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Abstract A finite set of residue classes (modn;)) with 1 <np <m<--:-<ng is
called a covering system of congruences if evergger satisfies at least one of
the congruencex=a (modn;). An example is the set {0 (mod 2), 1 (mod 3), 3
(mod 4), 5 (mod 6), 9 (mod 12)}. A covering systalnof whose moduli are odd
called an odd covering system is a famous unsobggecture of Erdés and
Selfridge. In this paper, we establish that thexést infinitely many even
covering systems in which the least modulus is®ahother moduli are even. In
each such even covering system, the number of ddilrand their prime factors
are determined. Moreover, we construct a covesyggem with nine moduli, the
smallest modulus is 2, and the Icm of the modudiivésible by only the primes 2
and 5. With the smallest modulus 2, this is arnafit in the direction of
constructing covering systems none of whose maslaliproduct of the prime 3.
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1. Introduction

The concept of Covering systems was introduceddandloped by Erdds. Many
authors and numerous articles have been writtghisnnteresting and non-trivial
topic, and quite a wide literature exists on thigjesct.

We begin with some definitions and notations
Definition 1.1. The system of congruences
x = g(modn), 1<m<m<---<nm, O0<a<n 1)

is called a Covering System (abbreviated CS&gvery integer satisfies at least
one of the congruences (1).
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Definition 1.2. The system of congruences

X = g(modn), l<m<n<---<n, O a<n (2)
is called an Exactly Covering System (abbreviate@S), if every integer
satisfies exactly one of the congruences (2).

A system of congruences corresponding todaripe above two definitions,
will be denoted as a set of ordered pairs of inegéthe form &, n), where a
is the residue class and is the modulus.
The least common multiple of the moduli in a OS#E will be denoted by
LCM.

The smallest and simplest example of a @3he following set of ordered

pairs
{(0,2), (0, 31, 4), (5, 6), (7, 12)}. 3)
Hereafter, we shall refer to the set (3) as #md CS.
A necessary condition [7] on the modulj, ny .. .,n; ofa CS is

Zt 1>1

i=1 ni
Definition 1.3. An ECS, in which for every valuen there are at mostM
moduli which are equal ton, will be called an ECH).
It is well known [8, 7], that the moduling < n;<---<n¢ of any ECS
satisfy:
k 1
=1 6, n) > 1 4)
ni
and
N1 = Nk (5)
Condition (5) implies moreover thail =1 is impossible.

The simplest examples of ECS's are tHeviahg sets
{(0,2), (1,2)}, {(0,2),(1,4),3 4} {0 2),(1,4),(,8) (7 8)} (6)
Hereafter, we shall refer to sets described in §6) basic ECS's. The moduli of
each setin (6) satisfy the conditions in (4 &5).

The basic ECS's in (6) are also known in lttexature as Natural ECS's
(abbreviated NECS's). As for ECH8( we also have accordingly NEC3B(
Many results on ECS's and NECS's may also lmedfin [1, 2, 3, 4, 10, 16, 17,
18, 20, 21].

We shall now cite some known results, irtipalar those concerned with the
least modulusn; of a CS. Erdés asked whether there are CSighich n; > R
for arbitrary R. Over the last 60 years the valie increased. In 1968,
Churchhouse [6] using a computer found CS'shwit= 2, 3, ..., 9. In 1971,
Krukenberg [13] gave examples of CS's fovaluesn; up to 18 inclusive.
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Choi [5] found a CS witm; = 20. The current record belongs to Owens [15]
with n; = 42. Hough showed the amazing result [12] thmtis at most 18.

For this achievement he won the 2017 David FbRw prize.

Other results may also be found for instance in1{ 16, 19, 21].

2. On the infinitude of even CS's when the leastodulus is 2

In this section, we exhibit a connection between ECS and a CS in each of
which the smallest modulus is 2. First, thisligsirated in two self-contained

examples, namely Example 2.1 and Example ugifg two of the basic ECS's
in (6) and the basic CS in (3). Secondly, pla¢tern described in these
examples enables us to establish the general icasehe existence of infinitely

many even CS's with smallest modulus 2. Thaoise in Theorem 2.1.

Example 2.1. The basic ECS in (6) whose moduli are {2, 4, ddmbined
with the basic CS in (3) whose moduli are 324, 6, 12} vyield the set of
seven moduli

{2,4, ‘2, 4-3, 4-4, 4-6, 4-12},

which are even, distinct an{?_li >1. The respective CS is
i= ni

{(0, 2), (3,4), (5, 8), (5, 12), (9, 16), (9, 24}, 48)}.

Example 2.2. The basic ECS in (6) whose moduli are {2,,48}8 combined
with the basic CS in (3) whose moduli are 324, 6, 12} yield the set of eight
moduli
{2,4,S8, 8-2, 83, 84, 86, 812},
which are even, distinct anch?_li >1. The respective CS is
i= ni
{(©, 2), (3, 4), (1, 8), (5, 16), (13, 24), (29,)3R45, 48), (77, 96)}.

Example 2.1 and Example 2.2, clearlyvslthe pattern which connects a
basic ECS with the basic CS. The general caé@ow be established for all
basic ECS's of the form described in (6) combiwith the basic CS in (3).

Theorem 2.1. For each and every value> 1, the set of ordered pairs

{(0,2),(1,4), (3,8),(7,16),.,(2*-1,2), (2-1,2)} (7)
represents a basic ECS. Leb 1 be any fixed value. Then:
(i) The set

{2,4,8,16,...!2 2.2,2-3,2-4, 2.6, 2-12} (8)

is a set of moduli of a CS.
(i) There are infinitely many CS's whose mibdatisfy (8).
(iif) All the moduli in (8) are even and distin
(iv) In (8),the LCM is 2 12 whose prime divisors are 2 and 3.
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(v) The numberk of the moduliin (8) is equaltck =t+5.

Proof: For (i), recall from (3) the moduli {2, 3, 6,12} of the basic
CS whose LCM = 12. Itis noted that if the integérs 12 are covered, then
all the integers are covered, and the set of miglal CS. As for the moduli 2, 4
in (3), the moduli 2 2, 4- 2" in (8) and their valuess; yield up to the new
LCM = 12- 2 respectively six and three integers all of whaca distinct with no
overlaps. The other three moduli in (8), namé&ly 2, 6-2' and 12 2' and
their appropriate values;, each yields exactly one integer up to- 22 whereas
all other obtained integers are overlaps. Thugwalve integers are covered up
to 12- 2" as required, and (8) is a set of moduliaoCS as asserted.

As for (ii), each value>1 in (7) yields a basic ECS. Hence, there are
infinitely many basic ECS's. Then, for each andrgwaluet> 1 there exists a
CS. Thus, there exist infinitely many CS's whoseluli satisfy (8).

The statements in (iii), (iv) and (Wlléw directly from (8).

This completes the proof of Theorem 2.1. i

The following Corollary 2.1 follows fromhEorem 2.1.

Corollary 2.1. The sum of the reciprocals of the five moduli if 63

Z:i = g The sum of the reciprocals of the« 5) moduli in (8) is equal to
i=! ni

=n 2t 203 3@ 3@
For arbitrarily larget, it follows that the reciprocals of the modulitoe CS in
(8) have a sum which is as close to 1 as we wishis never equal to 1.

t_ t
Zt+51 _2-1 1 4 3241, 1

Remark 2.1. In Theorem 2.1, we have usdle basic CS having the five
moduli 2, 3, 4, 6, 12. As the least modulus iaees, the larger are the number of
the moduli and so are their prime factors. Eviljerior the purposes of Theorem
2.1, any known CS will suffice instead of thesicaCS. However, constructing
a CS union of a basic ECS and the basic GCf3, ith advantages primarily in
(i) the smallest number of obtained moduli, ang their largest prime divisor
whichis p=3.

3. Ona CS whose least modulusis 2 and th€M is 2*-5
In the literature, all CS's with least modulus ave LCM's which are divisible
by p = 3. Hough and Nielsen have shown that every HaS a modulus divisible
by either 2 or 3.

In this section, we exhibit Example 3.le.ia CS of nine moduli
containing the least modulus 2, the modulus 8,thke LCM 2-5 = 80. This
is the first CS none of whose moduli is divisible p = 3.
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Example 3.1. The following set of nine ordered pais a CS in which
except for 1, the nine moduli are all the divésof 80.
{1, 2), (0,4), (0,5), (2,8), (6,10)(6,16), (14, 20), (22,40), (78, 80)}.

A CS with least modulus 2 and the amigd modulus 5 does not exist
when k< 9. Hence, Example 3.1 isa CS whose nummbarosuli k=9 is
minimal. For any other CS of the same naturke|lbws that k> 9. Moreover,
as mentioned earlier, Example 3.1 now implies$ there exists at least one CS
which does not contain a modulus divisible by &t rather, moduli divisible
by 2.

Final Remark. In view of Example 3.1, we may now presume tf@at primes
p>7, there exists a CS containing the least nusd@2 and the LCM ='2p.
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