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Abstract.  A finite set of residue classes  ai (mod ni)  with 1 < n1 < n2 < · · · < ns  is 
called a covering system of congruences if every integer satisfies at least one of 
the congruences  x≡ai (mod ni). An example is the set {0 (mod 2), 1 (mod 3), 3 
(mod 4), 5 (mod 6), 9 (mod 12)}. A covering system all of whose moduli are odd 
called an odd covering system is a famous unsolved conjecture of Erdös  and 
Selfridge.  In this paper, we establish that there exist infinitely many even 
covering systems in which the least modulus is 2 and all other moduli are even. In 
each such even covering system, the number of the moduli and their prime factors 
are determined.  Moreover, we construct a covering system with nine moduli, the 
smallest modulus is 2, and the lcm of the moduli is divisible by only the primes 2 
and 5. With the smallest modulus 2,  this is an attempt in the direction of 
constructing covering systems none of whose moduli is a product of the prime  3. 
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1.   Introduction 
The concept of Covering systems was introduced and developed by  Erdös.  Many 
authors and numerous articles have been written on this interesting and non-trivial 
topic, and quite a wide literature exists on the subject.  
 
       We begin with some definitions and notations. 
 
Definition  1.1.  The system of congruences  
              x ≡  ai(mod ni),         1 <  n1 < n2 < · · ·  < nt,      0 ≤  ai <  ni                   (1) 
is called a  Covering System  (abbreviated  CS),  if every integer satisfies at least 
one of the congruences  (1). 
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Definition  1.2.  The system of congruences  
               x ≡  ai(mod ni),        1 <  n1 ≤ n2 ≤ · · ·  ≤ nk,      0 ≤  ai <  ni                   (2) 
is called an  Exactly Covering System  (abbreviated  ECS),  if  every integer 
satisfies exactly one of the congruences  (2).    
 
       A system of congruences corresponding to any of the above two definitions, 
will be denoted as a set of ordered pairs of integers of the form  (a, n),  where  a  
is the residue class and  n  is the modulus.   
The least common multiple of the moduli in  a  CS/ECS  will be denoted by  
LCM. 
       The smallest and simplest example of a  CS   is the following set of ordered 
pairs   
                                  {(0, 2), (0, 3), (1, 4), (5, 6), (7, 12)}.                                   (3) 
Hereafter, we shall refer to the set  (3)  as the basic  CS.  
       A necessary condition  [7]  on the moduli   n1, n2, . . ., nt  of a  CS  is   

1
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Definition  1.3.  An  ECS,  in which for every value  m   there are at most   M   
moduli which are equal to  m,  will be called  an  ECS(M).   
        It is well known [8, 7] ,  that the moduli    n1 ≤  n2 ≤ · · · ≤ nk  of any  ECS  
satisfy:  

                            1
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                               ( ni,  nj) > 1                               (4) 

and 
                                                     nk-1 =  nk.                                                           (5) 
Condition  (5)  implies moreover that   M  = 1  is impossible. 
 
       The simplest examples of  ECS's  are the following sets  
{(0, 2), (1, 2)},     {(0, 2), (1, 4), (3, 4)},       {(0, 2), (1, 4), (3, 8), (7, 8)}.          (6) 
Hereafter, we shall refer to sets described in  (6)  as  basic  ECS's.  The moduli of 
each set in  (6)  satisfy the conditions in  (4)  and  (5).  
 
       The basic ECS's in (6) are also known in the literature as Natural ECS's  
(abbreviated  NECS's).  As for  ECS's(M)  we also have accordingly  NECS's(M).  
Many results on  ECS's  and  NECS's  may also be found in  [1, 2, 3, 4, 10, 16, 17, 
18, 20, 21]. 
 
       We shall now cite some known results, in particular those concerned with the 
least modulus  n1  of a CS.  Erdös asked whether there are  CS's  in which  n1  ≥  R   
for arbitrary  R.  Over the last  60  years the value  R  increased.  In  1968,  
Churchhouse  [6]  using a computer found  CS's  with  n1 = 2, 3, …, 9.  In 1971, 
Krukenberg [13]      gave examples of  CS's  for all values  n1  up to  18  inclusive.  
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Choi  [5]  found a  CS  with  n1 = 20.  The current record belongs to Owens  [15]  
with  n1 = 42.  Hough showed the amazing result  [12]  that   n1  is at most  1016.  
For this achievement he won the  2017  David  P. Robbins prize.   
Other results may also be found for instance in  [9, 13, 16, 19, 21].            
     
2.  On the infinitude of even CS's  when the least modulus is 2 
In this section, we exhibit a connection between  an  ECS  and a  CS  in each of 
which the smallest modulus is  2.  First, this is illustrated in two self-contained 
examples, namely  Example  2.1  and  Example  2.2  using two of the basic  ECS's  
in  (6)  and the basic  CS  in  (3).  Secondly, the pattern  described in these 
examples enables us to establish the general case, i.e., the existence of infinitely 
many even  CS's  with smallest modulus  2.  This is done in Theorem  2.1. 
 
Example  2.1.  The basic  ECS  in  (6)  whose moduli are {2, 4, 4}  combined 
with the basic  CS  in  (3)  whose moduli are  {2, 3, 4, 6, 12}  yield the set of 
seven moduli  
                              { 2, 4,            4 · 2,  4 · 3,  4 · 4,  4 · 6,  4 · 12 }, 

which are even, distinct and  1
17

1
>∑ =i

in
.  The respective  CS  is 

{(0, 2), (3, 4), (5, 8), (5, 12), (9, 16), (9, 24), (1, 48)}. 
 
Example  2.2.   The basic  ECS  in  (6)  whose moduli are  {2, 4, 8, 8}  combined 
with the basic  CS  in  (3)  whose moduli are  {2, 3, 4, 6, 12}  yield the set of eight 
moduli 
                             { 2, 4, 8,             8 · 2,  8 · 3,  8 · 4,  8 · 6,  8 · 12 }, 

which are even, distinct and   1
18

1
>∑ =i

in
.  The respective  CS  is 

{(0, 2), (3, 4), (1, 8), (5, 16), (13, 24), (29, 32), (45, 48), (77, 96)}.  
 
       Example  2.1  and  Example  2.2,  clearly show the pattern which connects a 
basic  ECS  with the basic  CS.  The general case will now be established for all 
basic  ECS's  of the form described in  (6)  combined with the basic  CS  in  (3).  
 
Theorem  2.1.   For each and every value  t ≥ 1,  the set of ordered pairs  
              { (0, 2), (1, 4), (3, 8), (7, 16), . . . , (2t-1 - 1, 2t), (2t – 1, 2t) }                   (7) 
represents  a basic  ECS.  Let   t ≥ 1  be any fixed value.  Then: 
(i)     The set    
            { 2, 4, 8, 16, . . . , 2t,          2t · 2,  2t · 3,  2t · 4,  2t · 6,  2t · 12 }                 (8) 
         is a set of moduli of a CS. 
(ii)    There are infinitely many  CS's  whose moduli satisfy  (8). 
(iii)   All the moduli in  (8)  are even and distinct. 
(iv)   In  (8), the  LCM  is  2t · 12  whose prime divisors are  2  and  3. 
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(v)    The number  k  of the moduli  in  ( 8)  is equal to  k  =  t + 5.      
Proof:   For  (i),  recall   from  (3)  the  moduli   { 2, 3, 4, 6, 12 } of  the  basic   
CS  whose  LCM  = 12.  It is noted that if the integers 1 – 12   are  covered, then  
all  the integers are covered, and the set of moduli is a  CS. As for the moduli  2, 4  
in (3), the moduli  2 · 2t,  4 · 2t  in (8) and their values  ai  yield up to the new  
LCM = 12 · 2t  respectively six and three integers all of which are distinct with no 
overlaps. The other three moduli in  (8),  namely  3 · 2t,  6 · 2t  and  12 · 2t  and 
their appropriate values  ai,  each yields exactly one integer up to  12 · 2t, whereas 
all other obtained  integers are overlaps. Thus, all twelve integers are covered up  
to  12 · 2t  as  required, and  (8)  is a set of  moduli  of  a  CS  as  asserted.   
       As for  (ii), each value  t ≥ 1  in  (7)  yields a basic  ECS.  Hence, there are 
infinitely many basic  ECS's. Then, for each and every value  t ≥ 1  there exists a  
CS.  Thus, there exist infinitely many  CS's  whose moduli satisfy (8). 
       The statements in  (iii),  (iv)  and  (v)  follow directly from  (8).   
       This completes the proof of  Theorem  2.1.                        □  
 
       The following Corollary  2.1  follows from Theorem 2.1. 
 
Corollary  2.1.   The sum of the reciprocals of the five moduli in (3) is  
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.  The sum of the reciprocals of the ( t + 5)  moduli  in  (8)  is equal to 
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For arbitrarily large  t,  it follows that the reciprocals of the moduli of the  CS  in  
(8)  have a sum which is as close to 1  as we wish, but is never equal to 1.   

 
Remark  2.1.    In  Theorem  2.1, we have used  the basic  CS  having the five 
moduli  2, 3, 4, 6, 12.  As the least modulus increases, the larger are the number of 
the moduli and so are their prime factors.  Evidently, for the purposes of Theorem 
2.1,  any known  CS  will suffice instead of the basic  CS.  However, constructing 
a  CS  union of a basic  ECS  and the basic  CS,  has its advantages primarily in  
(i)  the smallest number of obtained moduli, and  (ii)  their largest prime divisor 
which is   p = 3.   
 
3.  On a  CS  whose least modulus is  2  and  the  LCM  is  24 · 5  
In the literature, all  CS's  with least modulus  2,  have  LCM's  which are divisible 
by  p = 3. Hough and Nielsen have shown that every  CS  has a modulus divisible 
by either  2  or  3.  
       In this section, we exhibit  Example  3.1  i.e., a  CS  of nine moduli 
containing the least modulus  2,  the modulus 5, and the  LCM  24 · 5  =  80.  This 
is the first  CS  none of whose moduli is divisible by   p  =  3. 
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Example  3.1.   The  following  set  of  nine  ordered  pairs  is  a  CS  in which 
except  for  1,  the nine moduli are all the divisors of  80.   
{(1, 2),   (0, 4),   (0, 5),   (2, 8),   (6, 10),    (6, 16),   (14, 20),   (22, 40),   (78, 80)}. 

 
       A  CS   with least modulus  2  and the only odd modulus  5  does  not  exist  
when  k < 9.  Hence,  Example  3.1  is a  CS  whose number of mosuli  k = 9  is 
minimal. For any other  CS  of the same nature, it follows that   k > 9.   Moreover, 
as mentioned earlier, Example  3.1  now implies that there exists at least one  CS  
which does not contain a modulus divisible by  3,  but  rather, moduli  divisible  
by  2.    
 
Final Remark. In view of Example 3.1, we  may  now  presume  that  for  primes 
p ≥ 7,  there exists  a  CS  containing the least modulus  2  and the  LCM  =  2r · p.  
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