Annals of Pure and Applied Mathematics Vol. 14, No. 2, 2017, 269-276 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 September 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n2a10

Annals of **Pure and Applied Mathematics**

Generalized Minimal Closed Sets in Bitopological Spaces

Suwarnlatha N. Banasode¹ and Mandakini A.Desurkar²

¹Department of Mathematics K.L.E. Society's, R.L.Science Institute, Belgaum - 590001 E-mail : <u>suwarn_nam@yahoo.co.in</u> ²Department of Mathematics K.L.E. Dr M S Sheshgiri College of Engg. & Tech., Belgaum-590008 ²Corresponding author. E-mail: <u>mdesurkar9@gmail.com</u>

Received 30 July 2017; accepted 10 September 2017

Abstract. In this paper, we introduce and characterize generalized minimal closed sets in bitopological spaces and study some of their properties. A subset A of X is said to be (τ_i, τ_j) - generalized minimal closed (briefly (τ_i, τ_j) - g-m_i closed) set in a bitopological space if τ_j -cl (A) \subseteq U whenever A \subseteq U and U is τ_i - minimal open set in (X; τ_1, τ_2).

Keywords: τ_i minimal open set, τ_i -maximal closed set, (τ_i, τ_j) - g- closed set, (τ_i, τ_j) - ω - closed set, (τ_i, τ_i) - g-m_a open set

AMS Mathematics Subject Classification (2010): 54A05, 54B05

1. Introduction and preliminaries

The triple (X; τ_1 , τ_2) where X is a set and τ_1 and τ_2 are two topologies on X is a bitopological space. Kelly [5] initiated the systematic study of such spaces. After the work of Kelly [5] various authors [2,3,7,8] turned their attention to generalization of various concepts of topology by considering bitopological spaces. The concept of generalized closed sets in bitopological spaces was introduced and investigated by T [7].

Throughout this chapter (X; τ_1 , τ_2) denote non empty bitopological spaces on which no separation axioms are assumed unless otherwise mentioned and the fixed integers i, $j \in \{1,2\}$.

We recall the following definitions, which are useful in the sequel.

Definition 1.1. Let i, $j \in \{1, 2\}$ be fixed integers. In a bitopological space (X; τ_1 , τ_2), a subset A of X is said to be

(i) (τ_i, τ_j) - g-closed set [7] if τ_j -cl (A) \subseteq U whenever A \subseteq U and U is τ_i - open set.

(ii) (τ_i, τ_j) -g-open set iff A^c is (τ_i, τ_j) - g-closed set.

- (iii) (τ_i, τ_j) ω -closed set [6] if τ_j cl (A) \subseteq U whenever A \subseteq U and U is τ_i semi open set in (X, τ).
- (iv) (τ_i, τ_j) ω -open set [6] iff A^c is (τ_i, τ_j) ω -closed set.

Definition 1.2. Let i, $j \in \{1, 2\}$ be fixed integers. In a bitopological space (X; τ_1 , τ_2), a proper nonempty (τ_i , τ_j)-g-open set A of (X; τ_1 , τ_2) is said to be

(i) (τ_i, τ_j) -minimal g-open (resp. (τ_i, τ_j) -minimal g-closed) set if any (τ_i, τ_j) -g-open (respectively (τ_i, τ_j) -g- closed) subset of $(X; \tau_1, \tau_2)$ which is contained in A, is either A or ϕ .

(ii) (τ_i, τ_j) - maximal g-open (resp. (τ_i, τ_j) - maximal g-closed) set if any (τ_i, τ_j) -g- open (respectively (τ_i, τ_i) –g- closed) subset of (X; τ_1, τ_2) which contains A, is either A or X.

2. Generalized minimal closed sets in bitopological spaces

In this section, we introduce and investigate generalized minimal closed sets in bitopological spaces.

Definition 2.1. Let i, $j \in \{1, 2\}$ be fixed integers. In a bitopological space

(X; τ_1 , τ_2), a subset A of X is said to be (τ_i, τ_j) - generalized minimal closed (briefly (τ_i, τ_j) - g-m_i closed) set if τ_j -cl (A) \subseteq U whenever A \subseteq U and U is τ_i - minimal open set in (X; τ_1, τ_2).

Remark 2.2. By setting $\tau_1 = \tau_2$ in the Definition 2.1, a (τ_i, τ_j) - g-m_i closed set is a g-m_i closed set in a topological space.

Theorem 2.3. Let i, $j \in \{1, 2\}$ be fixed integers. Every (τ_i, τ_j) - g-mi closed set in a bitopological space $(X; \tau_1, \tau_2)$ is a (τ_i, τ_j) - g- closed set.

Proof: Let $A \subset X$ be any (τ_i, τ_j) - g-m_i closed set in $(X; \tau_1, \tau_2)$. By Definition 2.1 τ_j -cl (A) $\subseteq U$ whenever $A \subseteq U$ and U is a τ_i - minimal open set. But every minimal open set is an open set. Therefore τ_j -cl (A) $\subseteq U$ whenever $A \subseteq U$ and U is a τ_i -open set. Hence A is a (τ_i, τ_j) - g-closed set in $(X; \tau_1, \tau_2)$.

Remark 2.4. Converse of the Theorem 2.3 need not be true.

Example 2.5. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. (τ_1, τ_2) - g-m_i closed sets: $\{\phi, \{a\}, \{c\}, \{d\}, \{c, d\}\}$. (τ_2, τ_1) - g-m_i closed sets: $\{\phi, \{b\}\}$. (τ_1, τ_2) -g-closed sets = $\{\phi, \{a\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. (τ_2, τ_1) -g-closed sets = $\{\phi, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$

Theorem 2.6. Let i, $j \in \{1, 2\}$ be fixed integers. Every (τ_i, τ_j) - g-m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$ is a (τ_i, τ_j) - ω -closed set. **Proof:** Let $A \subset X$ be any (τ_i, τ_j) - g-m_i closed set in $(X; \tau_1, \tau_2)$. By Definition 2.1 τ_j -cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is a τ_i - minimal open set. But every minimal open set is an open set and hence is a semi open set. Therefore τ_j -cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is a τ_i - minimal open set in $(X; \tau_1, \tau_2)$.

Remark 2.7. Converse of the above Theorem 2.6 need not be true.

Generalized Minimal Closed Sets in Bitopological Spaces

Example 2.8. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{b\}, \{a, b\}, \{c, d\}, \{b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}.$ (τ_1, τ_2) - g-m_i closed sets: $\{\phi, \{c\}, \{d\}, \{c, d\}\}.$ (τ_2, τ_1) - g-m_i closed sets: $\{\phi, \{a\}\}.$ (τ_1, τ_2) - ω -closed sets = $\{\phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ (τ_2, τ_1) - ω -closed sets = $\{\phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, c\}, \{a, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, X\}.$

Proposition 2.9. Let i, $j \in \{1, 2\}$ be fixed integers. If A is a τ_j - minimal closed subset of a bitopological space (X; τ_1 , τ_2), then A is a (τ_i , τ_j)- g-m_i closed set in (X; τ_1 , τ_2). **Proof:** Let $A \subseteq U$, such that U is a τ_i -minimal open set. By hypothesis A is a τ_j - minimal closed subset of (X; τ_1 , τ_2), then A is a τ_j - closed subset of (X; τ_1 , τ_2), so that τ_j -cl(A)=

A. Therefore, τ_j -cl(A) \subseteq A, whenever A \subseteq U and U is a τ_i - minimal open set in (X; τ_1 , τ_2). Hence A is a (τ_i , τ_j)- g-m_i closed set in (X; τ_1 , τ_2).

Remark 2.10. If $\tau_1 \subset \tau_2$ in (X; τ_1 , τ_2) then, (τ_2, τ_1) - g-m_i closed sets $\not\subset$ (τ_1 , τ_2)- g-m_i closed sets.

Example 2.11. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. (τ_1, τ_2)- g-m_i closed sets: $\{\phi, \{a\}, \{c\}, \{d\}, \{c, d\}\}$. (τ_2, τ_1)- g-m_i closed sets: $\{\phi, \{b\}, \{c\}, \{d\}, \{c, d\}\}$.

Theorem 2.12. Let i, $j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j) - g-mi closed set in a bitopological space $(X; \tau_1, \tau_2)$ and $A \subseteq B \subseteq \tau_j$ -cl(A) then B is a (τ_i, τ_j) - g-m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$.

Proof: Let B be any set such that $B \subseteq U$ and U is a τ_i - minimal open set in (X; τ_1 , τ_2). Given that $A \subseteq B \subseteq \tau_i$ -cl (A) (i)

Since $A \subseteq B \subseteq U$, then $A \subseteq U$ where U is a τ_i - minimal open set. But A is a (τ_i, τ_j) - g-m_i closed set, by Definition 2.1, τ_j -cl (A) \subseteq U whenever A \subseteq U and U is a τ_i -minimal open set in (X; τ_1, τ_2) From (i) A \subseteq B $\subseteq \tau_j$ -cl (A), implies B $\subseteq \tau_j$ - cl (A) which implies τ_j -cl (B) $\subseteq \tau_j$ - cl (τ_j -cl (A))= τ_j -cl(A). That is τ_j - cl (B) $\subseteq \tau_j$ -cl (A). But τ_j -cl (A) \subseteq U. Therefore, τ_j - cl (B) \subseteq U whenever B \subseteq U and U is a τ_i - minimal open set in (X; τ_1, τ_2). Hence B is a (τ_i, τ_j)- g-m_i closed set in (X; τ_1, τ_2).

Theorem 2.13. Let i, $j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j) - g-mi closed set in a bitopological space (X; τ_1 , τ_2), then τ_j - cl (A) – A contains no nonempty τ_i - maximal closed subset.

Proof: Let F be a τ_i -maximal closed subset of cl (A) – A. Then F^c is a τ_i -minimal open set. Let A be such that $A \subseteq F^c$ where F^c is a τ_i - minimal open set in (X; τ_1 , τ_2). Since A is a (τ_i , τ_j)- g-m_i closed set, by the Definition 2.1, τ_j - cl (A) \subseteq F^c whenever A \subseteq F^c and F^c is a τ_i - minimal open set in (X; τ_1 , τ_2). So $F \subseteq [\tau_j$ - cl (A)]^c.

On the other hand $F \subseteq \tau_i$ - cl (A). Therefore $F \subseteq [\tau_i$ - cl (A)]^c $\cap \tau_i$ - cl (A) = ϕ .

Therefore $F = \phi$.

Theorem 2.14. Let i, $j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j) - g-m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$, then τ_j - cl (A) – A contains no nonempty τ_i - closed subset.

Proof: Let A be a (τ_i, τ_j) - g-m_i closed set in $(X; \tau_1, \tau_2)$ and F be a nonempty τ_i - closed set contained in τ_j - cl (A)–A. So $F \subseteq \tau_j$ - cl (A)–A = τ_j - cl (A) \cap A^c. Then $F \subseteq \tau_j$ - cl (A) and $F \subseteq A^c$. Now $F \subseteq A^c$ means $A \subseteq F^c$ where F^c is an open set. Since every (τ_i, τ_j) - g-m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$ is a (τ_i, τ_j) - g- closed set, A is a (τ_i, τ_j) - g-closed set. Then by the Definition [7], τ_j - cl (A) \subseteq F^c whenever $A \subseteq F^c$ and F^c is an open set in $(X; \tau_1, \tau_2)$, so that $F \subseteq [\tau_j$ - cl (A)]^c On the other hand $F \subseteq \tau_j$ - cl (A), so that $F \subseteq [\tau_j - \text{cl } (A)]^c \cap \tau_j$ - cl (A) = ϕ .

Corollary 2.15. Let i, $j \in \{1, 2\}$ be fixed integers. A (τ_i, τ_j) - g-m_i closed set A in a bitopological space $(X; \tau_1, \tau_2)$ is τ_j - closed iff τ_j - cl (A) - A is τ_i - closed.

Proof: Let A be any (τ_i, τ_j) - g-m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$ which is a τ_j -closed set so that τ_j -cl (A) = A, then τ_j - cl (A)-A = ϕ . Therefore τ_j - cl (A) – A is a τ_i - closed set.

Conversely, let A be any (τ_i, τ_j) - g-m_i closed set in a bitopological space (X; τ_1, τ_2) such that τ_j - cl (A) – A is a τ_i -closed set. Since τ_j - cl (A)–A is a subset of itself and is a τ_i -closed set, by the Theorem 2.14, τ_j - cl (A)-A = ϕ , so that A = τ_j - cl (A). Therefore A is a τ_i - closed set.

Proposition 2.16. Let i, $j \in \{1, 2\}$ be fixed integers. If A is an τ_i minimal open set and a (τ_i, τ_j) - g- m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$ then A is a τ_j - closed set. **Proof:** Since $A \subseteq A$ and as A is a τ_i -minimal open and a (τ_i, τ_j) - g-m_i closed set, we have cl $(A) \subseteq A$. Therefore τ_j -cl (A) = A. Hence A is a τ_j -closed set.

Theorem 2.17. Let i, $j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j) - g-m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$, then for each $x \in \tau_i$ -cl (A), τ_i -cl $\{x\} \cap A \neq \phi$.

Proof: Let A be any (τ_i, τ_j) -g-m_i closed set in a bitopological space (X; τ_1, τ_2), such that for each $x \in \tau_i$ -cl (A), τ_i -cl {X} $\cap A = \phi$ and $[\tau_i$ -cl{X}]^c is a τ_i -minimal open set. Then

 $A \subseteq [\tau_j\text{-cl}(\{x\})]^c$ where $[\tau_j\text{-cl}(\{x\})]^c$ is a τ_i -minimal open set in $(X; \tau_1, \tau_2)$. But A is a $(\tau_i, \tau_j)\text{-g-m}_i$ closed set. By the Definition $2.1\tau_j\text{-cl}(A) \subseteq [\tau_j\text{-cl}(\{x\})]^c$. This is a contradiction to the fact that $x \in \tau_j\text{-cl}(A)$. Therefore $\tau_j\text{-cl}\{x\} \cap A \neq \phi$.

Lemma 2.18. If $Y \subseteq X$ is any subspace of a bitopological space $(X; \tau_1, \tau_2)$ and U is any τ_i -minimal open set in $(X; \tau_1, \tau_2)$ then $Y \cap U$ is a τ_{i-Y} minimal open set.

Proof: Let U be a τ_i -minimal open set in a bitopological space $(X;\tau_1,\tau_2)$ such that $Y \cap U$ is not a τ_{i-Y} minimal open set in Y. Then there exists an τ_{i-Y} open set $G \neq Y$ in Y such that $G \subseteq Y \cap U$ where $G = Y \cap H$ and H is an τ_i -open set in $(X;\tau_1,\tau_2)$. Now $Y \cap H \subseteq Y \cap U$

Generalized Minimal Closed Sets in Bitopological Spaces

implies $H \subseteq U$. This contradicts the fact that U is a τ_i -minimal open set. Therefore $Y \cap U$ is a τ_{i-Y} minimal open set.

Theorem 2.19. Let i, $j \in \{1, 2\}$ be fixed integers. If $A \subseteq Y \subseteq X$ and A is (τ_i, τ_j) -g-m_i closed set in a bitopological space $(X; \tau_1, \tau_2)$, then A is (τ_i, τ_j) -g-m_i closed relative to Y. **Proof:** Let $\tau_{i} \cdot_Y$ be the restriction of τ_i to Y and O be any τ_i -minimal open set in $(X; \tau_1, \tau_2)$, then by the Lemma 2.18 Y \cap O is $\tau_{i} \cdot_Y$ minimal open set. Let $A \subseteq Y \cap O$, where Y \cap O is a $\tau_{i} \cdot_Y$ minimal open set implies $A \subseteq O$ and O is a τ_i -minimal open set in $(X; \tau_1, \tau_2)$. But A is a (τ_i, τ_j) -g-m_i closed set in $(X; \tau_1, \tau_2)$. By the Definition 2.1 τ_j - cl $(A) \subseteq O$ whenever $A \subseteq O$ and O is a τ_i -minimal open set in $Y \cap \tau_j$ -cl $(A) \subseteq O$ set in Y \cap O that is τ_{j-Y} -cl $(A) \subseteq Y \cap O$ whenever $A \subseteq Y \cap O$ and $Y \cap O$ is a τ_{i-Y} minimal open set in Y. Therefore A is (τ_i, τ_j) -g-m_i closed relative to Y.

Lemma 2.20. If A is a τ_i -minimal open set and B is an τ_i -open set in $(X;\tau_1,\tau_2)$ then either A \cap B= ϕ or A \cap B is a τ_i -minimal open set in $(X; \tau_1, \tau_2)$.

Proof: Let A be any τ_i -minimal open set and B be an τ_i -open set in $(X;\tau_1,\tau_2)$ such that A $\cap B = \phi$, then there is nothing to prove. But if A $\cap B \neq \phi$, then we have to prove that A \cap B is a τ_i -minimal open set in $(X;\tau_1,\tau_2)$. Now A $\cap B \neq \phi$ means A $\cap B \subseteq$ A and A $\cap B \subseteq$ B. For A $\cap B \subseteq$ A and since A is a τ_i -minimal open set, by the definition of a minimal open set, either A $\cap B = \phi$ or A $\cap B = A$. But A $\cap B \neq \phi$, then A $\cap B = A$ which implies that A $\cap B$ is a τ_i -minimal open set in $(X;\tau_1,\tau_2)$.

Theorem 2.21. Let i, $j \in \{1, 2\}$ be fixed integers. If $B \subseteq A \subseteq X$ such that B is (τ_i, τ_j) - g-m_i closed relative to A and that A is an τ_i -open and (τ_i, τ_j) - g-m_i closed set in $(X;\tau_1,\tau_2)$ then B is a (τ_i, τ_j) - g-m_i closed set in $(X;\tau_1,\tau_2)$.

Proof: Let $B \subseteq U$ such that U is a τ_i -minimal open set in $(X;\tau_1,\tau_2)$. Given $B \subseteq A \subseteq X$, so $B \subseteq A \cap U$ and A is an τ_i -open set in X. Then by the Lemma 2.20 $A \cap U$ is a τ_i -minimal open set in X. Now $A \cap U \subseteq A \subseteq X$, then $A \cap U$ is a τ_i -minimal open set in A by the Lemma 2.18. Therefore $B \subseteq A \cap U$ and $A \cap U$ is a τ_i -minimal open set in A. By hypothesis $A \cap \tau_j$ -cl (B) $\subseteq A \cap U$ implies τ_j - cl (B) $\subseteq U$. Hence B is a (τ_i, τ_j) - g-m_i closed set in $(X;\tau_1,\tau_2)$.

Definition 2.22. Let i, $j \in \{1, 2\}$ be fixed integers. In a bitopological space $(X;\tau_1,\tau_2)$, a subset A of X is said to be a (τ_i, τ_j) - generalized maximal open (briefly (τ_i, τ_j) - g- m_a open) set iff A^c is a (τ_i, τ_j) - generalized minimal closed set.

Theorem 2.23. Let i, $j \in \{1, 2\}$ be fixed integers. A subset A of a bitopological space $(X;\tau_1,\tau_2)$ is a (τ_i, τ_j) -g-m_a open set iff $F \subseteq \tau_j$ -int A whenever $F \subseteq A$ and F is a τ_i -maximal closed set in $(X;\tau_1,\tau_2)$.

Proof: Let A be any (τ_i, τ_j) -g-m_a open in $(X;\tau_1,\tau_2)$ such that $F \subseteq A$ and F is a τ_i -maximal closed set in $(X;\tau_1,\tau_2)$, then by the Definition 2.22 A^c is a (τ_i, τ_j) - g-m_i closed set in $(X;\tau_1,\tau_2)$. That is A^c is a (τ_i, τ_j) - g-m_i closed set whenever A^c \subseteq F^c and F^c is a τ_i -minimal open set. Therefore by the Definition 2.1 τ_j -cl (A^c) \subseteq F^c whenever A^c \subseteq F^c and F^c is a τ_i -minimal open set. Then $(\tau_j$ -int A)^c \subseteq F^c, which implies F \subseteq int A. Conversely, let A be any subset of X such that $F \subseteq \tau_j$ -int A whenever F \subseteq A and F is a τ_i -maximal closed set in $(X;\tau_1,\tau_2)$. Then $(\tau_j$ -int A)^c \subseteq F^c whenever A^c \subseteq F^c and F^c is a τ_i -minimal open set. We have τ_j -cl (A^c) \subseteq F^c whenever A^c \subseteq F^c and F^c is a τ_i -minimal open set. We have τ_j -cl (A^c) \subseteq F^c whenever A^c \subseteq F^c and F^c is a τ_i -minimal open set. Therefore by the Definition 2.1 A^c is a (τ_i, τ_j) -g-m_i closed set. Thus A is a (τ_i, τ_j) - g-m_a open set in $(X;\tau_1,\tau_2)$.

Theorem 2.24. Let i, $j \in \{1, 2\}$ be fixed integers. Every (τ_i, τ_j) - g-m_a open set is a (τ_i, τ_j) -g-open set in a bitopological space $(X;\tau_1,\tau_2)$.

Proof: Let A be a (τ_i, τ_j) - g-m_a open set in $(X;\tau_1,\tau_2)$. Then A^c is a (τ_i, τ_j) -g-m_i closed set and by the theorem 2.3 A^c is a (τ_i, τ_j) -g- closed set. Therefore A is a (τ_i, τ_j) - g-open set in $(X;\tau_1,\tau_2)$.

Remark 2.25. Converse of the Theorem 2.24 need not be true.

Example 2.26. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. (τ_1, τ_2) - g-m_a open sets: $\{\{a, b\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. (τ_2, τ_1) - g-m_a open sets: $\{\{a, c, d\}, X\}$. (τ_1, τ_2) -g-open sets = $\{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. (τ_2, τ_1) -g-open sets = $\{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$.

Theorem 2.27. Let i, $j \in \{1, 2\}$ be fixed integers. Every (τ_i, τ_j) - g-m_a open set is a (τ_i, τ_j) - ω -open set in a bitopological space $(X;\tau_1,\tau_2)$.

Proof: Let A be a (τ_i, τ_j) - g-m_a open set in $(X;\tau_1,\tau_2)$. Then A^c is a (τ_i, τ_j) -g-m_i closed set and by the theorem 2.6 A^c is a (τ_i, τ_j) - ω - closed set. Therefore A is a (τ_i, τ_j) - ω -open set in $(X;\tau_1,\tau_2)$.

Remark 2.28. Converse of the Theorem 2.27 need not be true.

Example 2.29. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{b\}, \{a, b\}, \{c, d\}, \{b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. (τ_1, τ_2) - g-ma open sets: $\{\{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. (τ_2, τ_1) - g-ma open sets: $\{\{b, c, d\}, X\}$. (τ_1, τ_2) - ω -open sets = $\{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. (τ_2, τ_1) - ω -open sets = $\{\phi, \{b\}, \{a, b\}, \{c, d\}, \{b, c, d\}, X\}$. Generalized Minimal Closed Sets in Bitopological Spaces

Theorem 2.30. Let i, $j \in \{1, 2\}$ be fixed integers. If τ_j - int $A \subseteq B \subseteq A$ and A is a (τ_i, τ_j) g-m_a open set in a bitopological space $(X;\tau_1,\tau_2)$, then B is a (τ_i, τ_j) - g-m_a open set in $(X;\tau_1,\tau_2)$.

Proof: Given τ_j -int $A \subseteq B \subseteq A$ and A is a (τ_i, τ_j) -g-m_a open set in $(X; \tau_1, \tau_2)$.

Then $A^c \subseteq B^c \subseteq (\tau_j\text{-int } A)^c$ and A^c is a (τ_i, τ_j) - g-m_i closed set. That is $A^c \subseteq B^c \subseteq \tau_j\text{-cl } (A^c)$ and A^c is a (τ_i, τ_j) - g-m_i closed set. By the Theorem 2.13 B^c is a (τ_i, τ_j) - g-m_i closed set. Thus by the Definition 2.22 B is a (τ_i, τ_j) - g-m_a open set in $(X;\tau_1,\tau_2)$.

Theorem 2.31. Let i, $j \in \{1, 2\}$ be fixed integers. If a set A is any (τ_i, τ_j) - g-m_a open set in a bitopological space $(X;\tau_1,\tau_2)$, then O = X whenever O is an τ_i -open set and τ_i -int $(A) \bigcup A^c \subseteq O$.

Proof: Let A be any (τ_i, τ_j) -g-m_a open set in $(X;\tau_1,\tau_2)$ and O be an τ_i -open set such that τ_j -int (A) $\bigcup A^c \subseteq O$. Then A^c is a (τ_i, τ_j) -g-m_i closed set and O^c is a τ_i -closed set such that $O^c \subseteq [\tau_j$ -int (A) $\bigcup A^c]^c = (\tau_j$ -int A)^c $\cap (A^c)^c = \tau_j$ -cl (A^c) – A^c. Since A^c is a (τ_i, τ_j) -g-m_i closed set and O^c is a τ_i -closed set, by the Theorem 2.13 τ_j -cl (A^c) – A^c contains no nonempty closed subset, which implies $O^c = \phi$. Hence O = X.

Remark 2.32. Converse of the Theorem 2.32 need not be true.

Example 2.33. In Example 2.26 let $A = \{a, c\}$. The only τ_1 -open set containing τ_2 -int (A) $\bigcup A^c$ is X, but A is not a (τ_1, τ_2) - g- m_a open set.

Theorem 2.34. Let i, $j \in \{1, 2\}$ be fixed integers. If $A \subseteq Y \subseteq X$ and A is a (τ_i, τ_j) - g-m_a open set in a bitopological space $(X;\tau_1,\tau_2)$, then A is a (τ_i, τ_j) - g-m_a open set relative to Y. **Proof:** Let $A^c \subseteq Y \cap O$ such that $Y \cap O$ is τ_{i-Y} minimal open set and O is τ_i - minimal open set in Then $A^c \subseteq O$. By hypothesis A^c is a (τ_i, τ_j) -g-m_i closed set.

Therefore τ_j -cl (A^c) \subseteq O, Y \cap τ_j -cl (A^c) \subseteq Y \cap O. Hence A^c is (τ_i , τ_j)-g-m_i closed relative to Y which implies A is (τ_i , τ_j)-g-m_a open relative to Y.

Theorem 2.35. Let i, $j \in \{1, 2\}$ be fixed integers. If $A \subseteq B \subseteq X$ and A is (τ_i, τ_j) -g-ma open relative to B and B is (τ_i, τ_j) -g-ma open set in $(X;\tau_1,\tau_2)$, then A is (τ_i, τ_j) -g-ma open relative to Y.

Proof: From [1] it is followed that A is (τ_i, τ_j) -g-m_a open relative to Y.

REFERENCES

- 1. S.S.Benchalli and S.N.Banasode and G.P.Siddapur, Generalized minimal closed sets in topological spaces, *Journal of Computer and Mathematical Sciences*, 1(6) (2010) 636-768.
- 2. E.P.Lane, Bitopological spaces, and quasi-uniform spaces, *Proc. London. Math. Sci.*, 17 (1967) 241-256.
- 3. H.Maki, P.Sundaram and K.Balachandran, On generalized homeomorphisms in topological spaces, *Bull. of Fukuoka Univ. of Edu.*, 40 (1991) 13-21.

- 4. H.Maki, P.Sundaram and K.Balachandran, On generalized continuous maps and Pasting Lemma in bitopological spaces, *Bull. of Fukuoka Univ. of Edu.*, 40 (1991) 23-31.
- 5. J.C.Keely, Bitopological spaces, Proc. London. Math. Sci., 13 (1963) 71-89.
- 6. M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, *Ph.D. Thesis, Bharathair University, Coimbatore* (2002).
- 7. T.Fukutake, On generalized closed sets in bitopological spaces, *Bull. of Fukuoka* Univ. of Edu., 35 (1985) 19-28.
- 8. T.Fukutake, P.Sundaram and N.Nagaveni, On weakly generalized closed sets, weakly generalized continuous maps and T_{wg} spaces in bitopological spaces, *Bull. of Fukuoka Univ. of Edu.*, 35 (1999) 33-40.