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1. Introduction and preliminaries 
The triple (X; τ1, τ2) where X is a set and τ1 and τ2 are two topologies on X is a 
bitopological space. Kelly [5] initiated the systematic study of such spaces. After the 
work of  Kelly [5] various authors [2,3,7,8] turned their attention to generalization of 
various concepts of topology by considering bitopological spaces. The concept of 
generalized closed sets in bitopological spaces was introduced and investigated by T [7].  

Throughout this chapter (X; τ1, τ2) denote non empty bitopological spaces on 
which no separation axioms are assumed unless otherwise mentioned and the fixed 
integers i, j ∈{1,2}. 

We recall the following definitions, which are useful in the sequel. 
 
Definition 1.1. Let i, j ∈ {1, 2} be fixed integers. In a bitopological space (X; τ1, τ2), a 
subset A of X is said to be 
(i) (τi, τj)- g-closed set [7] if τj -cl (A) ⊆ U whenever A ⊆U and U is τi- open set. 
(ii) (τi, τj)-g-open set iff Ac is (τi, τj)- g-closed set. 
(iii) ( τi, τj)- ω-closed set [6] if τj - cl (A) ⊆ U whenever A ⊆ U and U is τi - semi open set    
      in (X, τ). 
(iv) (τi, τj)- ω-open set [6] iff Ac is (τi, τj)- ω-closed set. 
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Definition 1.2. Let i, j ∈ {1, 2} be fixed integers. In a bitopological space (X; τ1, τ2), a 
proper nonempty (τi , τj)-g-open set A of (X; τ1, τ2) is said to be  
(i) (τi, τj)-minimal g-open (resp. (τi, τj)-minimal g-closed) set if any (τi, τj) -g-open 
(respectively (τi, τj) -g- closed) subset of (X; τ1, τ2) which is contained in A, is either A or 
φ. 
(ii) (τi, τj) - maximal g-open (resp. (τi, τj) - maximal g-closed) set if any (τi, τj)-g- open  
(respectively (τi, τj) –g- closed) subset of (X; τ1, τ2) which contains A, is either A or X. 
 
2. Generalized minimal closed sets in bitopological spaces 
In this section, we introduce and investigate generalized minimal closed sets in 
bitopological spaces. 
Definition 2.1. Let i, j ∈ {1, 2} be fixed integers. In a bitopological space 
(X; τ1, τ2), a subset A of X is said to be  (τi, τj)- generalized minimal closed (briefly (τi, 
τj)- g-mi closed) set if τj -cl (A) ⊆ U whenever A ⊆U and U is τi- minimal open set in (X; 
τ1, τ2). 
 
Remark 2.2. By setting τ1=τ2 in the Definition 2.1, a  (τi, τj)- g-mi closed set is a g-mi 
closed set in a topological space. 
 
Theorem 2.3. Let i, j ∈ {1, 2} be fixed integers. Every (τi, τj)- g-mi closed set in a 
bitopological space (X; τ1, τ2) is a (τi, τj)- g- closed set. 
Proof:  Let A ⊂X be any (τi, τj)- g-mi closed set in (X; τ1, τ2). By Definition 2.1 τj-cl (A) 
⊆ U whenever A ⊆ U and U is a τi- minimal open set. But every minimal open set is an 
open set. Therefore τj-cl (A) ⊆ U whenever  A ⊆ U and U is a τi-open set. Hence A is a 
(τi, τj)- g-closed set in (X; τ1, τ2). 
 
Remark 2.4. Converse of the Theorem 2.3 need not be true. 
 
Example 2.5. Let X= {a, b, c, d} with τ1= {φ, {a}, {a, b}, {c, d}, {a, c, d}, X} and  
τ2 = {φ, {a}, {b}, {c},{a, b}, {a, c}, {b, c}, {b, d}, {a,  b, c}, {a, b, d},{b, c, d}, X}. 
(τ1, τ2)- g-mi closed sets: {φ, {a}, {c}, {d}, {c, d}}. 
(τ2, τ1)- g-mi closed sets: {φ, {b}}. 
(τ1, τ2)-g-closed sets = {φ, {a}, {c}, {d},{a, b}, {a, c}, {a, d}, {b, c}, {b,  d}, {c, d},  
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}. 
(τ2, τ1)-g-closed sets =  {φ, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}, X} 
 
Theorem 2.6.  Let i, j ∈ {1, 2} be fixed integers. Every (τi, τj)- g-mi closed set in a 
bitopological space (X; τ1, τ2) is a (τi, τj) - ω-closed set. 
Proof: Let A ⊂X be any (τi, τj)- g-mi closed set in (X; τ1, τ2). By Definition 2.1 
τj-cl (A) ⊆ U whenever A ⊆ U and U is a τi- minimal open set. But every minimal open 
set is an open set and hence is a semi open set. Therefore τj-cl (A) ⊆ U whenever A ⊆ U 
and U is a τi-semi open set. Hence A is a (τi, τj)- ω-closed set in (X; τ1, τ2). 
 
Remark 2.7. Converse of the above Theorem 2.6 need not be true. 
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Example 2.8. Let X= {a, b, c, d} with τ1= {φ, {b}, {a, b}, {c, d}, {b, c, d}, X} and 
 τ2 = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a , b, c},{a, b, d},{b, c, d}, X}. 
(τ1, τ2)- g-mi closed sets: {φ, {c}, {d}, {c, d}}. 
(τ2, τ1)- g-mi closed sets: {φ, {a}}. 
(τ1, τ2)-ω-closed sets = {φ, {a}, {c}, {d}, {a, c}, {a, d},{b, c}, {b, d}, {c,  d},{a, b, c}, {a, 
b, d}, {a, c, d}, {b, c, d}, X}. 
(τ2, τ1)-ω-closed sets =  {φ, {a}, {a, b}, {c, d}, {a, c, d}, X}. 
 
Proposition 2.9. Let i, j ∈ {1, 2} be fixed integers. If A is a τj- minimal closed subset of 
a bitopological space (X; τ1, τ2), then A is a (τi, τj)- g-mi closed set in (X; τ1, τ2). 
Proof: Let A ⊆ U, such that U is a τi-minimal open set. By hypothesis A is a τj- minimal 
closed subset of (X; τ1, τ2), then A is a τj – closed subset of  (X; τ1, τ2), so that τj -cl(A)= 
A. Therefore,  τj -cl(A)⊆ A, whenever A ⊆ U and U is a τi- minimal open set in (X; τ1, 
τ2). Hence A is a (τi, τj)- g-mi closed set in  (X; τ1, τ2). 
 
Remark 2.10. If τ1 ⊂ τ2 in (X; τ1, τ2) then,(τ2, τ1)- g-mi closed sets ⊄ (τ1, τ2)- g-mi closed 
sets. 
 
Example 2.11. Let X= {a, b, c, d} with τ1= {φ, {a}, {a, b}, {c, d},{a, c, d}, X} and  
τ2 = {φ, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}, X }. 
(τ1, τ2)- g-mi closed sets: {φ, {a}, {c}, {d}, {c, d}}. 
(τ2, τ1)- g-mi closed sets: {φ, {b}, {c}, {d}, {c, d}}. 
 
Theorem 2.12. Let i, j ∈ {1, 2} be fixed integers. If A is a (τi, τj)- g-mi closed set in a 
bitopological space (X; τ1, τ2)  and A ⊆ B ⊆ τj -cl(A) then B is a (τi, τj) - g-mi closed set 
in a bitopological space (X; τ1, τ2). 
Proof: Let B be any set such that B ⊆ U and U is a τi- minimal open set in (X; τ1, τ2 ). 
Given that A ⊆ B ⊆ τj –cl (A)                                                                                        (i) 
Since A ⊆ B ⊆ U, then A ⊆ U where U is a τi- minimal open set. But A is a (τi, τj)- g-mi 
closed set, by Definition 2.1, τj-cl (A) ⊆ U whenever A⊆U and U is a τi-minimal open set 
in (X; τ1, τ2) From (i) A⊆B ⊆ τj–cl (A), implies B ⊆τj- cl (A) which implies τj-cl (B) ⊆ 
τj- cl (τj -cl (A))= τj-cl(A). That is τj- cl (B) ⊆ τj -cl (A). But τj-cl (A) ⊆ U. Therefore, τj-
cl (B) ⊆ U whenever B ⊆ U and U is a τi- minimal open set in (X; τ1, τ2 ). Hence B is a 
(τi, τj)- g-mi closed set in (X; τ1, τ2 ). 
 
Theorem 2.13. Let i, j ∈ {1, 2} be fixed integers. If A is a (τi, τj)- g-mi closed set in a 
bitopological space (X; τ1, τ2), then τj- cl (A) − A contains no nonempty τi- maximal 
closed subset. 
Proof: Let F be a τi -maximal closed subset of cl (A) − A. Then Fc is a τi -minimal open 
set. Let A be such that A ⊆ Fc where Fc is a τi- minimal open set in (X; τ1, τ2). Since A is 
a  (τi, τj)- g-mi closed set, by the Definition 2.1, τj- cl (A) ⊆ Fc whenever A ⊆ Fc and Fc is 
a τi  - minimal open set in (X; τ1, τ2). So F ⊆ [τj- cl (A)]c. 

On the other hand F ⊆ τj- cl (A).Therefore F ⊆ [τj- cl (A)]c 
∩ τj- cl (A) = φ.  
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Therefore F = φ. 
 
Theorem 2.14. Let i, j ∈ {1, 2} be fixed integers. If A is a (τi, τj)- g-mi closed set in a 
bitopological space (X; τ1, τ2) , then τj- cl (A) − A contains no nonempty  τi - closed 
subset. 
Proof: Let A be a (τi, τj)- g-mi closed set in (X; τ1, τ2)  and F be a nonempty τi - closed set 
contained in τj- cl (A)−A. So F ⊆ τj- cl (A)−A = τj- cl (A) ∩ Ac. Then    F ⊆ τj- cl (A) and  

F ⊆ Ac. Now F ⊆ Ac means A ⊆ Fc where Fc is an open set. Since every (τi, τj)- g-mi 
closed set in a bitopological space (X; τ1, τ2) is a (τi, τj)- g- closed set, A is a (τi, τj)- g- 
closed set.  Then by the Definition [7], τj- cl (A) ⊆ Fc whenever A ⊆ Fc and Fc is an open 
set in (X; τ1, τ2), so that  F ⊆ [τj- cl (A)]c On the other hand   F ⊆ τj- cl (A),  

so that F ⊆ [τj- cl (A)]c
∩ τj- cl (A) = φ. Therefore F = φ. 

 
Corollary 2.15. Let i, j ∈ {1, 2} be fixed integers. A (τi, τj)- g-mi closed set A in a 
bitopological space (X; τ1, τ2) is τj- closed iff τj- cl (A) − A is  τi - closed . 
Proof: Let A be any (τi, τj)- g-mi closed set in a bitopological space (X; τ1, τ2) which is a  
τj-closed set so that τj-cl (A) = A, then τj- cl (A)−A = φ.Therefore τj- cl (A) − A is a τi - 
closed set. 
Conversely, let A be any (τi, τj)- g-mi closed set in a bitopological space  (X; τ1, τ2) such 
that τj- cl (A) − A is a τi-closed set. Since τj- cl (A)−A is a subset of itself and is a τi-
closed set, by the Theorem 2.14, τj- cl (A)-A = φ, so that A = τj- cl (A). Therefore A is a 
τj- closed set. 
 
Proposition 2.16. Let i, j ∈ {1, 2} be fixed integers. If A is an τi minimal open set and a 
(τi, τj)- g- mi closed set in a bitopological space (X; τ1, τ2) then A is a τj- closed set. 
Proof: Since A ⊆ A and as A is a τi -minimal open and a (τi, τj)- g-mi closed set, we have  
cl (A) ⊆ A. Therefore τj-cl (A) = A. Hence A is a τj-closed set. 
 
Theorem 2.17. Let i, j ∈ {1, 2} be fixed integers. If A is a (τi, τj)- g-mi closed set in a 

bitopological space (X; τ1, τ2), then for each x ∈ τj-cl (A), τj-cl {x} ∩ A ≠ φ. 

Proof: Let A be any (τi,τj)-g-mi closed set in a bitopological space (X; τ1, τ2), such that 

for each x ∈ τj-cl (A),  τj-cl {x} ∩ A = φ and  [τj-cl{x}] c is a τi-minimal open set. Then  

A ⊆ [τj-cl ({x})] c where [τj-cl ({x})] c is a τi-minimal open set in (X; τ1, τ2). But A is a 
(τi,τj)-g-mi closed set. By the Definition 2.1τj-cl (A) ⊆ [τj-cl ({x})] c. This is a 
contradiction to the fact that x ∈ τj-cl (A). Therefore τj-cl {x} ∩ A ≠ φ. 

 
Lemma 2.18. If Y ⊆X is any subspace of a bitopological space (X;τ1,τ2) and U is any τi-
minimal open set in (X;τ1,τ2) then Y ∩ U is a τi -Y minimal open set. 

Proof: Let U be a τi-minimal open set in a bitopological space (X;τ1,τ2)  such that Y ∩ U 

is not a τi -Y minimal open set in Y. Then there exists an τi -Y open set G≠ Y in Y such that 

G ⊆ Y∩U where G = Y∩H and H is an τi-open set in (X;τ1,τ2). Now Y∩H ⊆ Y∩U 
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implies H ⊆U. This contradicts the fact that U is a τi-minimal open set. Therefore Y∩U is 

a τi -Y minimal open set. 
 
Theorem 2.19. Let i, j ∈ {1, 2} be fixed integers. If A ⊆ Y ⊆ X and A is (τi, τj)-g-mi 
closed set in a bitopological space (X; τ1, τ2), then A is  (τi, τj)- g-mi closed relative to Y. 
Proof: Let τi -Y be the restriction of τi to Y and O be any τi -minimal open set in (X; τ1, 

τ2), then by the Lemma 2.18 Y ∩ O is τi -Y minimal open set. Let A ⊆ Y ∩ O, where Y ∩ 

O is a τi -Y minimal open set implies A ⊆ O and O is a τi -minimal open set in (X; τ1, τ2). 
But A is a (τi, τj)-g-mi closed set in (X; τ1, τ2). By the Definition 2.1 τj- cl (A) ⊆ O 

whenever A ⊆ O and O is a τi-minimal open set in (X; τ1, τ2). It follows that Y ∩ τj-cl (A) 

⊆ Y ∩ O that is τj – Y -cl(A)⊆ Y ∩ O  whenever A ⊆ Y ∩ O and Y ∩ O is a τi – Y minimal 

open set in Y. Therefore A is (τi, τj)- g-mi closed relative to Y. 
 
Lemma 2.20. If A is a τi-minimal open set and B is an τi-open set in (X;τ1,τ2) then either  

A ∩ B=φ or A∩ B is a τi-minimal open set in (X; τ1, τ2). 

Proof: Let A be any τi-minimal open set and B be an τi-open set in (X;τ1,τ2) such that  A 

∩ B = φ, then there is nothing to prove. But if A ∩ B ≠ φ, then we have to prove that A ∩ 

B is a τi-minimal open set in (X;τ1,τ2). Now  A ∩ B ≠ φ means A ∩ B ⊆ A and  A ∩ B ⊆ 

B. For A ∩ B ⊆ A and since A is a τi-minimal open set, by the definition of a minimal 

open set, either A ∩ B = φ or A ∩ B = A. But A ∩ B ≠φ, then A ∩ B = A which implies 

that A ∩ B is a  τi-minimal open set in (X;τ1,τ2). 

 
Theorem 2.21. Let i, j ∈ {1, 2} be fixed integers. If B ⊆ A ⊆ X such that B is (τi, τj)- g-
mi closed relative to A and that A is an τi-open and  (τi, τj)- g-mi closed set in (X;τ1,τ2) 
then B is a (τi, τj)- g-mi closed set in (X;τ1,τ2). 
Proof: Let B ⊆ U such that U is a τi-minimal open set in (X;τ1,τ2).Given  B ⊆ A ⊆ X, so 

B ⊆ A ∩ U and A is an τi-open set in X. Then by the Lemma 2.20 A ∩ U is a τi-minimal 

open set in X. Now A ∩ U ⊆ A ⊆ X, then A ∩ U is a τi-minimal open set in A by the 

Lemma 2.18. Therefore  B ⊆ A ∩ U and A ∩ U is a τi-minimal open set in A. By 

hypothesis A ∩ τj-cl (B) ⊆ A ∩ U implies τj- cl (B) ⊆ U. Hence B is a (τi, τj)- g-mi closed 

set in (X;τ1,τ2). 
 
Definition 2.22. Let i, j ∈ {1, 2} be fixed integers. In a bitopological space (X;τ1,τ2), a 
subset A of X is said to be a (τi, τj)- generalized maximal open (briefly (τi, τj)- g- ma 
open) set iff Ac is a (τi, τj)- generalized minimal closed set. 

Theorem 2.23. Let i, j ∈ {1, 2} be fixed integers. A subset A of a bitopological space 
(X;τ1,τ2) is a (τi, τj)-g-ma open set iff F⊆τj-int A whenever F ⊆ A and F is a τi-maximal 
closed set in (X;τ1,τ2). 



Suwarnlatha N. Banasode and Mandakini A.Desurkar 

274 
 

Proof: Let A be any (τi, τj)-g-ma open in (X;τ1,τ2) such that F ⊆ A and F is a  τi-maximal 
closed set in (X;τ1,τ2), then by the Definition 2.22 Ac is a (τi, τj)- g-mi closed set in 
(X;τ1,τ2). That is Ac is a (τi, τj)- g-mi closed set whenever Ac⊆Fc and Fc is a τi-minimal 
open set. Therefore by the Definition 2.1 τj-cl (Ac) ⊆ Fc whenever Ac⊆Fc and Fc is a τi-
minimal open set. Then (τj-int A)c ⊆Fc, which implies F ⊆ int A. Conversely, let A be 
any subset of X such that F⊆τj-int A whenever F ⊆A and F is a τi-maximal closed set in 
(X;τ1,τ2). Then (τj-int A)c ⊆ Fc whenever Ac ⊆ Fc and Fc is a τi-minimal open set. We 
have τj-cl (Ac) ⊆ Fc whenever Ac ⊆ Fc and Fc is a τi-minimal open set. Therefore by the 
Definition 2.1 Ac is a (τi, τj)-g-mi closed set. Thus A is a  (τi, τj)- g-ma open set in 
(X;τ1,τ2). 
 
Theorem 2.24. Let i, j ∈ {1, 2} be fixed integers. Every (τi, τj)- g-ma open set is a (τi, τj)- 
g-open set in a bitopological space (X;τ1,τ2). 
Proof: Let A be a (τi, τj)- g-ma open set in (X;τ1,τ2). Then Ac is a (τi, τj)-g-mi closed set 
and by the theorem 2.3 Ac is a (τi, τj)-g- closed set. Therefore A is a (τi, τj)- g-open set in 
(X;τ1,τ2). 
 
Remark 2.25. Converse of the Theorem 2.24 need not be true. 
 
Example 2.26. Let X= {a, b, c, d} with τ1= {φ, {a}, {a, b}, {c, d},{a, c, d}, X} and  
τ2 = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d},{a,  b, c}, {a, b, d},{b, c, d}, X}. 
(τ1, τ2)- g-ma open sets: {{a, b}, {a, b, c}, {a, b, d}, {b, c, d}, X}. 
(τ2, τ1)- g-ma open sets: {{a, c, d}, X}. 
(τ1, τ2)-g-open sets = {φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c },{b, d}, 
{c, d}, {a, b, c}, {a, b, d}, {b, c, d}, X}. 
(τ2, τ1)-g-open sets =  {φ, {a}, {b}, {a, b}, {c, d}, {a, c, d}, X} 
 
Theorem 2.27. Let i, j ∈ {1, 2} be fixed integers. Every (τi, τj)- g-ma open set is a (τi, τj)- 
ω-open set in a bitopological space (X;τ1,τ2). 
Proof: Let A be a (τi, τj)- g-ma open set in (X;τ1,τ2). Then Ac is a (τi, τj)-g-mi closed set 
and by the theorem 2.6 Ac is a (τi, τj)- ω- closed set. Therefore A is a (τi, τj)- ω-open set in 
(X;τ1,τ2). 
 
Remark 2.28. Converse of the Theorem 2.27 need not be true. 
 
Example 2.29. Let X= {a, b, c, d} with τ1= {φ, {b}, {a, b}, {c, d},{b, c, d}, X} and  
τ2 = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a , b, c}, {a, b, d},{b, c, d}, X}. 
(τ1, τ2)- g-ma open sets: {{a, b}, {a, b, c}, {a, b, d}, X}. 
(τ2, τ1)- g-ma open sets: {{b, c, d}, X}. 
(τ1, τ2)- ω-open sets = {φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c },{b, d}, {a, b,c}, 
{a, b, d}, {b, c, d}, X}. 
(τ2, τ1)- ω-open sets =  {φ, {b}, {a, b}, {c, d}, {b, c, d}, X}. 
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Theorem 2.30. Let i, j ∈ {1, 2} be fixed integers.  If τj- int A ⊆ B ⊆ A and A is a (τi, τj)- 
g-ma open set in a bitopological space (X;τ1,τ2), then B is a (τi, τj)- g-ma open set in 
(X;τ1,τ2). 
Proof: Given τj-int A ⊆ B ⊆ A and A is a (τi, τj)-g-ma open set in (X;τ1,τ2). 
Then Ac ⊆ Bc ⊆ (τj-int A)c and Ac is a (τi, τj)- g-mi closed set. That is Ac ⊆ Bc ⊆ τj-cl (Ac) 
and Ac is a (τi, τj)- g-mi closed set. By the Theorem 2.13 Bc is a (τi, τj)- g-mi closed set. 
Thus by the Definition 2.22 B is a  (τi, τj)- g-ma open set in (X;τ1,τ2). 
 
Theorem 2.31. Let i, j ∈ {1, 2} be fixed integers. If a set A is any (τi, τj)- g-ma open set 
in a bitopological space (X;τ1,τ2),then O = X whenever O is an τi-open set and  

τj-int (A) ∪ Ac ⊆ O. 

Proof: Let A be any (τi, τj)-g-ma open set in (X;τ1,τ2) and O be an τi-open set such that  

τj-int (A) ∪ Ac ⊆ O. Then Ac is a (τi, τj)-g-mi closed set and Oc is a τi-closed set such that  

Oc ⊆  [τj-int (A) ∪ Ac]c = (τj-int A)c ∩ (Ac)c =  τj-cl (Ac) − Ac. Since Ac is a (τi, τj)-g-mi 

closed set and Oc is a τi-closed set, by the Theorem 2.13 τj-cl (Ac) − Ac contains no 
nonempty closed subset, which implies Oc = φ. Hence O = X. 
 
Remark 2.32. Converse of the Theorem 2.32 need not be true. 
 
Example 2.33. In Example 2.26 let A = {a, c}. The only τ1-open set containing τ2-int (A) 

∪ Ac is X, but A is not a (τ1, τ2)- g- ma open set. 

 
Theorem 2.34. Let i, j∈{1, 2} be fixed integers. If A ⊆ Y ⊆ X and A is a (τi, τj)- g-ma 
open set in a bitopological space (X;τ1,τ2), then A is a (τi, τj)- g- ma open set relative to Y. 

Proof: Let Ac ⊆ Y ∩ O such that Y ∩ O is τi-Y minimal open set and O is τi- minimal 

open set in Then Ac⊆O. By hypothesis Ac is a (τi, τj)-g-mi closed set.  

Therefore τj-cl (Ac)⊆O, Y ∩ τj-cl (Ac) ⊆ Y ∩ O. Hence Ac is (τi, τj)-g-mi closed relative 

to Y which implies A is (τi, τj)-g-ma open relative to Y. 
 
Theorem 2.35. Let i, j∈{1, 2} be fixed integers. If A ⊆ B ⊆ X and A is (τi, τj)-g- ma open 
relative to B and B is (τi, τj)-g- ma open set in (X;τ1,τ2), then A is (τi, τj)-g-ma open 
relative to Y. 
Proof: From [1] it is followed that A is (τi, τj)-g-ma open relative to Y. 
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