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1. Introduction 
For studying vector bundles we have a technique of characteristic classes. Any bundle ξ 
in the cohomology of the base space B(ξ)  which is the natural setting for characteristic 
classes �1�, so that characteristic classes behave well with respect to bundle maps. 
       The theory of characteristic classes is associated to the names of Whitney-Stiefel, 
Pontryagin and Chern, and was developed further by Weil, Bott, Thom and many others. 
Whitney and Stiefel introduced characteristic classes in [2,3]. The Whitney product 
theorem is introduced by Whitney in (1940-1941) and due Wu in (1948) [3], Stiefel 
studied the homology classes determined by the tangent bundle of a smooth manifold and 
invented co- homology theory, whereas Whitney discussed the case of sphere bundles, 
which have the advantage of having compact fibers. Pontryagin  constructed the classes 
which bear his name by studying the homology of so- called Grassmann manifolds. 
Pontryagin's work goes back to (1942)[2]. In (1946), Chern defined characteristic classes 
for complex vector bundles, and showed that complex Grassman manifolds are easier to 
understand than the real ones [2,3]. Hopf had discovered in (1927) that the number of 
zeroes of a smooth vector field on a compact oriented manifold is equal to its Euler 
characteristic; Thom and Wu (1986) proved that the integrals of the highest-dimensional 
Chern class equals the Euler characteristic, and Hirzebruch constructed associated to the 
tangent bundle of a4k-dimensional real manifold (compact and oriented) called the L-
genus, and proved that it is equal to another integer, called the signature. In the case of 4-
dimensional manifolds it turns out to be equal to one-third of the integral of the first 
Pontryagin class of the manifold [2]. There have been many generalizations, such as the 
extension of Hopf's result to sections of complex vector bundles by Bott and Chern and 
the various "index theorems", the most famous of which is the Atiyah-Singer index 
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theorem, which relates the index manifold to the index of an elliptic differential operator 
(the Laplacian) on that manifold [4]. 

       Our discussion of characteristic classes is rather heuristic and follows mainly the 
ideas of Stiefel-Whitney classes and Chern. And only briefly mention how they are 
related to Pontryagin and Euler classes.  
 
2. Basics of characteristic classes 
Characteristic classes are cohomology classes associated to vector bundles. They measure 
in some way how a vector bundle is twisted, or nontrivial. There are four main types of 
characteristic classes: 
1. Stiefel-Whitney classes wi(E) ∈H(B; Z2) for a real typical vector bundle E→B 
2. Chern classes ci(E) ∈H2i(B;Z) for a complex typical vector bundle E→B 
3. Pontryagin classes pi (E) ∈H4i(B;Z) for a real typical vector bundle E→B 
4. The Euler class e(E) ∈Hn(B; Z) for an oriented n -dimensional real typical vector 
bundle E→B 
     The Stiefel-Whitney and Chern classes have same behaviors  so they are formally 
quite similar. But when you take Z rather than Z2 coefficients, Pontryagin classes can be 
expressed as a refinement of Stiefel-Whitney classes, and the Euler class is a further 
refinement in the orientable case. 
 
Definition 1. For a real vector bundle ξ, the ith Stiefel-Whitney class of  bundle ξ, 
denoted wi(ξ), is xi(ξ) ∈Hi(B (ξ), Z2) [4,5]. 
For a complex vector bundle ξ, the ith Chern class of ξ, denoted ci(ξ), is  
xi(ξ)∈H2i(B (ξ), Z) [5,6]. 
In addition, w(ξ) =1 + w1(ξ) + ... + wn(ξ) is called the total Stiefel-Whitney class and c(ξ) 
= 1 + c1(ξ) + ... + cn(ξ)  is total Chern class [6].  
 
3. Properties of Stiefel-Whitney classes 
For any real vector bundle (over a space B there is a class w(ξ) ∈Hi(B(ξ), Z2), with the 
following properties: 
(P0) We have 1 + wI(ξ) + ... + wn(ξ) where wi(ξ) ∈Hi(B (ξ), Z2) and wi(ξ)  = 0 for  
i> dim ξ= n .(P1) If ξ and η are B-isomorphic, it follows that w(ξ) = w(η), and if f: Bl→ B 
is a map, then we have f* (w (ξ)) = w(f* (ξ)). (P2) (Whitney sum formula) For two vector 
bundles ξ and η over B, the relation w(ξ⊕η) = w(ξ)w(η) (cup multiplication) holds, and 
so ��(ξ)w(ξ ⊕ η) = w(η) unique solution!, where ��   the inverse of w.(P3 ) For line bundle 
λ over S1 = RPl, the element w1(λ)is nonzero in H1(Sl, Z2) = Z2. 
(P'3) For line bundle γ1 over RP∞, the element w1(γ1)is the result generator of the 
polynomial ring H*( RP∞,Z2).Using property (P1) and the inclusion RP1

→ RP∞ , we find 
that (P3) and (P'3) are equivalent to each other. We choose a generator of H2(S2, Z) which 
in turn defines a generator of H2(CPn,Z) for each n with 1 ≤n ≤ +∞. This element z will 
generate the polynomial ring H*(CP∞,Z) [5,7]. 

Remark 1. Properties (P0), (P1) and (P'3) hold for Stiefel-Whitney. 
 
4. Properties of Chern classes 
For each complex vector bundle ξ over a space B there is a class c(ξ) ∈H*(B, Z) (where 
H* is universal cohomology ring ) with the following properties:  
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(Co) We have c(ξ) = 1 + cI(ξ) + ... + cn(ξ)   where ci(ξ) ∈H2i(B, Z)  and ci(ξ) = 0 for 
i > dim ξ.  
(C1) If ξ and η are B-isomorphic, it follows that c(ξ) = c(η), and if f: Bl→ B is a map, then 
we have f*(c(ξ ))= c(f* ( ξ)).(C2) For two vector bundles ξ and η over B, the relation 
c(ξ⊕η) = c(ξ)c(η) (cup multiplication) holds. 
(C3) For line bundle λ over S2 = CPl, the element c1(λ) isthe given generator of H2(S2, Z).  
(C'3) For  line bundle γ1 over CP∞, the element c1(γ1)is theresult of the polynomial ring 
H*(CP∞,Z). Using property (C1) and the inclusion CP1→ CP∞ , we see that (C3)and (C'3) 
are equals. From the parallel character of properties (P0) to (P3) and properties (Co) to 
(C3) it is clear that the two sets of characteristic classes have many formal properties in 
common [3,5]. 
 
Remark 2. Properties (Co), (C1), and (C'3) hold for Chern classes. 
 
Theorem 1. The functions wI: LR(B) → Hl(B,Z2) and cI: Lc(B) → H2(B,Z) define 
isomorphisms of co functors [5,6].  
We have w1(ξ⊗η) = w1(ξ)+w1(η) and c1(ξ⊗η) = c1(ξ)+c1(η), from this theorem. The 
cohomology ring H*(RP∞,Z2) is generated by w1(γ1) and H*(CP∞,Z) by c1(γ1). 
Consequently, the characteristic classes of line bundles are uniquely defined by their 
axiomatic properties [2]. 
 
5. Stability properties and examples of characteristic classes  
Proposition 1. If ξ is a trivial bundle over B, then wi(ξ) = 0 for i > 0 in the real case and 
ci(ξ) = 0 for  i> 0 in the complex case [3,5].  
Proof: The statement is true for ξover a point because the cohomology in nonzero 
dimensions is zero, and every trivial bundle is isomorphic to the induced bundle by a map 
to a point. By properties (P1,C1) we have the result. In addition, using properties (P2,C2), 
we have the following result.  
 
Theorem 2. Let ξ and η be two equivalent vector bundles. Then w(ξ) = w(η) holds in the 
real case and c(ξ) = c(η) holds in the complex case [5]. 
Proof: For some n and m, there is an isomorphism between ξ⊕θn and η⊕θm. From this 
we have the following equalities in the real case:  
w(ξ) = w(ξ)w(θn)=w(η⊕θm)= w(η) w(θm) = w(η)1= w(η) or we have w(ξ)=w(η).  
Similarly, in the complex case we have c(ξ)= c(η) (where θ is trivail bundle) 
 
Note 1. What happens if ξ⊕η is trivial? Well, by the Whitney product theorem, 
w(ξ⊕η)= 0 for i > 0. So,w1(ξ) + w1(η) = 0 (Remember w0(ξ) = w0(η) =1). 
w2(ξ) + w1(ξ) w1(η) + w2(η) = 0,⇒ w2(η) = (w1ξ)

2−w2(ξ)[7]. 
In particular, if ξ⊕η is trivial: ��(ξ) = w(η). 
 
Proposition 2. For the sphere Sn the tangent bundle τ(sn), we have w(τ(sn)) = 1.  
Proof: Since τ(sn)⊕θ1  and θn+1 are isomorphic, the tangent bundle τ(sn) is s-trivial. 
Therefore, proposition1 and theorem2, w(τ(sn)) = 1 [5,6]. 
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Proposition 3. For the tangent bundle τ(RPn) there are the relations w(τ(RPn)) = (1 + 
z)n+1, where z is the generator of Hl(RPn,Z2) and c(τ(CPn)) = (1 + z)n+1, where z is the 
generator of H2(CPn,Z), where P is projection bundle. 
Every vector field on RPn defines a vector field on Sn. A nonexistence statement for 
vector fields on Sn is stronger than a nonexistence statement for vector fields on RPn, but 
as an application we include the next proposition which is really an easy consequence 
[5,6]. 
 
Proposition 4. Every tangent vector field on RP2k has at least one zero [5]. 
Proof: Observe that w2k(τ(RP2k)) = (2k + 1)Z2k = Z2k≠0. If τ (RP2k) had cross section that 
was everywhere nonzero, we would have τ (RP2k) =ξ⊕θ1Then w2k(τ(RP2k))= w2k-

1(ξ)w1(θ
1)= 0, which is a contradiction. 

 
Definition 2. Let ξ be a vector bundle over B. A splitting map of ξis a map f: B1 →B such 
that f*(ξ) is a sum of line bundles and f*:H*(B, K c) →H* (B1, Kc) is a monomorphism [5].  
 
6. Existing of splitting maps 
Proposition 5. If ξ is a vector bundle over B, there exists a splitting map for ξ [5]. 
Proof: We prove this by induction on the dimension of ξ. For a line bundle, the identity 
on the base space is a splitting map. In general, let q: E(Pξ)→ B be the associated 
projective bundle. Then q*:H*(B, Kc) → H* (E(Pξ,Kc) is a monomorphism, and q*(ξ) = 
λξ⊕σξ. By inductive hypothesis there exists a splitting map g:B1 → E(P(ξ)for σξ. Then f 
= qg from B1 to B is a splitting map for ξ. 
 
Corollary 2. For r vector bundles ξl... ,ξr over B which are either all real or all complex. 
Then there exists a map f: B1 → B such that f is a splitting map for each ξi where 1 ≤ i ≤ r 
[5]. 
 
Theorem 3. The properties (P0) to (P3) completely determine the Stiefel-Whitney classes, 
and the properties (Co) to (C3) completely determine the Chern classes [5].  
Proof: Let wi and �� i be two sets of Stiefel-Whitney classes, and let ξn be a vector bundle 
with splitting map f:B1 →B. Since w1is uniquely determined for line bundles λi, we have 
f* (w(ξ)= w(f* (ξ) =(1 + w(λ1)··· (1 + w1(λn)) = (1 + ��1 (λ1)) ... (1 + ��(λn)) = ��(f*(ξ)) = 
f*(��(ξ), where f*(ξ) = λ1⊕··· ⊕λn. Since f* is a monomorphism, we have w(ξ)= ��(ξ). 
The same proof applies to Chern classes.  
 
Theorem 4. For ξ and η, two vector bundles over B, there is the relation x(ξ⊕η) = 
x(ξ)x(η) [5]. 
(Where x denotes Stiefel-Whitney classes or the Chern classes) 
 
7. Fundamental class of sphere bundles 
For a vector bundle ξ with total space E(ξ), let E0(ξ) denote the open sub-space of 
nonzero vectors. For b∈B, let jb: (R

n,Rn - {0}) → (E(ξ),E0(ξ)) denote the inclusion onto 
the fibre of ξ over b∈B. Each complex n-dimensional vector bundle restricts to a real 
(2n)-dimensional real vector bundle[5].In previous sections , we developed characteristic 
classes, using projection bundle P(ξ); now we use E0(ξ) to define other classes. 
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Definition 3.  A vector bundle is orientable provided its structure group restricts from 
O(n) to SO(n). An orientation of a vector bundle is a particular restriction of the structure 
group to S O(n). An oriented vector bundle is a pair consisting of a vector bundle and an 
orientation on the bundle. In other words, a vector bundle has an atlas of charts where the 
linear transformations changing from one chart to another have strictly positive 
determinants [5]. 
 
Example1. Every restriction of a complex vector bundle to a real vector bundle is 
orientable and has a natural orientation because U(n) ⊂SO(2n) ⊂O(2n)[5]. The next 
theorem contains the fundamental construction of this section. 
 
Theorem 5. Let ξ be a real vector bundle. The cohomology groups have coefficients in Z 
if the bundle is oriented and in Z2 in general. Then the following statements hold [5]:  
(1) There exists a unique Uξ∈Hn(E, E0) such that j*t(Uξ) is a fixed generator of  Hn(Rn, 
Rn- {0}).  
(2) For i < n, there is the relation Hi(E, E0) = 0.  
(3) The function a↦p*(a) Uξ (cup product) of Hi(B) →Hi+n(E, E0) is an isomorphis. 
 
7. The oriented types classes… the Euler class 
Definition 4. The Euler class of a real vector bundle cover B, denote bye(ξ),is p*-l j*(U ξ), 
where p: E →B is the projection of ξ. The term "Euler class" is usually used only in the 
oriented case and with integral coefficients. Moreover, we have e(ξ) ∈Hn(B). The class Uζ 

is called the fundamental class [3,4,5]. 
 
Definition 5. (The Gysin sequence) 
For (n-dimensional real vector bundle) ξn there is the following exact sequence of 
cohomology groups where the coefficients are in Z2 in general or Z for oriented bundlesis 
called the Gysin sequence of the bundle (E0, p, B) [8]. 

��(�)
�������(�)
��������� ����(�)

 ∗
→ ����(#$)

%
→ �����&(�) 

 
Corollary 3. The Euler class of an odd-dimensional oriented bundle ξ has the property 
that  2e(ξ) = 0 [3]. Because of this we assume that the fiber dimension is even when using 
the Euler classes. 
 
Corollary 4. If the orientation of ξ is reversed, then the Euler class e(ξ) changes sign 
e(ξ')  =- e(ξ) [3]. 
 
Proposition 6. Let ξ be a vector bundle over B, and let f: B' →B be a map. Then f* (e(ξ) = 
e(f* (ξ). 
Proof: There is a map ɡ:(E', E0) →(E, E0) inducing f, where E is the total space of ξ and 
E' is the total space of f*(ξ). By the uniqueness property of Theorem (10), f*(Uξ) is equal 
to Uf* (ξ ), since they are equal on each fibre of f*(ξ). The proposition follows now from the 
commutative diagram. 

�∗(#	, #$) →	�
∗(#) 	→ 	�∗(�) 

↓ )∗ 																					 ↓ )∗ 									 ↓ *∗ 
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�∗(#+, #+$) → �∗�#+� → �∗��+�								.	
 
Corollary 5. If ξ is a trivial bundle of dimension n ≥ 1, then e(ξ) = 0 [3]. 
 
Theorem 6. For the Euler class, the relation e(ξ⊕η) = e(ξ)e(η) holds [5].  
Proof: By Definition (of Euler class), we have e(ξ⊕η) = p* -lj*(U). Then we calculate p* -

lj*(U) = p* -lj*(q1*(U')q2*(U") = p* -l[p1* j1* (U')p2* j2*(U")] = e(ξ)e(η). This proves the 
theorem.  
 
Theorem 7.  If a vector bundle ξ has an everywhere-nonzero cross section, then  e(ξ)= 0 
[3].  
Proof: A vector bundle with an everywhere-nonzero cross section splits off a line bundle, 
that is, ξ =θ1⊕η . Then e(ξ) = e(θ1)⊕e(η ) = 0e(η) = 0. The Euler class of a trivial bundle 
is zero.  
 
Proposition 7. For two vector bndle ξ	and	η the Cartesian product of Euler class is given 
by  e(ξ×η) = e(ξ)×w(η)[3]. 
Proof: see [3]. 
 
8. Steenrod operations by Stiefel–Whitney classes 
Definition 6. A cohomology operation of degree I with coefficients in group G is a 

morphism θ:H
*
(,G)→H

*+i
(,G) of functors [3]. 

 
Theorem 8. For cohomology over the field Z2 of two elements, there is a unique 

operation Sqi:H
*
(,F2)→H

* +i
(,Z2) of degree i such that Sq

i
 commutes with suspension and 

Sq
i
(x) =x

2
, the cup square, for x∈H

i
(X,Z2) [6]. 

The operation Sq
i 
is called the Steenrod square. 

 
Theorem 9.The Steenrod squares satisfy the following properties [6]. 

(1) In degree 0, Sq
0 
is the identity, and Sq

i
|H

n
(,Z2) =0 for i>n. 

(2) For x,y∈H
*
(X,Z2), (Cartan formula) we have 

 ( )  ( ) ( ).
k i j

k i jSq xy Sq x Sq y
= +

=∑
 

Multiproduct version is 

(1) ... ( )

(1)( ( )
1 1(  ...  )  )... (  ).

i i r q

q i i r
r rSq x x Sq x Sq x

+ + =

= ∑
 

(3) For 0<a<2b, (Adem relations) the iterate of squares satisfies 
2

 

0

1
    .

2

a

a b a b j j

j

a j
Sq Sq Sq Sq

a j

  
+ −

=

− − 
=  − 
∑

 
On low-dimensional classes for Steenrod operations we have the following theorem. 
 
Theorem 10. We consider dimensions one and two [6]. 
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(1) If x∈H
1
(X,Z2), then we have ( )i mSq x =

 .m im
x

i
+ 

 
   

(2) If y∈H
2
(X,Z2) and if Sq

1
(y)=0, then we have

2          ( )   
1

i m m im
Sq y y + 

=  
   

And Sq
2i+1

(y
m
) =0. 

Proof: When m=0 is clear by using induction on m. Statement (1) then is obtained as 
follows; 

Sq
i
(x

m
)=Sqi(x.x

m−1
) =Sq

0
(x).Sq

i
(x

m−1
)+Sq

1
(x).Sq

i−1
(x

m−1
) 

  1  1  
         . 

1
m i m im m m

x x
i i i

+ +− −     
= + =     −       

 
Theorem11. Using the class U

ξ
∈Hn(D(ξ)/S(ξ)) and the total Steenrod operation 

Sq=∑0≤iSqi we have the following formula for the total Stiefel-Whitney class 

Sq(Uξ) =w(ξ)Uξ or w(ξ) =φ
−1

(Sq(Uξ)), where D(ξ), S(ξ) is the associated disk bundle, and 
the associated sphere bundle respectively. 
Proof: See [6]. 
Adem relations: (special cases) (1) For a=1, we have 1≤b, in this case the corresponding 
sum consists only the term for j=0, so that, we have 

1
2 1 1 if

1 0 if

b
b bb b is evenSq

Sq Sq Sq
b is odd

+
+−  

= =  
    

With simple cases Sq
1
Sq

1
=0, Sq

1
Sq

2
=Sq

3
, Sq

1
Sq

3
=0, and Sq

1
Sq

4
=Sq

5
[6].  

(2) For a=2, we have 2≤b, in this case the sum consists of only the two terms 
corresponding to j=0 and j=1. So that, we have 

2 2 1 1 1   2
.

2 0
b b bb b

Sq Sq Sq Sq Sq+ +− −   
= +   
     

 It divides into two cases depending on b mod 4. 
2

2 1 1   for 0, 3(mod4)   
  

 0    for 1,2(mod4)

b
b b Sq b

Sq Sq Sq Sq
b

+
+  ≡

= + 
≡  

With some simple cases Sq
2
Sq

2
=Sq

3
Sq

1
, Sq

2
Sq

3
=Sq

4
Sq

1
+Sq

5
, Sq

2
Sq

4
=Sq

5
Sq

1
+Sq

6
, 

Sq
2
Sq

5
=Sq

6
Sq

1
, and Sq

2
Sq

7
=Sq

8
Sq

1
+Sq

9
. 

To integers Z, the binomial coefficient (
0
1
) is the coefficient of x

i 
in the polynomial 

(1+ x)
n
∈Z[x]. Here, they are understood as numbers modulo 2. 

 
Example 2.  (Two mod 2 congruences) 
We have the following in the field Z2={ 0,1}  of two elements for c∈Z[6] 
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0
         

1 1

c if c is even

if c is odd

  
= 

    
and 

( )
( )
mod 40 0,1

         
mod 42 1 2,3

c if c

if c

 =  =  =    
 
Definition 7. The Thom space of a vector bundle ξ, denoted ξB, is the quotient D(ξ)/S(ξ).  
The projection σ:Hi+n(D(ξ), S(ξ) → Hi+n (ξB) is an isomorphism, and we define the Thorn 
morphism ψ: Hi(B) → ��i+n (ξB) to be ψ = σϕ' [5].  
 
Theorem 12. (Thom) The Stiefel- Whitney class wi(ξ) is given byϕ-1(SqiUξ). 
wi(ξ) =ϕ

-1(SqiUξ) [1]. 
By other mean the total Stiefel-Whitney class  w(ξ) = w0(ξ) + wI(ξ) + ...   is given by  ϕ-

1(Sqi) ϕ(1), In terms of the total square Sq, and wi(ξ) is the unique class such that  
ϕ(wi(ξ))=Sqi ϕ(1). 
 
Theorem 13. The natural isomorphism Hn(B; Z) → Hn(B; Z2) carries the Euler class e(ξ) 
to the top Stiefel-Whitney class wn(ξ) [3]. 
Proof:  If we apply this homomorphism (induced by the coefficient surjection Z →Z2) to 
both sides of e(ξ) = φ-1(u⌴u) then evidently the integer cohomology class u maps to the 
mod 2 cohomology class u defined before and u⌴u maps to Sqn(u). Hence φ−1 (u⌴u) 
maps to  φ−1Sqn(u) =wn(u). 
 
Definition 10. (Poincaré duality) 
Let M be a compact m-dimensional manifold and let ω ∈H

r
(M) and µ∈H

m−r
(M). Noting 

that ω∧µ is a volume element, we define an inner product 

〈, 〉:H
r
(M)×H

m−r
(M)→Rby

,
M

ω µ ω µ= Λ∫                                                                      (1) 

The inner product is bilinear. Moreover, it is non-singular, that is, if ω =0 or 
µ≠0,〈7

, 8〉cannot vanish identically. Thus, equation (1) defines the duality of 

H
r
(M) and H

m−r
(M),H

r
(M)∼=H

m−r
(M) called the Poincaré duality [9]. 

 
9. Wu’s formula for the Stiefel–Whitney classes of a manifold 

The Steenrod squares Sq=∑iSq 
i
and the Stiefel–Whitney class w(ξ) of a bundle are 

related by the form w(ξ) =φ
−1

(Sq(Uξ)). Using Poincaré duality and its relation to UM, we 
have the Wu class and its relation to the Stiefel–Whitney classes of the tangent bundle 
[3,6]. 
 

Corollary 6. Let Sq
tr
: H(X)→H(X) denote the transpose of the (total) Steenrod square 

Sq:H*(X)→H*(X). In particular, we have Sq(a),b=a ,Sq
tr
(b) for a∈H* (X) ,b∈H*(X) [6]. 
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Definition 8. Let M be closed manifold with Poincaré duality is omorphism  

D: H
i
(M) →Hn-i(M) and fundamental class [M]. The Wu class of M is v=D

−1
(Sq

tr
([M])) 

[5,6]. 
     The Wu class has the property that 〈:, ;(<)〉=〈:, =>?@	([A])〉= 
〈=>(:), [A]〉=〈:, <			͡		[A]〉=〈:<, [A]〉.(		͡		) means cap product. 
 
Theorem 14. Let M be a closed smooth manifold. Then, the Stiefel-Whitney class 
w(M)=w(T(M)) of the tangent bundle is given as the Steenrod square of the Wu class 
w(M) =Sq(v) [6]. 
Proof: See [5]. 
 
Corollary 7. The Stiefel–Whitney classes of closed manifolds are homotopy in- variants 
of the manifold [6]. 
 
Corollary 8. If v=∑i

vi ,where vi
∈H

i
(M), then we have vi=0 for 2i> dim(M) [5,6]. 

Proof: See [5]. 
 
9. The Atiyah class 
We discuss the notion of holomorphic connection, which should not be confused 
with the notion compatible with the holomorphic structure. This notion is much 
more restrictive, but it generalize to pure algebraic setting [10]. 
 
Definition 9. And let { Ui} be an open covering of X such that there are holomorphic 

trivializations (12)ψi:ξUi→U×C
r
, and transition function ψi,j=ψiψj

−1
: C

r
→C

r
. Consider 

the differentials dψi,j:C
r
→C

r
, and the compositions ψj

−1
(ψj

−1
dψi,j)ψj. 

Since {ψi ,j} is a cocycle also {ψj

−1
(ψj

−1
dψi ,j)ψj} is a cocycle. The class given by the Čeach 

cocycle {ψj

−1
(ψj

−1
dψi,j)ψj

} is denoted by A(ξ)={ Ui ,j,ψj

−1
(ψj

−1
dψi,j)ψj}

∈H
1
(X,ΩX⊗ 

End(ξ)), and is called the Atiyah class of the holomorphic vector bundle ξ [10]. 
 
Proposition 8. A holomorphic vector bundle ξ admits a holomorphic connection if and 

only if its Atiyah class A(ξ)∈H
1
(X,ΩX⊗ End(ξ)) is trivial [10]. 

Proof: See [10]. 
 
9.1. The Atiyah-Singer index theorem 
Let D: Γ(ξ)→Γ(η) be an elliptic differential operator between vector bundles ξ and η 
on a compact oriented differentiable manifold X of dimension n, then [10]; 

(1) The topological index γ(D) of the operator D is ch(D)Td(X) [X]. 
(2) The elliptic differential operator D has a pseudo inverse, it is a Fredholm 

operator. It’s analytic index is defined as the difference between the finite 
dimension of Ker(D) and the finite dimension Coker(D) i.e. 
Index(D)=dimKer(D) dimCoKer(D)=dim Ker(D)dim Ker(D*)[4] (where D* 
the adjoin of D) 
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Remark 3. 
(i) Td(X) is the T odd class of X, 

(ii) ch(D) is equal to ϕ
−1

(ch(d(p*ξ,p*η,σ(D)), 

(iii) ϕ is the Thom isomorphism from H
k
(X,Q) to H

n+k
(B(X)/S(X),Q),  

(iv) B(X) is the unit ball bundle of the cotangent bundle of X, and S(X) is its 
boundary, and p is the projection to X. 

(v) ch is the Chern character from  K-theory K(X) to the rational cohomology 
ring H(X,Q). 

(vi) d(p*
ξ,p*η,σ(D)) is the” difference element” of K(B(X)/S(X)) associated 

to two vector bundles p*ξ and p*η on B(X) and an isomorphism σ(D) 
between them on the subspace S(X). 

(vii) σ(D) is the symbol of D. 
 
Theorem15. (Atiyah-Singer) 
Let D :Γ(ξ) →Γ(η) be an elliptic differential operator between vector bundles ξ and η on 
a compact oriented differentiable manifold of dimension n. Then the analytic index and 
the topological index of D are equal [4,10], 

Index(D)=γ(D). 
 
10. Relations between real and complex vector bundles 
We have considered the operation of conjugation ξ* of a complex vector bundle ξ, we 
can also restrict the scalars of ξ to R.  
This yields a group homomorphism  
ε0: Kc(X) → KR(X). 
The process of tensoring a real vector bundle η with C yields a complex vector bundle 
η⊕C, called the complexification of η. This yields a ringmorphism 
εU: KR(X) → Kc(X) . 
Clearly, there are the relations, ε0(εU(η))=2η and εu(ε0(ξ ))= ξ + ξ*. 
Observe that for a real vector bundle η the complex vector bundles η⊕C and (η⊕C)* 
are isomorphic [2]. 
 
Proposition 9. For a complex vector bundle ξ, the relation ci(ξ*) = (-l) ici(ξ) holds [5,11].  
Proof: The proposition is true for line bundles. Let f: B1 → B be a splitting map, where 
f* (ξ) = λ1⊕··· ⊕λn. Then c(f* (ξ*))= c(λ* 1)··· c(λ* n) =  (1-c1(λ1))··· (1-c1(λn))  
=∑ (−1)�G�(H∗)$I� . 
This proves the result. 
 
Corollary 9. If a complex vector bundle ξ is isomorphic to ξ*, then 2c2i+1(ξ)=0 for 0≤ 
i(5,11).  
Proof: We have c2i+1(ξ) = - c2i+1(ξ) = - c2i+1(H̅) or 2c2i+1(ξ) = 0.  
The above corollary applies to the complexification (η⊕C)* of a real vector bundle. 
 
Theorem 16. Let ξ be the canonical (real) line bundle on RP2n-1 and η the canonical 
(complex) line bundle on CPn-1. Then the following statements apply [5].  
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(1) The bundle q*(η)) is isomorphic to εU (η).  
 (2) The class w2 (ε0(η)) is the mod 2 reduction of c1(η).  
(3) cl(η)) = e(ε0(η)). 
 
Corollary10. Over a para compact space, w2(ε0(η)) is equal to the mod 2  restriction of 
c1(η) for any complex line bundle η [5]. 
Proof: The corollary is true for the universal bundle by condition (2) in theorem (16) and 
therefore for all complex line bundles.  
 
Corollary11. Over a paracompact space, e(ε0(η)) is equal to c1(η)for any complex line 
bundle η [5]. 
Both corollaries are true for the universal bundles by theorem (5), and therefore they are 
verified for all line bundles, using the classifying maps.  
 
Corollary 12. If a complex vector bundle ξ of rank n over B is given a canonical 
orientation then e(ξ)  =cn(ξ) ∈H2i(B, Z) [3]. 
 
Theorem 17. Let ξ be a real vector bundle over a space B. Then ξ is orientable if and 
only if  wl(ξ) =0 [5].  
Proof: First, we consider the case where ξ =λ1⊕··· ⊕λn is a Whitney sum of line 
bundles. Then the line bundle ⋀n

ξ has as coordinate transformations the determinant of 
the coordinate transformations of ξ. Therefore, ξ is orientable if and only if ⋀n

ξ is trivial, 
that is, wI(⋀

n
ξ) = 0. But wI(⋀

n
ξ) = wl( λ1⊕··· ⊕λn) = wl(λl) + ... + wl(λn) = wl(ξ). 

Therefore, ξ is orientable if and only if wI (ξ) = 0.  
  For the general case, let  j: Bl → B be a splitting map for ξ. Then ξ is orientable if and 
only if f* (ξ) is orientable, because f*(w I(⋀

n
ξ))=wI(⋀

nf* (ξ) holds and f*  is a 
monomorphism. Finally, we have wI(ξ) = 0 if and only if wI(f*( ξ)) = 0. This proves the 
theorem [5]. 
 
11. Pontrjagin class 
Definition10. The ith Pontrjagin class of a real vector bundle ξ, denoted Pi(ξ), is (-1) 
ic2i(ξ ⊕C) which is a member of H4i(B, Z) [3,5]. 
We define P(ξ) = 1 + P1(ξ) + ... ∈H*(B,Z) to be the total Pontrjagin class of the vector 
bundle ξ. The Whitney sum theorem holds only in the following modified form:  
                                                   2(p(ξ⊕η) - p(ξ)p(η)) = 0  
Let q: RP2n-1→CPn-1be the map that assigns to each real line determined by {x, -x} for z 
∈S2n-1 the complex line determined by z. 
By definition we get Pi(ξR)  =(-1)ic2i(ξ ⊕C)  where(ξ ⊕C) is complex get real [6]. 
In particular P1(ξ)=c1(ξ)

2 -2c2(ξ) [6,12]. 
 
Theorem 18. For any orientable 2n-vector bundle ξ, pn(ξ) = e(ξ)2 [12]. 
Proof: Pn(ξ)  =(-1)nc2n(ξC) ==(-1)ne (ξCR)=±e(ξn⊕ξn)= ==(-1)ne (ξ)2. 
For the tangent bundle, it is commonto write p(M) instead of curvature two form, we 

have Each Pontrjagin class is given by    p0(M)=1. 

Although p2(M) vanishes as a differential form [9,13,14]. 
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Lemma 13. For any complex vector bundle ξ with fiber dimension n, the Chern classes 
determine the Pontrjagin classes by the formula [8,15]. 
1−P1(ξ) + P2(ξ)-... =(1-c1(ξ) +c2(ξ) -…)(1+c1(ξ) +c2(ξ) +…). 
Proof: c(ξ⊕RC) =c(ξ )c(ξ*) =∑∞�L$ G� (H)∑ (−1)�∞

�L$ G� (H). Moreover, if k=1 (mod 2) 
then ck(ξ ⊕C)= ∑ (−1)�$I�IM G� (H) ck-1(ξ) =0. So the total Chern class is just the sum of 
all even Chern class [15].  
      Now the others useful characteristic classes associated with real or complex vector 
bundles are Atyiah class, Wu class and Atyiah-Singer class as we saw in the study,  also  
how they interacted and developed the main characteristic classes in different terms. 
 
Note: that the following two tables (1,2) give a good comparison between all 
characteristic classes which we have discussed. 
 
Table 1: This table shows a comparison the four main characteristic classes which we 
had discussed.  
Character

istic.  
Class 

Type Method Chern Stiefel-
Whitne
y 

Euler 

Chern 
 

Complex  
Coefficient:ZGroup
=U(K) 

c0(ξ)=1 
c1(ξ)=0ci(ξ)=
0 
i>dimξ 

 All 
propert
ies are 
similar 
 

c1(L)=e(L)
R 

Stiefel-
Whitney 

Real Coefficient:Z2 
Group=O(K) 
 

w0(ξ)=1 
w1(ξ)=0wi(ξ)
=0 
i>dimξ 

How.to 
compute the  
total-are 
similar 

 wn(ξ)=e(ξ) 

Euler Orientable Real   
Coefficient: Z 
Group=O(K) 

2e(ξ)=0 if 
dimξ is 
odde(ξ)=0 
if ξ nonzero 
cross 
sectionor 
trivial 

e(ξ)R=cn(ξ) e(ξ)R=
w1(ξ).

  

 

Ponterjag
in 

Orientable Real into 
complex Coefficient 
Z 
Group=SO(K),O(K). 

P0(M)=1,whe
re M tangent 
bundle 
Pi(ξ)=0 i>n/2 

Pn(ξ)  
=(1)nc2n(ξC) 
P(ξR)=c(ξ)c(ξ
*) 
P1(ξ)=c1(ξ)

2 

=-2c2(ξ)
 

 Pn(ξ)=e(ξ)
2
. 

 

 
Table 2: This table shows the relations between Wu class, Atiyah class and Atiyah-
Singer class with Stiefel-Whitney classes, concepts and theorems which we had discussed  
Characteristi
c class 

Type Method  Index theorem Holomorphi
c  

Steenrod 
operation 
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Stiefel-
Whitney 

Real 

Coefficient:Z2 

Group=O(K) 

w0(ξ)=1 
w1(ξ)=0
wi(ξ)=0 
i>dimξ 

  w(ξ) =φ-

1(SqUξ) 

Atiyah complex   A(ξ)∈H
1
(X,

ΩX⊗End(ξ
)) 

 

Wu  real vi=0 
for2i> di
m(M) 

   

Atiyah -
Singer 

Oriented real  Index(D)=γ(
D) 

 w(M) =Sq(v) 

 
12. Conclusions 
Our study shows a deep and strong relation between several types of characteristic 
classes, and how each of them develop anther by their relations, namely Ponterjagin and 
Euler classes to chern class, Steenrot square to Stiefel-Whitney, Steenrot with Wu class, 
atiyah-singer class with index theorem and atiyah class admits holomorhpic. So we have 
the real type of characteristic class in term of complex type.   
      The study also appears that complex characteristic are more easy and more useful to 
get new relationships. 
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