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1. Introduction 
In the huge field of Diophantine equations, no general method exists to decide whether a 
given Diophantine equation has any solutions, or how many solutions.  In most cases, we 
are reduced to study individual equations, rather than classes of equations.   
       The literature contains a very large number of articles on non-linear such individual 
equations involving primes and powers of all kinds.  Among them are for example [1, 3, 
4, 5, 6, 9, 11, 13].  The title equation stems from   px + qy = z2. 
       In   this   paper,   the   values   x,  y,   are  fixed  positive  integers.   Our   main  
objective revolves around the existence and the number of solutions  of   the  equation   
p3 + q2 = z3. 
 
2. The main result     
In  this  section,  we  determine  all  the  solutions of the equation    p3 + q2 = z3,  where 
p,  q,  z,  and all other values represent positive integers. This is done in Theorem  2.1. 
 
Theorem  2.1.   Suppose that   p  is  prime and   q > 1. Then the equation  
                                                         p3 + q2 = z3                                                                (1) 
has exactly four solutions in all of which   p = 7.  In one solution  q  is prime, and in all 
other solutions   q  is composite.  
Proof:  From  (1)  we obtain   
                                             q2 = z3 – p3 = ( z - p)(p2 + pz + z2).                                        (2) 
Denote   z – p = T   where   T  ≥ 1.  Substituting   z  =  p + T   into  (2)  results in  
                                                 q2 = T (3p2 + 3pT  +  T2).                                                  (3) 
We distinguish two cases for which equality  (3)  may be satisfied, namely: (i)  When  T  
> 1  and   3p2 + 3pT  +  T2   are squares simultaneously.  (ii)  When  T  ≥ 1  and   3p2 + 
3pT  +  T2  are not necessarily squares simultaneously. 
 
       We will now show that case  (i)  is actually impossible. 



Nechemia Burshtein 

208 
 

       (i)  Suppose that  T  > 1  and   3p2 + 3pT  +  T2  are squares  simultaneously. Denote  
T = U2  and   3p2 + 3pT  +  T2  =  V2.  Then  
 3p2 + 3pT  +  T2  =  3p2 + 3pU2 + (U2)2  =  V2  
or  
                                 3p(p + U2)  =  V2 - (U2)2  = (V - U2)(V + U2).                                   (4) 
 
It follows from  (4)  that   p  divides at least one of the values  (V - U2),  (V + U2).  We 
will now show that this statement does not hold. 
        If   p | (V - U2), denote  pR = V - U2   or   V =  pR +  U2.  Then from  (4)  we have   

3p(p + U2)  =  p2R2 + 2pRU2  +  (U2)2  - (U2)2 
or 

p2(R2 – 3) +  pU2(2R – 3)  =  0 
which  is  impossible for all values  R.   Hence   p ł (V - U2).   
 
       If    p | (V + U2),  denote   pS  =  V + U2   or   V =  pS  - U2.   From   (4)  we obtain 

p2(S2 – 3) -  pU2(2S + 3)  =  0 
implying  

                                                        p  =  U2 · 
3

32
2 −

+
S

S
.                                                     (5) 

The divisors of   p  are 1  and   p,  and since  T  > 1  therefore  T  = U2  > 1  or  U > 1.  

Then from  (5)  it follows that:  either  (a)  1
32

2

=
−S

U
  and  2S + 3 = p,  or  (b)  U = p  

and  
3

)32(

3

)32(
22 −

+=
−
+

S

Sp

S

SU
 = 1. If  (a), then 1

32

2

=
−S

U
 or  U2 = S2 – 3.  But   S2 - U2 

= 3  has  the only  solution  U = 1  and  S = 2  which is impossible. If  (b), then  

1
3

)32(
2

=
−
+

S

Sp
 or  p =  

32

32

+
−

S

S
  which is impossible since  

32

32

+
−

S

S
  is never an integer.  

Thus  p ł (V + U2),  and case  (i)  is complete. 
                                                       
       (ii)  Suppose that   T  ≥ 1  and   3p2 + 3pT  +  T2  are not necessarily squares 
simultaneously.  In equality  (3)  set   3p2 + 3pT  +  T2  as  
                                                   3p2 + 3pT  +  T2 =  TA2                                                                                 (6) 
for  some  value  A  which  guarantees that equality  (3)  is indeed  a square q2 = (TA)2.  
Then, from  (6)  it  follows that  T | 3p2. The value T may assume all possible divisors of  
3p2,  namely:  T = 1,  T = 3,  T = p,  T = 3p,  T = p2,  T = 3p2. The six cases are considered 
separately. 
       The case   T =1.  Substituting   T = 1  in  (3)  yields 
                                                         q2 =  3p2  + 3p + 1,                                                    (7) 
from  which   

q2 – 1 = (q – 1)(q + 1) = 3p(p + 1). 
Therefore,  either   p | (q – 1)  or   p | (q + 1).  Note that   p  ≠  2.   
 
        If   p | (q – 1), denote  Bp =  q – 1  where  B ≥ 1. Substituting   q = Bp + 1  into  (7)  
results in  
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B2p2 + 2Bp + 1 =   3p2  + 3p + 1, 

and after simplifications implies that   p  =  
3

23
2 −
−

B

B
.  The term  

3

23
2 −
−

B

B
  is negative for 

all values  B ≥ 1,  and therefore is impossible. Thus,  p ł (q – 1)  and  p | (q + 1).  
       If  p | (q + 1),  denote  Cp = q + 1  where  C ≥ 1.  Then  q =  Cp – 1,  and from  (7)  it 
follows that  
                             q2 = (Cp – 1)2 = C2p2 - 2Cp + 1 = 3p2  + 3p + 1.                                  (8) 
After simplifications of  (8),  one obtains that 

p =  
3

32
2 −

+
C

C
. 

Evidently, the only value that   C  may assume is  C = 2.  Hence,  C = 2  yields   

32

322
2 −

+⋅
  =  7  =   p.  The values   p = 7,  q = 2p – 1 = 13   prime, and  z = p + 1 = 8  form  

a  solution of equation  (1). 
 
       The case   T = 1  is complete. 
 
       The case  T = 3.  From (3) we obtain q2 =  3(3p2 + 9p + 9) or  q2 = 32(p2 + 3p + 3)  
implying that   p2 + 3p + 3  must equal a square,  say  A2.  If   p2 + 3p + 3  =  A2,  then  
                                           A2 -  p2 = (A - p)(A + p) = 3(p + 1).                                        (9) 
We now show that  3 ł (A – p)  and  3 ł (A + p)  implying that  T ≠ 3.  If   3 | (A – p), 
denote 3D  =  A – p where  D ≥ 1. Hence, from (9)  3D( A + p) = 3(p + 1) or D( A + p)  =  
p + 1.  Since    A > p,  this  equality  is  impossible   and   3 ł (A – p).  If   3 | (A + p)   then  
3E  =  A + p.  We have from  (9)  that  (3E – 2p)3E = 3(p + 1)  or  (3E – 2p)E = p + 1. 

Thus,  p(2E + 1) = 3E2 – 1,  and   p =  
12

13 2

+
−

E

E
.  But, this fraction never equals an 

integer, and therefore it follows that   3 ł (A + p).  Hence  T ≠ 3. 
       As an immediate consequence, it follows that for every prime  p,  p2 + 3p + 3  is 
never equal to a square. 
        The case   T = p.  With   T = p  in  (3),  we obtain  q2 = p(7p2) = 7p3  implying that   
p = 7  and   q2 = 74.  Hence, the values   p = 7,   q = 72  and  z = 2p = 14 yield a solution of 
equation  (1). 
        The case   T = 3p.  When   T  = 3p   in  (3),  then  q2  =  3p·21p2  =  32

·7p3.   Thus,   
p = 7  and   q2 = 32p4 = 32

·74. The values  p = 7,  q = 3·72  and  z = 4p = 28  form a 
solution of equation  (1).         
        The case   T = p2.    From  (3)  we have     

q2 =  p2(3p2 + 3p3 + p4)  =  p4(3 + 3p + p2).  
It  now  follows  that  the  value   p2 + 3p + 3  must  equal  a  square  say  M2,  so  that   
q2 = (p2M)2.  But,  p2 +  3p + 3  ≠  M2  as was shown in the case  T = 3.  Thus  T  ≠  p2.  
       The case   T = 3p2.    From  (3)  we obtain 

q2 = 3p2(3p2 + 9p3 + 9p4) =  9p4(1 + 3p + 3p2). 
Therefore, the  value  3p2 + 3p + 1  must  be  equal  to  a square, say  N2,  in order that   
q2 = (3p2N)2.  The value  3p2 + 3p + 1  appears in equality  (7)  of the case  T = 1,  and is 
indeed equal to a square only when  p = 7  for which a solution of equation  (1) exists. 
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Hence, the values  p = 7, q =  3p2(3p2 + 3p + 1)1/2 = 3·72
·13  and  z = p + 3p2 =  p(3p+1) = 

2·7·11  yield a solution to equation  (1). 
       The four solutions of equation  (1)  have been established and exhibited.  
This concludes the proof of  Theorem 2.1.                                                □ 
       As a consequence of  Theorem 2.1  we have:  
 
Remark  2.1.   The  unique  solution  of the square  K2  =  3p2 + 3pT  +  T2   consists of  
the value  T = 1  and the primes   p = 7  and   K = 13.   
 
       As a summary, and for the convenience of the readers, we now demonstrate the four 
solutions in the order of their occurrence. 
 
Solution  1.       73  +  132  =  (23)3. 
Solution  2.       73  +  (72)2  =  (2·7)3. 
Solution  3.       73  +  (3·72)2  =  (22

·7)3. 
Solution  4.       73  +  (3·72

·13)2  =  (2·7·11)3.                  
 
3. Conclusion 
We conclude by giving a glimpse on the equation  p3 + qm = z3 when  m = 1, 2  and  3.   
       It is easily seen that infinitely many solutions exist for the equation   p3 + q1 =  z3  
when   p  is prime and  q  is  prime/composite.  Few such examples are: 

23  +  19  =  33,       33  +  37  =  43,       53  +  91  =  63,       73  +  386  =  93. 
       In  this  paper, the equation  p3 + q2 = z3  yields quite surprisingly only four solutions 
in all of which   p = 7  and in only one of them   q  is prime. 
       In  1637, Fermat (1601 – 1665) stated that the Diophantine equation xn + yn  =  zn,  
with  integral   n > 2,   has no solutions in positive integers  x,  y,  z.   This is known as  
Fermat's "Last Theorem".  In  1995,  358  years later, the validity of the Theorem was  
established and published by A. Wiles. Thus, the equation   p3 + q3 = z3   has no solutions 
in positive integers   p,  q,  z.   

REFERENCES 

1. J.B.Bacani and J.F.T.Rabago, The complete set of solutions of the diophantine   
equation   px + qy = z2  for twin Primes  p and  q, Int. J. Pure Appl. Math., 104  
(2015) 517 – 521.  

2. N.Burshtein, On the infinitude of solutions to the diophantine equation  px + qy = z2   
when p=2 and  p=3,  Annals of Pure and  Applied  Mathematics, 13 (2) (2017) 207 – 
210. 

3. N.Burshtein,  On the diophantine equation  px + qy = z2, Annals of Pure and Applied   
Mathematics, 13 (2) (2017) 229 – 233. 

4. N.Burshtein,  On solutions to the diophantine equation px + qy = z4, Annals of  Pure 
and Applied  Mathematics, 14 (1) (2017) 63 – 68. 

5. N.Burshtein,  All the solutions of the diophantine equation  p3 + q2 = z2, Annals of 
Pure and Applied Mathematics, 14 (1) (2017) 115 – 117. 

6. S.Chotchaisthit, On the diophantine equation  4x +py = z2, where  p  is a prime 
number, Amer. J. Math. Sci., 1 (1) (2012) 191 – 193. 



All the Solutions of the Diophantine Equation   p3 + q2 = z3 

211 
 

7. S.Chotchaisthit, On the diophantine equation  2x + 11y = z2, Maejo Int. J. Sci 
Technol., 7 (2013)  291 – 293. 

8. Md. A.- A. Khan, A.Rashid and Md. S.Uddin, Non-negative integer solutions of two 
diophantine equations   2x + 9y = z2  and  5x + 9y = z2,  Journal of  Applied  
Mathematics and Physics, 4 (2016) 762 – 765.   

9. B.Poonen, Some diophantine equations of the form  xn + yn = zm, Acta Arith., 86 
(1998) 193 – 205.  

10. J.F.T.Rabago, A note on two diophantine equations  17x + 19y = z2  and 71x + 73y = 
z2, Math. J. Interdisciplinary Sci., 2 (2013) 19 – 24. 

11. B.Sroysang, More on the diophantine equation 8x +19y = z2,  Int. J. Pure Appl. 
Math., 81(4)  (2012) 601 – 604. 

12. B.Sroysang, On the diophantine equation  5x + 7y = z2,  Int. J. Pure Appl. Math.,89 
(2013) 115 – 118. 

13. A.Suvarnamani, Solution of the diophantine equation  px + qy = z2, Int. J. Pure Appl.  
Math., 94 (4) (2014) 457 – 460.  

14. A.Suvarnamani, On the diophantine equation px + (p+1)y = z2, Int. J. Pure Appl.  
Math., 94(5) (2014) 689 – 692.  

 
 
 
 

 


