Annals of Pure and Applied Mathematics

Vol. 14, No. 2, 2017, 293-306 = Amnalsof
ISSN: 2279-087X (P), 2279-0888(online) .
Published on 15 September 2017 Plll'e alld Applled
www.researchmathsci.org :
DOI: http://dx.doi.org/10.22457/apam.v14n2al2 Mathe—n‘atlcs

Types and Properties of Characteristic Classes

Yousif Atyeib | brahim Hassan

Department of Mathematics, Collage of Science arntd Al-Rass, Qassim University
Kingdom of Saudi Arabia
E-mail: yousift805@gmail.com

Received 6 June 2017; accepted 20 June 2017

Abstract. This paper aims to study the basic properties, \betga and types of
characteristic classes. The study gives the impogtaf characteristic classes and how
they develop cohomology theory as a classificatimthod in algebraic topology. The
paper deals also with the relations between sewdratacteristic classes with their
comparison.

Keywords: Fiber bundles, vector bundles, characteristicselascohomology theory
AMS Mathematics Subject Classification (2010): 20G10

1. Introduction

For studying vector bundles we have a techniguehafacteristic classes. Any bundle
in the cohomology of the base sp&{g) which is the natural setting for characteristic
classeg1], so that characteristic classes behave well witpect to bundle maps.

The theory of characteristic classes is @ased to the names of Whitney-Stiefel,
Pontryagin and Chern, and was developed furthéby, Bott, Thom and many others.
Whitney and Stiefel introduced characteristic @asin [2,3]. The Whitney product
theorem is introduced by Whitney in (1940-1941) ahet Wu in (1948) [3], Stiefel
studied the homology classes determined by thestagrmundle of a smooth manifold and
invented co- homology theory, whereas Whitney dised the case of sphere bundles,
which have the advantage of having compact fileomtryagin constructed the classes
which bear his name by studying the homology of cailed Grassmann manifolds.
Pontryagin's work goes back to (1942)[2]. In (1948)ern defined characteristic classes
for complex vector bundles, and showed that com@essman manifolds are easier to
understand than the real ones [2,3]. Hopf had deseadl in (1927) that the number of
zeroes of a smooth vector field on a compact cetbrmhanifold is equal to its Euler
characteristic; Thom and Wu (1986) proved thatitiegrals of the highest-dimensional
Chern class equals the Euler characteristic, anzebliuch constructed associated to the
tangent bundle of4k-dimensional real manifold (compact and orientegljed the L-
genus, and proved that it is equal to another arntezplled the signature. In the case of 4-
dimensional manifolds it turns out to be equal t@-third of the integral of the first
Pontryagin class of the manifold [2]. There haverbmany generalizations, such as the
extension of Hopf's result to sections of complegtar bundles by Bott and Chern and
the various "index theorems", the most famous ofclwhs the Atiyah-Singer index
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theorem, which relates the index manifold to traeinof an elliptic differential operator
(the Laplacian) on that manifold [4].

Our discussion of characteristic classemiber heuristic and follows mainly the
ideas of Stiefel-Whitney classes and Chern. Andy doriefly mention how they are
related to Pontryagin and Euler classes.

2. Basics of characteristic classes
Characteristic classes are cohomology classesias=sbto vector bundles. They measure
in some way how a vector bundle is twisted, or nieial. There are four main types of
characteristic classes:
1. Stiefel-Whitney classeg(E) €H(B; Z) for a real typical vector bunde—B
2. Chern classes(E) EHZ'(B;Z)_ for a complex typical vector bundie—-B
3. Pontryagin classes (E) eH*(B;Z) for a real typical vector bunde—B
4. The Euler class e(E8H"(B; Z) for an oriented n -dimensional real typical vecto
bundleE—B

The Stiefel-Whitney and Chern classes haveeshahaviors so they are formally
quite similar But when you tak& rather tharZ, coefficients, Pontryagin classes can be
expressed as a refinement of Stiefel-Whitney classed the Euler class is a further
refinement in the orientable case.

Definition 1. For a real vector bundlg the ith Stiefel-Whitney class of bundlg
denotedw(€), isx(&) eH'(B (&), Z,) [4,5].

For a complex vector bundig theith Chern class of, denoted;(&), is

X(E)EH*(B (¢), 2) [5,6].

In addition,w(§) =1 +wy(§) + ... +w,(&) is called the total Stiefel-Whitney class a{f)
=1 +cy(€) + ... +¢,(§) is total Chern class [6].

3. Properties of Stiefel-Whitney classes _

For any real vector bundle (over a space B theeedlass w{) eH'(B(£), Z,), with the
following properties: .

(Po) We have 1 (&) + ... +wy (&) wherewi(&) eH'(B (£), Z,) andwi(&) = 0 for

i>dimé&= n .(P) If & andn areB-isomorphic, it follows thawv(&) = w(y), and iff: B— B

is a map, then we ha¥g(w (£)) = w(f*(§)). (P) (Whithey sum formula) For two vector
bundlest andn overB, the relationw(E@7n) = w(E)w(n) (cup multiplication) holds, and
sow(E)w(E @ n) = w(n) unique solution!, wher@ the inverse ofv.(P;) For line bundle
A overS' = RP, the elemenivy(A)is nonzero irtH*(S, Z,) = Z,.

(P3) For line bundley,; over RP”, the elementw(y,)is the result generator of the
polynomial ringH*( RP”,Z,).Using property (B and the inclusioi®RP'*— RP” , we find
that (R) and (P) are equivalent to each other. We choose a gemarhitiy(S, Z) which

in turn defines a generator Bf(CP",Z) for each n with &n < +w. This element z will
generate the polynomial rid (CP*,Z) [5,7].

Remark 1. Properties (§, (P, and (R) hold for Stiefel-Whitney.

4. Properties of Chern classes

For each complex vector bundjever a spac® there is a class(&) €H (B, Z) (where
H’is universal cohomology ring ) with the followingaperties:
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(Co) We havec(é) = 1 +¢ (&) + ... +¢,(E) wherec (&) eH*(B, Z) andc(&) = 0 for

i >dimé&.

(Cy) If £ andy areB-isomorphic, it follows that(§) = c(5), and iff: B— Bis a map, then
we havef*(c(& ))= c(f*( &)).(C,) For two vector bundleg§ and# over B, the relation
c(EBn) = c(&)c(n) (cup multiplication) holds.

(C,) For line bundlé. overS = CP, the element,(}) isthe given generator 6f(S, Z).
(C%) For line bundley; over CP”, the element,(y,)is theresult of the polynomial ring
H'(CP”,Z). Using property (§ and the inclusiol€P'— CP” , we see that (fand (C3)
are equals. From the parallel character of proge(iig) to () and properties (§ to
(Cy) it is clear that the two sets of characteristasses have many formal properties in
common [3,5].

Remark 2. Properties (), (Cy), and (G) hold for Chern classes.

Theorem 1. The functionsw;: Lg(B) — H'(B,Z,) andc: L(B) — H*B,Z) define
isomorphisms of co functofs,6].

We havew1(§®;7) = w1(§)+wl(n) and ¢,(EQ7n) = cy(&)+ci(n), from this theorem. The
cohomology ring HRP*,Z,) is generated byw(y;) and H'(CP*,Z) by ci(yd).
Consequently, the characteristic classes of linedlms are uniquely defined by their
axiomatic properties [2].

5. Stability properties and examples of characterifc classes

Proposition L If § is a trivial bundle oveB, thenwi(§) = 0 for i > 0 in the real case and
ci(¢) = 0 for i> 0 in the complex case [3,5].

Proof: The statement is true fdjover a point because the cohomology in nonzero
dimensions is zero, and every trivial bundle isrisgphic to the induced bundle by a map
to a point. By properties (FZ,) we have the result. In addition, using propertRsC,),

we have the following result.

Theorem 2.Let & andn be two equivalent vector bundles. Theff) = w(n) holds in the
real case and&) = c(n) holds in the complex case [5].

Proof: For somen andm, there is an isomorphism betweg®0" andn@6™. From this
we have the following equalities in the real case:

w(g) =w(Ew(E")=w(ndd")= w(n) w(d") = w(n)'= w(n) or we havev(g)=w(n).

Similarly, in the complex case we has(€)= c(n) (whereg is trivail bundle)

Note 1. What happens i€@n is trivial? Well, by the Whitney product theorem,
W(EDn)= 0 for i > 0. Sam(€) +wi(n) = 0 (Remembew(§) =Wo(n) =1).

Wo(&) +Wa(E) Wi(n) +Wa(n) = 0= Wa(n) = (Wa&)>-Wa(E)[7].
In particular, ifé@n is trivial: w(&) = w(n).

Proposition 2.For the sphere"She tangent bundlgs"), we havew(z(s") = 1

Proof: Sincet(s)@#" and @™ are isomorphic, the tangent bundig’) is s-trivial.
Therefore, proposition1 and theorem®(s")) = 1 [5,6].
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Proposition 3. For the tangent bundigRP") there are the relations(z(RP") = (1 +
z)™, where z is the generator Bf(RP".Z,) andc(z(CP") = (1 + zJ**, where z is the
generator oH*(CP",Z), whereP is projection bundle.

Every vector field orRP" defines a vector field on"SA nonexistence statement for
vector fields on Sis stronger than a nonexistence statement foowéields onRP", but

as an application we include the next propositidnictv is really an easy consequence
[5,6].

Proposition 4. Every tangent vector field dRP* has at least one zero [5].

Proof: Observe thatv,(f(RP?) = (2k + 1)2* = 7%40. If z (RP?™) had cross section that
was everywhere nonzero, we would havgRP*) =£@6Then wa(t(RP)= Wa.
1(&)w1(8Y)= 0, which is a contradiction.

Definition 2. Let & be a vector bundle ov&: A splitting map ois a mag: B, —B such
thatf*(&) is a sum of line bundles affdH*(B, K ) —H* (B, K) is @ monomorphism [5].

6. Existing of splitting maps

Proposition 5.1f £ is a vector bundle ovd, there exists a splitting map fof5].

Proof: We prove this by induction on the dimensiortofor a line bundle, the identity
on the base space is a splitting map. In genestl):| E(P§)— B be the associated
projective bundle. Theg*:H*(B, K, — H*(E(P,K.) is a monomorphism, angt(&) =
2:@o:. By inductive hypothesis there exists a splitimgpg:B, — E(P(€)for o:. Thenf

= qg fromB; to B is a splitting map fok.

Corollary 2. For r vector bundle§,... & overB which are either all real or all complex.
Then there exists a m&pB; — B such thaf is a splitting map for each where 1<i<r

[5].

Theorem 3 The properties @Pto (R) completely determine the Stiefel-Whitney classes,
and the properties (Lto (G) completely determine the Chern classes [5].

Proof: Letw; andW; be two sets of Stiefel-Whitney classes, andJéte a vector bundle
with splitting mapf:B; —B. Sincewis uniquely determined for line bundlgswe have
(W)= w(f* (&) =(1 +W(41)--- (1 +Wi(Zn)) = (L +wy (&) ... (1 +W(hy)) = w(F*(E)) =
*(w(&), wheref*(&) = 1:@--- @1, Sincef* is a monomorphism, we hawe&)= w(E).
The same proof applies to Chern classes.

Theorem 4. For £ andn, two vector bundles oveB, there is the relatiom((@mn) =

X(E)x() [8]-

(Where x denotes Stiefel-Whitney classes or theiCblasses)

7. Fundamental class of sphere bundles

For a vector bundl€ with total spaceE(§), let Eq(¢) denote the open sub-space of
nonzero vectors. FA®EB, letj,: (R"R" - {0}) — (E(£),Eq(&)) denote the inclusion onto
the fibre of§ over beB. Each complex n-dimensional vector bundle restriota real
(2n)-dimensional real vector bundle[5].In previ@estions , we developed characteristic
classes, using projection bundl&); now we usdsy(&) to define other classes.
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Definition 3. A vector bundle is orientable provided its struetgroup restricts from
O(n) to SQ(n). An orientation of a vector bundle is a paf@gcuestriction of the structure
group toS n). An oriented vector bundle is a pair consistifign vector bundle and an
orientation on the bundle. In other words, a vebtardle has an atlas of charts where the
linear transformations changing from one chart twther have strictly positive
determinants [5].

Examplel. Every restriction of a complex vector bundle taeal vector bundle is
orientable and has a natural orientation becadlsg cSQ2n) cO(2n)[5]. The next
theorem contains the fundamental constructionisfdbction.

Theorem 5.Let & be a real vector bundle. The cohomology groupg laefficients irZ
if the bundle is oriented and &y in general. Then the following statements hold [5]
(1) There exists a uniqua:eH"(E, E) such that j{U.) is a fixed generator oH"(R",
R™ {0}). |

(2) For i < n, there is the relati¢fi(E, E) = 0. _

(3) The functiona—p*(a) U (cup product) oH'(B) -H""(E, E) is an isomorphis.

7. The oriented types classes... the Euler class

Definition 4. The Euler class of a real vector bundle cd¥edenote bg&),is p*"j*(Ug),
wherep: E —B is the projection of. The term "Euler class" is usually used only ia th
oriented case and with integral coefficients. Meeowe havex&) eH"(B). The clasdJ,

is called the fundamental class [3,4,5].

Definition 5. (The Gysin sequence)
For (n-dimensional real vector bundlé&) there is the following exact sequence of
cohomology groups where the coefficients arg.in general oZ for oriented bundlesis

called the Gysin sequence of the bunég p, B [8].

. ltb . * i [
Hl(B) mult ye(E) Hl+n(B) zi) Hl+‘n_(EO) ﬁ Hl+Tl+1(B)

Corollary 3. The Euler class of an odd-dimensional orienteddlué has the property
that 2(&) = 0 [3]. Because of this we assume that the filderension is even when using
the Euler classes.

Corollary 4. If the orientation of is reversed, then the Euler clas§ ehanges sign

(&) =-€(¢) [3l.

Proposition 6.Let & be a vector bundle ov&; and letf: B' -B be a map. Theff (e(§) =
e(f(9).
Proof: There is a map:(E', E)) —(E, E) inducingf, wherekE is the total space @ and
E' is the total space ¢f(&). By the uniqueness property of Theorem (£@)).) is equal
to Ur(), since they are equal on each fibré*¢f). The proposition follows now from the
commutative diagram.

H*(E,Eq) » H*(E) » H'(B)

lg” lg” lf*
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H*(E',E'y) > H*(E') - H*(B")
Corollary 5. If & is a trivial bundle of dimensionn1, thene(§) = 0 [3].

Theorem 6.For the Euler class, the relatiefi®n) = e(&)e(n) holds [5].
Proof: By Definition (of Euler class), we hae#@®n) = p*'j*(U). Then we calculatp*”

P*(U) = p*(act(U)a(U") = p*pctje* (U)p2*j*(UM] = e€)e(n). This proves the
theorem.

Theorem 7. If a vector bundl€ has an everywhere-nonzero cross section, #E)x 0
[3].

Proof: A vector bundle with an everywhere-nonzero cressien splits off a line bundle,
that is,& =6"®n . Thene(€) = &8)@e(n ) = 0(n) = 0. The Euler class of a trivial bundle
is zero.

Proposition 7. For two vector bndlé and » the Cartesian product of Euler class is given

by e(&xn) = &(&)xw(n)[3].

Proof: see [3].

8. Steenrod operations by Stiefel-Whitney classes
Definition 6. A cohomology operation of degrdewith coefficients in group G is a

morphismb: H (,G)—H (G) of functors [3].

Theorem 8. For cohomology over the fiel@, of two elements, there is a unique
operatlonSd H (s FZ)—>H (Zz) of degree i such théiq commutes with suspension and
Sq(x) —x the cup square, foreH (X,2,) [6].

The operatloquls called the Steenrastjuare.

Theorem 9The Steenrod squares satlsfy the following propef6].
(1) In degree DSq is the identity, ant$q|H (ZZ) =0 fori>n.
(2) Forx,yEH (X,Z,), (Cartan formula)ve have

S (xy)=), Sa( 3 SH ¥

k=i+j
Multiproduct version is

Sef'(x % )= > S¢Y x)..5¢ (x)

PA)+.H )™
(3) For xa< 2b, (Adem relationsjhe iterate of squares satisfies

[9/] a—-1- J
S¢S = Z Sg™ ! se.
2]
On low- dlmenS|onaI classes for Steenrod operatimbave the following theorem.

Theorem 10We consider dimensions one and two [6].
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m m+i1
(1) If erl(X,ZZ), then we haved (X") = ( i jX .
s (y)=( ] | v

2) If yEH (X Z,) and |qu (y)=0, then we have

Andsq " (y" =o.
Proof: When m=0 is clear by using induction an Statement (1) then is obtained as
follows;

SA)=Sd(xx" ) =SA().SaX ) +Sa().Sd (X )
= ) +| X = . |X .
I -1 [

Theoreml11. Using the classU, EHn(D(g)/S(g)) and the total Steenrod operation
Sq=20<,sq we have the following formula for the totabtiefel-Whitney class

SqU,) =w(&)U; or w(&) —(p (Sc(Ué)), where DE), SE) is the associated disk bundle, and
the associated sphere bundle respectively.

Proof: See[6].

Adem relations: (special cases) (1) Berl, we have 1b, in this case the corresponding
sum consists only the term fpr0, so that, we have

S Sd = b-1 Sty = S i.fb.is ever
1 0 ifbis odd

With simple caseSqlSqlzo, Sqlsqzzsqq, SqlSqo’zo, andSqlSq4:Sq5[6].
(2) For a=2, we have 2b, in this case the sum consists of only the twanger
corresponding tp=0 andj=1. So that, we have

b-1 b-2
ssi=(","] ste+(° 7] s g
It divides into two cases dependinglmmod 4.

b+2 —
SPS§= Sk So Sqg’"“ forb=0,3(mod4)
0 fob=1, 2(mod4)

Wlth some S|mple caseSq Sq Sq Sq Sq Sq Sq Sq +Sq Sq Sq Sq Sq +Sq
Sq Sq Sq Sq andSq Sq Sq Sq +Sq _

To integersZ, the binomial coefﬁmentio is the coefficient ok in the polynomial

(1+ x)nEZ[x]. Here, they are understood as numbers modulo 2.

Example 2. (Two mod 2 congruences)
We have the following in the field,={0,1} of two elements focEZ[e]
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c) [0 if c iseven
(1} _{1 if ¢ is odd

and

(cj _{0 if c= 0,1(mod4)

2) |1 if c= 2,dmod4)

Definition 7. The Thom space of a vector bunglelenoteds, is the quotient C¥)/S(E).
The projections:H™(D(€), &) — H™ (&) is an isomorphism, and we define the Thorn
morphismy: H'(B) — H"" (&) to bey =o¢' [5].

Theorem 12.(Thom) The Stiefel- Whitney class;i(€) is given byﬂ'l(Sdué).

wi(€) =¢(SdU;) [1].

By other mean the total Stiefel-Whitney claggs) = wo(&) + wi(€) + ... is given byg
Y(sd) #(1), In terms of the total squadg andw(&) is the unique class such that

#(Wi(£))=Sd ¢(1).

Theorem 13.The natural isomorphisitd"(B; Z) — H"(B; Z,) carries the Euler clas$t)
to the top Stiefel-Whitney clasg,(&) [3].

Proof: If we apply this homomorphism (induced by thefficient surjectiorz —Z,) to
both sides o&(&) = ¢ (uLuu) then evidently the integer cohomology classiaps to the
mod 2 cohomology class defined before and_iu maps toSd(u). Henceg™ (uLu)
maps tog 'Sq\(u) =w(u).

Definition 10. (Poincaré duality)
r —
Let M be a compaan-dimensional manifold and let €H (M) andﬂeHm r(M), Noting

thatwAu is a volume element, we define an inpesduct
¢ ):Hr(M)XHm_r(M)—>Rby<w”U> = J,, e )

The inner product is bilinear. Moreover, it is ngingular, that is, ifo =0 or
/Hko,(“)’“)cannot vanish identically. Thus, equatial) defines the duality of

r m-r r m=r
H(M)andH (M),H(M)=H (M) called the Poincaré duality [9].

9. Wu's formula for the Stiefel-Whitney classes o& manifold
The Steenrod squarese=) Sq and the Stiefel-Whitney class(¢) of a bundleare

related by the formv(&) =(p_l(Sc(U§)). Using Poincaré duality and its relationug, we

have the Wu class and its relation to the Stiefdlithiéy classes of the tangent bundle
[3,6].

Corollary 6. Let Scir: H(X)—H(X) denote thdransposeof the (total) Steenrod square
SqH.(X)—H.(X). In particular, we havBda),b=a ,Scir(b) for aeH’ (X) ,beH. (X) [6].
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Definition 8. Let M be closed manifold with Poincaré duality is omasph

D: Hi(M) —H, (M) and fundamental clags]. The Wu class oM is V=D_1(Sq"([M]))
[5,6].

The Wu class has the property thata, D(v))=(a, Sqt" ([M]))=
(Sq(a), [M])=(a,v ~ [M])=(av, [M]).(") means cap product.

Theorem 14.Let M be a closed smooth manifold. Then, the Stéfhitney class
w(M)=w(T(M)) of the tangent bundle is given as the Steencuiie of the Wu class
w(M) =SqVv) [6].

Proof: See [5]

Corollary 7. The Stiefel-Whitney classes of closed manifolgstamotopy in- variants
of the manifold [6].

Corollary 8. If v=y v, ,whereviEHi(M), then we have,=0 for 2i>dim(M) [5,6].
Proof: Sedb].

9. The Atiyah class

We discussthe notion of holomorphic connectionwhich shouldnot becorfused
with the notion compatiblewith the holomorphic structureThis notion is much
morerestrictive,but it generalizeo purealgebraic setting [10].

Definition 9. And let{U} be an operoveringof X such that there atgolomorphic

trivializations(lz)y/i:gui—>UXCr, andtransition functioln//i]jlzy/iy/j_l: C'—C'. Consider
r r - -

thediﬁerentialsdwi’j:c —C, a_?d t[\lecompositions//j (v dz//i’j)y/j. )

Since{ ‘//i,j} is a cocycle alsdy; (y; dl//i,j)‘//j} is a cocycle. The class given by tBeach

-1 -1 . -1 -1 1
cocycle {y; (v dy, )y} is denoted byA()={U .y (v dy )y}H (X.Q®
End(¢)), and is called the Atiyah class of thelomorphicvectorbundleg [10].

Proposition 8. A holomorphicvector bundlet admits aholomorphicconnection if and
1

only if its Atiyah clasA(£)eH (X,Q,&® End(g)) istrivial [10].

Proof: Seq10].

9.1. TheAtiyah-Singer indextheorem
Let D: I'(¢)—I'(n) be an ellipticdifferential operator betweerectorbundles: andn
on acompact oriented differentiable manifofdof dimensiom, then [10]

(1) Thetopologicalindexy (D) of theoperatoD is ch(D)Td(X) [X].

(2) The elliptic differential operatoD has apseudo inversdt is a Fredholm
operator.lt's analytic index isdefinedas thedifference betweetthe finite
dimension of Ker(D) and the finite dimension Coker(D) i.e.
IndeXD)=dimKerD) dimCoKefD)=dim Ker(D)dim Ker(D*)[4] (where ¥
the adjoin of D)
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Remark 3.
) Td(X) is the Todd class of,

(i) ch(D) is equal tc¢ (ch(d(p ép n, a(D))

(iii) ¢ is the Thomisomorphisnfrom H (X Q) to H (B(X)/S(X),Q),

(iv)  B(X) is the unit balbundleof the cotangent bundlef X, andS(X) is its
boundaryand p is theprojectionto X.

W) chis the Cherrcharactefrom K-theory K(X) to theational cohomology
ring H(X,Q).

(vi)  d(p &P n,o(D)) is the difference elementdf K(B(X)/S(X)) associated

to two vectorbundlesp & and p'n on B(X) and anisomophism (D)
between them on the subsp&¥&).
(vii) o(D) is the symbol oD.

Theorem15. (Atiyah-Singer)
Let D T'(¢) —I'(n) be an elliptic differential operator between w&@undles: andn on
a compact oriented differentiable manifalddimension n. Then the analytic index and

thetopologicalindex of D are equdft 10]
IndeXD)=y(D).

10. Relations between real and complex vector buret
We have considered the operation of conjugationf a complex vector bundl& we
can also restrict the scalars&ab R.
This yields a group homomorphism
Ke(X) = Kr(X).
The process of tensoring a real vector bumgdigith C yields a complex vector bundle
né@PC, called the complexification of. This yields a ringmorphism
Eu. KR(X) — KC(X) .
Clearly, there are the relationg(eu(n))=2n ande,(go(§ ))= & + &*.
Observe that for a real vector bundlehe complex vector bundlegbC and &C)*
are isomorphic [2].

Proposition 9. For a complex vector bundigthe relatiorti(£%) = (-)'ci(€) holds [5,11].
Proof: The proposition is true for line bundles. lfeB; — B be a splitting map, where

) = 4D @i Then c(f*(89))= cli*y)--- c*n) = (1-Culh))--- (1€x(dn)
=o=i(=1)'c" (7).

This proves the result.

Corollary 9. If a complex vector bundlé is isomorphic tog*, then Z,;.1(§)=0 for <
+(5,11)
i,

Proof: We havecs:1(€) = - Cia(€) = - Caa(€) OF 2p1.9(E) = 0
The above corollary applies to the complexificatig C)* of a real vector bundle.

Theorem 16.Let & be the canonical (real) line bundle BP*"* andn the canonical
(complex) line bundle o@P"™. Then the following statements apply [5].
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(1) The bundla*(n)) is isomorphic tay (n).
(2) The classv, (go(1)) is the mod 2 reduction af(n).

(3) a(n)) = e(zo(n))-

Corollary10. Over a para compact spa@e(so(n)) is equal to the mod 2 restriction of
ci(n) for any complex line bundle [5].

Proof: The corollary is true for the universal bundledmndition (2) in theorem (16) and
therefore for all complex line bundles.

Corollary1l1. Over a paracompact spa@ze(n)) is equal tocy(n)for any complex line
bundlen [5].

Both corollaries are true for the universal bundiggheorem (5), and therefore they are
verified for all line bundles, using the classifyimaps.

Corollary 12. If a complex vector bundlg of rank n overB is given a canonical
orientation then &f =c,(&) eH?(B, Z) [3].

Theorem 17.Let & be a real vector bundle over a sp&8celhené is orientable if and
only if wi(&) =0 [5].

Proof: First, we consider the case whete=1;H--- @1, is a Whitney sum of line
bundles. Then the line bundi€s has as coordinate transformations the determiofant
the coordinate transformations ©fThereforef is orientable if and only iA"¢ is trivial,
that is, w(A"€) = 0. Butw(A"€) = wi( 41D D) = Wi(h) + ... +W(d,) = w(E).
Therefore§ is orientable if and only ify; (§) = 0.

For the general case, I§tB, — B be a splitting map fot. Thené is orientable if and
only if f*(&) is orientable, becausd*(w,(A"€))=wi(A"f*(&) holds and f* is a
monomorphism. Finally, we hawe(&) = 0 if and only ifw;(f*(&)) = O. This proves the
theorem [5].

11. Pontrjagin class

Definition10. The ith Pontrjagin class of a real vector bunglelenotedP;(&), is (-1)
'e,i(& @C) which is a member df*(B, Z) [3,5].

We defineP(§) = 1 +Py(§) + ... eH*(B,Z) to be the total Pontrjagin class of the vector
bundle&. The Whithey sum theorem holds only in the follogvimodified form:

2(p(EDn) - p(&)p(m)) =0
Let g: RP*"—CP"'be the map that assigns to each real line detechipdx, -x} for z

€S the complex line determined by z.
By definition we gePi(ér) =(-1)ci(E BC) whereE DC) is complex get real [6].
In particularPy(£)=c,(£)* -2c,(€) [6,12].

Theorem 18.For any orientable 2n-vector bundleg,(&) = e€)*[12].
Proof: Py(&) =(-1f'ca(éc) ==(-1f'e (Ecr)=te(€"DE")= ==(-1)'e (&)*.

For the tangent bundle, it is commonto wg{®) instead of curvature two forme
have Each Pontrjagin class is given by (M)=1.
Althoughp,(M) vanishes as a differential fori®,13,14].
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Lemma 13.For any complex vector bundiewith fiber dimension n, the Chern classes
determine the Pontrjagin classes by the forrfilE5].
1-Py() + Py(§)-... =(1€1(€) +Cx(8) -...)(1HCu(E) +C5(8) +...).
Proof: c(¢@rC) =c(&)e(&) =Xy ¢ (O)XZo(=1)ic; (&). Moreover, if k=1 (mod 2)
thenc(& BC)=Yocick(—1ic; (€) Ga(&) =0. So the total Chern class is just the sum of
all even Chern claq45].

Now the others useful characteristic classeociated with real or complex vector
bundles are Atyiah class, Wu class and Atyiah-Siotgss as we saw in the study, also
how they interacted and developed the main chaisiiteclasses in different terms.

Note: that the following two tables (1,2) give a goodmgarison between all
characteristic classes which we have discussed.

Table 1: This table shows a comparison the four main charatic classes which we
had discussed.

Characte | Type Methoc Cherr Stiefel- | Eulel
istic Whitne
Class y
Cherr Complex co(§)=1 All ci(L)=¢(L)
CoefficientZGroup | ¢,(£)=0c(&)= propert R
=U(K) 0 ies are
i>dim& similar
Stiefe- Rea Coefficien:Z, | wy(&)=1 Howto Wn(E)=€(£)
Whitney | Group=0(K) wy(§)=0wi(§) | compute the
=0 total-are
i>dimg similar
Eulel Orientable Real 2¢(§)=0 if | e(§)r=Cn(E) e(&)r=
Coefficient Z dimg is wi(&).
Group=0(K) odde€)=0
if & nonzero
Cross
sectionor
trivial
Ponterjai | Orientable Rezinto | Po(M)=1,whe | P,(&) Pn(&)=€()
in complex Coefficient| re M tangent | =(1)"co(&c) 2
Z bundle PER)=c(&)c(E
Group=SO(K),0(K) | P(&)=0i>n/2 | *)
P1(&)=c1(8)’
=-2C,(&)

Table 2: This table shows the relations between Wu clasigjal class and Atiyah-
Singer class with Stiefel-Whitney classes, concaptstheorems which we had discussed

Characteris | Type Method | Index theorer | Holomorph | Steenroc
c class c operation
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Stiefe- Real Wo(§)=1 w(&) =¢
Whitney Coefficient:Z, w;(£)=0 (SqUy)
Group=0(K) wi(§)=0
i>dim¢&
Atiyah complex A(g)eHl(x,
Q,®EndE
)
Wu rea v=0
for2i> di
m(M)
Atiyah Oriented real Index(D)=y/( w(M) =Sq(v)
Singer D)

12. Conclusions
Our study shows a deep and strong relation betveeseral types of characteristic
classes, and how each of them develop anther lryréhations, namely Ponterjagin and
Euler classes to chern class, Steenrot squaradf@IStvhitney, Steenrot with Wu class,
atiyah-singer class with index theorem and atiylaiscadmits holomorhpic. So we have

the real type of characteristic class in term ohptex type.

The study also appears that complex chaistiteare more easy and more useful to
get new relationships.

Immersion Conjecture (June 9, 2003)
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