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Abstract. In this paper, we introduce and charactegereralized minimal closed sets in
bitopological spaces and study some of their ptaserA subset A of X is said to bg,(
T;)- generalized minimal closed (briefly,(t;)- g-m closed) set in a bitopological space if
T, -cl (A) O U whenever AJU and U isti- minimal open set in (Xty, T2).
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1. Introduction and preiminaries
The triple (X; 14, T,) where X is a set and; and 1, are two topologies on X is a
bitopological space. Kelly [5] initiated the systatim study of such spaces. After the
work of Kelly [5] various authors [2,3,7,8] turnedeir attention to generalization of
various concepts of topology by considering bitogadal spaces. The concept of
generalized closed sets in bitopological spacesintasiuced and investigated by T [7].
Throughout this chapter (X, 1,) denote non empty bitopological spaces on
which no separation axioms are assumed unlesswitieermentioned and the fixed
integers i, j0{1,2}.
We recall the following definitions, which are uskeih the sequel.

Definition 1.1. Let i, j O {1, 2} be fixed integers. In a bitopological spa@€ 14, T2), a

subset A of X is said to be

(1) (1, T;)- g-closed set [7] if; -cl (A) O U whenever AJU and U ist;- open set.

(i) (i, T)-g-open set iff Ais (t;, T))- g-closed set.

(iii) (T, T;)- w-closed set [6] iffj - cl (A) [ U whenever AJ U and U ist; - semi open set
in (X,1).

(iv) (1, T))- w-open set [6] iff Kis (T, T;)- w-closed set.
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Definition 1.2. Let i, j O {1, 2} be fixed integers. In a bitopological spa@€ 11, T2), a
proper nonemptyt(, 1;)-g-open set A of (X714, T,) is said to be

() (v, y)-minimal g-open (resp.t( T;)-minimal g-closed) set if anyti( ;) -g-open
(respectively ¢, T;) -g- closed) subset of (X3, T2) which is contained in A, is either A or
Q.
(i) (i, 1) - maximal g-open (respri(T;) - maximal g-closed) set if anyi,(t;)-g- open
(respectivelyt;, T;) —g- closed) subset of (Xi, 1,) which contains A, is either A or X.

2. Generalized minimal closed setsin bitopological spaces

In this section, we introduce and investigate galimd minimal closed sets in
bitopological spaces.

Definition 2.1. Let i, j O {1, 2} be fixed integers. In a bitopological space

(X; 11, Tp), a subset A of X is said to be;, (1)- generalized minimal closed (briefly;(
T))- g-m closed) set if; -cl (A) O U whenever AJU and U ist;- minimal open set in (X;

Ty, To).

Remark 2.2. By settingt;=T, in the Definition 2.1, a t(, 1))- g-m closed set is a g:m
closed set in a topological space.

Theorem 2.3. Let i, j O {1, 2} be fixed integers. Everyt( T;)- g-mi closed set in a
bitopological space (X3, T2) is a (i, T;)- g- closed set.

Proof: Let A X be any ¢, Tj)- g-m closed set in (X1, T2). By Definition 2.1t-cl (A)

0 U whenever A0 U and U is a;- minimal open set. But every minimal open setris a
open set. Thereforg-cl (A) O U whenever A U and U is a;-open set. Hence A is a
(T;, Tj)- g-closed set in (X1y, To).

Remark 2.4. Converse of the Theorem 2.3 need not be true.

Example 2.5. Let X={a, b, c, d with .= {@ {a}, {a, b}, {c, d}, {a, c, d}, X} and
T2 ={q {a}, {b}, {c}{a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {a, b, d}.{b, c, d}, X}.
(t1, T2)- g-m closed sets:d, {a}, {c}, {d}, {c, d}}.

(T2, T1)- g-m closed sets:d, {b}}.

(t1, T2)-g-closed sets =¢, {a}, {c}, {d}.{a, b}, {a, ¢}, {a, d}, {b, c}, {b, d}, {c, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}.

(T2, T1)-g-closed sets = ¢ {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}, X}

Theorem 2.6. Leti, j O {1, 2} be fixed integers. Everyry 1;)- g-m closed set in a
bitopological space (X3, T2) is a (i, T;) - w-closed set.

Proof: Let A OX be any ¢;, T;)- g-m closed set in (X4, T,). By Definition 2.1

T;-cl (A) O U whenever A0 U and U is a;- minimal open set. But every minimal open
set is an open set and hence is a semi open seefdtet;-cl (A) O U whenever AO U
and U is aj-semi open set. Hence A isT (;)- w-closed set in (XTy, Ty).

Remark 2.7. Converse of the above Theorem 2.6 need not be true.
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Example 2.8. Let X={a, b, c, d with 1,= {¢, {b}, {a, b}, {c, d}, {b, c, d}, X} and

T2 ={@ {a}, {b}, {c} {a, b}, {a, c}, {b, c}, {b, d}, {a , b, c}.{a, b, d}.{b, c, d}, X}.

(t1, T2)- g-m closed sets:, {c}, {d}, {c, d}}.

(T2, T1)- g-m closed sets:4, {a}}.

(t1, T2)-w-closed sets =¢ {a}, {c}, {d}, {a, c}, {a, d},{b, c}, {b, d}, {c, d}.{a, b, c}, {a,
b, d}, {a, c, d}, {b, c, d}, X}.

(T2, T)-w-closed sets = ¢, {a}, {a, b}, {c, d}, {a, c, d}, X}.

Proposition 2.9. Let i, j O {1, 2} be fixed integers. If A is &- minimal closed subset of
a bitopological space (X, 1), then A is a{j, T))- g-m closed set in (X4, To).

Proof: Let A 0 U, such that U is &-minimal open set. By hypothesis A ig;aminimal
closed subset of (X, 12), then A is ar; — closed subset of (X3, 12), so thatr; -cl(A)=
A. Therefore, 1; -cl(A)O A, whenever A U and U is a;- minimal open set in (X,
T). Hence A'is at(, T))- g-m closed set in (X1, ).

Remark 2.10. If T, O 15 in (X; T4, To) then, 2, T1)- g-m closed set§l (14, T2)- g-m closed
sets.

Example 2.11. Let X={a, b, ¢, d with ;= {¢@, {a}, {a, b}, {c, d},{a, c, d}, X} and
2 ={@ {a}, {b}, {a, b}, {c, d}, {a, ¢, d}, {b, ¢, d}, X }.

(t1, T2)- g-m closed sets:d, {a}, {c}, {d}, {c, d}}.

(T2, T1)- g-m closed sets: ¢, {b}, {c}, {d}, {c, d}}.

Theorem 2.12. Let i, j O {1, 2} be fixed integers. If A is atf, 1;)- g-mi closed set in a
bitopological space (Xt;, ;) and AO B O 1 -cl(A) then B is a¥j, T;) - g-m closed set
in a bitopological space (Xi, 1o).

Proof: Let B be any set such thatBU and U is a;- minimal open set in (X14, T>).
Given that A0 B O 1; —l (A) 0]
Since Al B O U, then A0 U where U is a;- minimal open set. But A is a&(Tj)- g-m
closed set, by Definition 2.1;-cl (A) O U whenever AJU and U is a;-minimal open set
in (X; 14, T,) From (i) AOB O 1j—cl (A), implies BOt;- cl (A) which impliest-cl (B) O
T;- ¢l (1; -cl (A))= 1-cl(A). That ist- cl (B) U 1 -l (A). Butt-cl (A) O U. Thereforef;-
cl (B) O U whenever BJ U and U is a;- minimal open set in (X14, T,). Hence B is a
(T, Tj)- g-m closed set in (X4, T,).

Theorem 2.13. Let i, j U {1, 2} be fixed integers. If A is atf, 1;)- g-mi closed set in a
bitopological space (X1, T2), thenTt- cl (A) — A contains no nonempty- maximal
closed subset.

Proof: Let F be ar; -maximal closed subset of cl (A)A. Then Eis at; -minimal open
set. Let A be such that A F° where Eis at;- minimal open set in (X1, 1,). Since A is
a (U, T)- g-mclosed set, by the Definition 2.1;; cl (A) O F° whenever AT F* and F is
at; - minimal open set in (Xty, T2). So FO [1;- cl (A)]°.

On the other hand B 1;- cl (A).Therefore K [t- ¢l (A)I°N 1~ ¢l (A) = ¢.
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Therefore F .

Theorem 2.14. Let i, j O {1, 2} be fixed integers. If A is at{, 1;)- g-m closed set in a
bitopological space (X1, 12) , thent- cl (A) — A contains no nonemptyt; - closed
subset.

Proof: Let A be at;, T;)- g-m closed set in (X714, T,) and F be a nonempty- closed set
contained irt;- cl (A)-A. So FO 1- cl (A)-A =T1- cl (A) N A% Then HI - cl (A) and
F O A° Now FO A° means A F* where Fis an open set. Since eveny, {;)- g-m
closed set in a bitopological space X;T.) is a i, Tj)- 9- closed set, A is a( 1)- g-
closed set. Then by the Definition [T}; cl (A) O F* whenever AO F° and F is an open
setin (X;1y, o), so that FJ [1;- cl (A)]° On the other hand [ T1;- cl (A),

so that A [1- ¢l (A)]N ;- cl (A) = @. Therefore F .

Corollary 2.15. Let i, j O {1, 2} be fixed integers. AT, T)- g-m closed set A in a
bitopological space (X1, 12) is 1j- closed ifft;- ¢l (A) —A'is 1 - closed .

Proof: Let A be any ¢, 1;)- g-m closed set in a bitopological space tX;1,) which is a
T;-closed set so that-cl (A) = A, thent;- cl (A)-A = @.Thereforet;- cl (A) - Ais aT; -
closed set.

Conversely, let A be any;( Tj)- g-m closed set in a bitopological space ¢X;1,) such
thatt;- cl (A) — A is aTti-closed set. Sincg- cl (A)-A is a subset of itself and ista
closed set, by the Theorem 2.14,cl (A)-A = @, so that A =t- cl (A). Therefore Ais a
T;- closed set.

Proposition 2.16. Let i, j O {1, 2} be fixed integers. If A is am minimal open set and a
(T, Tj)- g- m closed set in a bitopological space €X;1,) then A is arj- closed set.

Proof: Since Al A and as A is & -minimal open and aj( T;)- g-m closed set, we have
cl (A) O A. Thereforetj-cl (A) = A. Hence A is aj-closed set.

Theorem 2.17. Let i, j O {1, 2} be fixed integers. If A is at( 1;)- g-m closed set in a
bitopological space (X1, T2), then for each X 1;-cl (A), -l {x} NAZ @.

Proof: Let A be any t;,T;)-g-m closed set in a bitopological space ¢X;1,), such that
for each x0 1j-cl (A), T-cl {x} N A =@and f-c{x}] ©is ati-minimal open set. Then

A O [y-cl ({x})] © where f;-cl ({x})] ¢ is ati-minimal open set in (XT3, T2). But A is a
(ti,7)-g-m closed set. By the Definition Zjacl (A) O [t-cl ({x})]° This is a
contradiction to the fact thatX 1;-cl (A). Thereforerj-cl {x} N A Z @

Lemma 2.18. If Y X is any subspace of a bitopological spaca{X;) and U is any;-
minimal open set in (X,T,) then Y U is at;.y minimal open set.
Proof: Let U be ari-minimal open set in a bitopological spacetg¢,) such that Y1 U

is not at; .y minimal open set in Y. Then there existstap open set @ Y in Y such that
G O YNU where G = YIH and H is art-open set in (X;,1,). Now YH O YNU
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implies HOU. This contradicts the fact that U ig;aminimal open set. Thereford"J is
aTt.y minimal open set.

Theorem 2.19. Let i, j O {1, 2} be fixed integers. If A Y O X and A is ¢, 1)-g-m
closed set in a bitopological space X;12), then Ais i, T))- g-m closed relative to Y.
Proof: Let 1,y be the restriction of; to Y and O be any, -minimal open set in (X1,

T,), then by the Lemma 2.18 (Y O ist;.y minimal open set. Let Al Y () O, where Y
O is at;.y minimal open set implies Al O and O is a; -minimal open set in (X4, T,).
But A is a i, T)-g-m closed set in (X1, T2). By the Definition 2.1- cl (A) O O
whenever ALJ O and O is ai-minimal open set in (X1, T5). It follows that Y 1;-cl (A)
OYNOthatist_y-cl(A)OY N O whenever AJY (1 O and Y O is at;_y minimal
open setin Y. Therefore A isi(T;)- g-m closed relative to Y.

Lemma 2.20. If A is at;-minimal open set and B is @anopen set in (X,T,) then either

A N B=@or AN B is ati-minimal open set in (X1, T»).

Proof: Let A be anyri-minimal open set and B be apopen set in (§,,T,) such that A
(1 B =@, then there is nothing to prove. But iff AB # ¢, then we have to prove that(A

B is ati-minimal open set in (X3,1,). Now A(NBZ@means A1BOAand ANBO

B. For A1 B O A and since A is a-minimal open set, by the definition of a minimal
open set, either A B =@or A B = A. But A( B #@, then A B = A which implies

that A B is a t;-minimal open set in (Xi,1,).

Theorem 2.21. Let i, j O {1, 2} be fixed integerslf B O A O X such that B ist, 1))- g-
m; closed relative to A and that A is aropen and T, T;)- g-m closed set in (X3,12)
then B is a¥j, 1))- g-m closed set in (X,12).

Proof: Let B U such that U is &-minimal open set in (X;,1,).Given BO A O X, so
B OA N Uand A is ammj-open set in X. Then by the Lemma 2.20)\AJ is at;-minimal

open set in X. Now A1 U O A O X, then A U is at-minimal open set in A by the
Lemma 2.18. Therefore Bl A (1 U and A U is ati-minimal open set in A. By
hypothesis A1 tj-cl (B) O A U impliest;- ¢l (B) O U. Hence B is at(, 1;)- g-m closed
setin (XI4,1y).

Definition 2.22. Let i, j O {1, 2} be fixed integers. In a bitopological spa@€t,,1,5), a

subset A of X is said to be a,(t))- generalized maximal open (briefly,(t)- g- m,
open) set iff Kis a {;, T;)- generalized minimal closed set.

Theorem 2.23. Let i, j O {1, 2} be fixed integers. A subset A of a bitopgical space
(X;11,12) is a i, T;)-g-m, open set iff Elt-int A whenever FJ A and F is a-maximal
closed set in (X;,1y).
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Proof: Let A be anyt;, T;)-g-ms, open in (XT1,T,) such that F1 A and F is ati-maximal
closed set in (X,T,), then by the Definition 2.22 Ais a i, 1;)- g-m closed set in
(X;11,12). That is A'is a i, 1;)- g-m closed set whenever’BF and F is ati-minimal
open set. Therefore by the Definition 2;&cl (A% O F° whenever AOF° and F is at-
minimal open set. Them;fint A)° OF°, which implies FO int A. Conversely, let A be
any subset of X such thatlg-int A whenever FJA and F is a;-maximal closed set in
(X;11,T2). Then ¢-int A)° O F° whenever A0 F° and E is at-minimal open set. We
haveTt-cl (A°) O F° whenever A0 F° and F is ati-minimal open set. Therefore by the
Definition 2.1 A is a i, T1;)-g-m closed set. Thus A is aT;(T)- g-m, open set in
(X;1,T2).

Theorem 2.24. Let i, j O {1, 2} be fixed integers. Everyy 1;)- g-m, open set is ar{ T;)-
g-open set in a bitopological spacetp,).

Proof: Let A be a €, 1j)- g-ma, open set in (X,T2). Then K is a (;, T)-g-m closed set
and by the theorem 2.3°4s a ;, 1))-g- closed set. Therefore A is 8,(t;)- g-open set in
(X;T1,T2).

Remark 2.25. Converse of the Theorem 2.24 need not be true.

Example 2.26. Let X={a, b, c, 8 with .= {¢, {a}, {a, b}, {c, d},{a, c, d}, X} and
2 ={q {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d},{a, b, c}, {a, b, d}.{b, c, d}, X}.
(t1, T2)- g-my open sets: {{a, b}, {a, b, ¢}, {a, b, d}, {b, c,}dX}.

(T2, TY)- g-my open sets: {{a, c, d}, X}.

(T1, T2)-g-open sets =4 {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, ¢ },{b, d},
{c,d}, {a, b, c}, {a, b, d}, {b, c, d}, X}.

(T2, T1)-g-open sets = ¢, {a}, {b}, {a, b}, {c, d}, {a, c, d}, X}

Theorem 2.27. Let i, j O {1, 2} be fixed integers. Everyi{ 1;)- g-m, open set is ar{, T;)-
w-open set in a bitopological space (xX.,).

Proof: Let A be a €, T1;)- g-ma, open set in (X,T2). Then K is a {;, T)-g-m closed set
and by the theorem 2.6°#s a i, Tj)- w-closed set. Therefore A is B, (T;)- w-open set in
(X 1,12).

Remark 2.28. Converse of the Theorem 2.27 need not be true.

Example 2.29. Let X={a, b, c, 8 with 1,= {¢@, {b}, {a, b}, {c, d},{b, c, d}, X} and

T2 ={q {a}, {b}, {c}, {a, b}, {a, ¢}, {b, c}, {b, d}, {a , b, c}, {a, b, d}{b, ¢, d}, X}.

(t1, T2)- g-my open sets: {{a, b}, {a, b, ¢}, {a, b, d}, X}.

(T2, TY)- g-my open sets: {{b, c, d}, X}.

(T1, T2)- w-open sets =¢ {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, ¢ }.{b, d}, {a, b,c},
{a, b, d}, {b, c, d}, X}.

(T2, T1)- w-open sets = ¢, {b}, {a, b}, {c, d}, {b, c, d}, X}.

274



Generalized Minimal Closed Sets in Bitopologicah&s

Theorem 2.30. Let i, j O {1, 2} be fixed integers. Ifj-int AOBOAand Ais aft, 1)-
g-m, open set in a bitopological space 1,), then B is at, 1;)- g-m, open set in
X 1,12).

Proof: Givent-int A B O A and A is at, T1j)-g-m, open set in (X, T2).

Then A0 B° O (t-int A)° and A is a (i, T)- g-m closed set. That is°A1 B¢ O 1j-cl (A°)
and A is a (i, T)- g-m closed set. By the Theorem 2.13iBa (i, T;)- g-m closed set.
Thus by the Definition 2.22 B is a;,(T;)- g-m, open set in (;,T2).

Theorem 2.31. Let i, j O {1, 2} be fixed integers. If a set A is any,(T;)- g-m, open set
in a bitopological space (¥;1,),then O = X whenever O is apopen set and

T-int (A) UA°O O.
Proof: Let A be any €, 1;)-g-m. open set in (X,T,) and O be am-open set such that
T-int (A) U A0 O. Then Ais a (i, T)-g-m closed set and Qs at;-closed set such that

O° O [v-int (A) U A9 = (r-int A)° N (A" = T15-cl (A°) — A Since A'is a (i, T;)-g-m

closed set and Os aTt-closed set, by the Theorem 2.4l (A°) — A® contains no
nonempty closed subset, which implies=Qp. Hence O = X.

Remark 2.32. Converse of the Theorem 2.32 need not be true.

Example 2.33. In Example 2.26 let A = {a, c}. The only-open set containing-int (A)
U A®is X, but A is not aT(, T,)- g- m, open set.

Theorem 2.34. Let i, j[{1, 2} be fixed integers. If AJY 0O X and A is a ¥, 1)- g-mu
open set in a bitopological space1(xt,), then A is a¥xj, T;)- g- m, open set relative to Y.

Proof: Let A° 0 Y [ O such that Y O is 1.y minimal open set and O i minimal

open set in Then AJO. By hypothesis Ais a ;, T;)-g-m closed set.
Thereforetj-cl (A9)0O, Y N 1-cl (A% O Y N O. Hence Ais (t;, T)-g-m; closed relative
to Y which implies A is {;, T;)-g-m, open relative to Y.

Theorem 2.35. Let i, j0{1, 2} be fixed integers. If A B O X and A is §i, T)-g- m, open
relative to B and B ist(, T)-g- my open set in (X;,1,), then A is ¢, T;)-g-m, open
relative to Y.

Proof: From [1] it is followed that A ist, T;)-g-m, open relative to Y.
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