-1f=Cp*-20p+1=3°+3p+ L (8)
After simplifications of (8), one obtains that
_ 2C+3
Cc?-3

Evidently, the only value thalC may assume i€ = 2. Hence,C =2 yields
2(2+3

2° -3
a solution of equation (1).

=7 =p. Thevaluesp=7,g=2p-1=13 prime,and=p+1=8 form

The caseT =1 is complete.

The caseTl = 3. From (3) we obtaig® = 3(P*+ P + 9) or ¢° = F(p° + 3p + 3)

implying that p®+ 3p+ 3 must equal a square, sAy. If p>+ 3p+ 3 = A% then
A*- pP=(A-p)(A+p) =3[ +1). 9)
We now show that 3#A(—p) and 3tA+p) implyingthat T#3. If 3| A-p),
denote ® = A—pwhereD > 1. Hence, from (9) B(A+p)=3p+ 1) orD(A+p) =
p+ 1. Since A>p, this equality is impossible and &H{p). If 3|@A+p) then
3E = A+p. We have from (9) that E3- 20)3E=3p + 1) or (E—2pE=p+ 1.
3E* -1

2E+1
integer, and therefore it follows that 3 <€ p). HenceT # 3.

As an immediate consequence, it follows fbatevery primep, p>+ 3 + 3 is
never equal to a square.

The caseT =p. With T=p in (3), we obtaing® = p(7p°) = 7p® implying that
p=7 and ¢° = 7. Hence, the valuep =7, q=7 andz= 2p = 14 yield a solution of
equation (1).

The caseT =3p. When T =3 in (3), theng® = P-21p* = F7p’. Thus,
p=7 and ¢ = 3Fp*=3F7" The valuesp=7, q=37> and z=4p =28 form a
solution of equation (1).

The caseT =p?>. From (3) we have

g’ = p*(3p’ + 3’ +p’) = p'(3+ 3p+p?).
It now follows that the valuep®+ 3p+ 3 must equal a square sy, so that
o = (P°M)% But, p’+ P + 3 # M? as was shown in the cade= 3. ThusT # p°.
The caseT =3p°. From (3) we obtain
q° = 3p°(3p" + 9p + 9p’) = P(L+ 3p+ 3p).
Therefore, the valuep3+ 3p+ 1 must be equal to a square, b8y in order that
o’ = (3°N)2 The value F+ 3p + 1 appears in equality (7) of the cabe 1, and is
indeed equal to a square only wher= 7 for which a solution of equation (1) exists.

Thus, p(2E + 1) = F* -1, and p =

But, this fraction never equals an

209



Nechemia Burshtein

Hence, the valuep = 7,q = 3%(3p° + 3p + 1)**=37%13 andz=p + 3’ = p(3p+l) =
2:7-11 yield a solution to equation (1).

The four solutions of equation (1) haverbestablished and exhibited.
This concludes the proof of Theorem 2.1. O

As a consequence of Theorem 2.1 we have:

Remark 2.1. The unique solution of the squaké = 3’ + 3pT + T> consists of
the valueT =1 and the primesp=7 and K=13.

As a summary, and for the convenience ofélaglers, we now demonstrate the four
solutions in the order of their occurrence.

Solution 1.  7° + 13 = (&3

Solution 2. 72 + (A% = (27)>
Solution 3. 7 + (37%)% = (2%7)%.
Solution 4. 7% + (37%13F = (27-11).

3. Conclusion
We conclude by giving a glimpse on the equatpdn- " =Z whenm=1, 2 and 3.

It is easily seen that infinitely many sabuis exist for the equationp® + q* = Z°
when p is prime andq is prime/composite. Few such examples are:

22+19=8 3+37=4 5+91=8 7+238 =28

In this paper, the equatiqsi + of =Z° yields quite surprisingly only four solutions
in all of which p=7 and in only one of thenmg is prime.

In 1637, Fermat (1601 — 1665) stated thatRiophantine equatiod' + y" = Z',
with integral n> 2, has no solutions in positive integetsy, z. This is known as
Fermat's "Last Theorem". In 1995, 358 yealr]dhe validity of the Theorem was
established and published by A. Wiles. Thus, theaign p®+¢® =7 has no solutions
in positive integersp, g, z
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