Annals of Pure and Applied Mathematics
Vol. 14, No. 2, 2017, 347-352

Annals of
ISSN: 2279-087X (P), 2279-0888(online) .
Published on 30 September 2017 Pure and Applied
www.researchmathsci.org :
DOI: http://dx.doi.org/10.22457/apam.v14n2al8 Mathe—n‘atlcs

Extremal Solution for Fractional Quadratic Integral
Equation in Banach Space
B.D.Karande' and S.S.Yachawad®

'Department of Mathematics, Maharashtra Udayagifidwidyala, Udgir-413517
Maharashtra, India.
Email: bdkarande@rediffmail.com
2102, ‘A Wing, Raval Tower, Sector - 11, C.B.D. Bplur, Navi Mumbai- 400614
Maharashtra, India.
Corresponding author. Email: sshelke1234@gmail.com

Received 14 September 2017; accepted 28 September 2017

Abstract. In this paper, we proved existence the extremlaitisa for a fractional order
quadratic integral equation in Banach space urigscHitz and Caratheodory conditions
via a hybrid fixed point theorem.

Keywords. Banach space, fractional order quadratic integgalation, existence results,
fixed point theorem.

AMS Mathematics Subject Classification (2010): 47H30, 26A33, 46BXX

1. Introduction
The theory of fractional calculus has newly recdigelot of attention and establishes a
meaningful branch of nonlinear analysis. Numberredearch papers and research
monographs has appeared devoted to integrals dfededtial equation of fractional
order.

In this paper we study the existence of locallyaative solution of the following
fractional order quadratic integral equation.

f(f,x(t)'x(]/(f))) t v(t,s,x(s))
2() = g(t,2(8)) + ) Jo eyt 45 (1)

wheret e R, =[0,0) and 0<¢<1, g:R, XxR->R, iR, XxRxR-R and
v: R, xR, X R - R are functions which satisfy special assumptions.

2. Preliminaries
In this section, we introduce some notations arfthitiens of fractional calculus and
present preliminary results needed in our prodésla

LetX = AC(R,,R) be the space of absolutely continuous functiofRgnand(Q
be a subset &f. Let a mappingd: X - X be an operator and consider the following
operator equation iK namely,

x(t) = (Ax)(t),for allt € R, 2)
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Below we give some different characterizationhaf solutions for operator equation (2)
onR,. We need the following definitions.

Definition 2.1[3]. LetX be a Banach space. A mappitigk — X is called Lipschitz if
there is a constant> 0 such that||Ax — Ayl|| < a|lx — ¢llfor allx,y €X. fa < 1,
thenA is called a contraction d¥ with the contraction constant.

Definition 2.2. [2,3] An operatorQ on a Banach spaéginto itself is called compact if
for any bounded subs&f X, Q(S) is relatively compact subset Xf If Q is continuous
and compact, then it is called completely contirsionX.

Definition 2.3. [4] LetX be a Banach space with the ndfth and letQ: X — X, be an
operator (in general nonlinear). Th@ns called
i. Compact ifQ(X) is relatively compact subset Xf
ii. Totally compact ifQ(S) is totally bounded subset &f for any bounded
subsefS of X.
iii. Completely continuous if it is continuous and tgtéounded operator oiX.
It is clear that every compact operator is totdbunded but the converse need not be
true.
We seek the solution of (2.1) in the spati&(R,., R)of continuous and real — valued
function defined onR, . Define a standard norr| and a multiplication“-”
in AC(R,, R) by
llxll = sup{lx(®)]: t € Ry}, (xy)(6) = 2(Dy(t), t € R, 3)
ClearlyAC(R,, R)becomes a Banach space with respect to the abawve aod the
multiplication in it. ByL!(R,, R) we denote the space of Lebesgue-integrable functio
R, with the norml|-||.» defined by

lllz = f" () |dt (4)

Definition 2.4 [1]: Let f € £1[0,T] and £ > 0. The Riemann—Liouville fractional
derivative of ordef of real functionf is defined as
t
d [ f©)
(-9dt) (=)

Such tha® ¢ f(t) = ISf(t) = % Ot (tfs(;z_f ds respectively.

bs‘f(t)=r ds , 0<é&<1

Definition 2.5. [1] The Riemann-Liouville fractional integral of ordee (0,1) of the
function f € £L1[0,T] is defined by the formula: I¢f(t) =% Ot(tfs()sz_f ds, te
[0, T] whereT'(§) denote the Euler gamma function. The Riemann-Li@udractional
derivative operator of ordér defined byd¢ = :—; = %
fractional integral operatdf transforms the spad® (R,,R) into itself and has some

other properties.

°j1=¢. It may be shown that the
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Theorem 2.1. [4] (Arzela-Ascoli Theorem) If every uniformly boundexhd equi -
continuous sequengg, } of functions i€ (R, R), then it has a convergent subsequence.

Theorem 2.2. [4]A metric space X is compact iff every sequencX imas a convergent
subsequence.

Theorem 2.3. (Lebesgue’s dominated convergence them) Suppose thdig,.} is a
sequence of measurable functions, #pat— g pointwise a.e. asn — o, and that
|gx| < f,V n, where f is integrable theg is integrable and gdu = lim,, .o, [ ¢, du.

Definition 2.6. [6] A closed and non-empty sé& in a Banach AlgebrX is called a
cone if,

i. K+KcK

ii. JKEK for 2eR,2=>0

iii. {—K} n K = 0 where 0 is the zero element Kf
and is called positive cone if

iv. KeKCK
and the notatiore is a multiplication composition ifX. We introduce an order relation
< inX as follows.

Letx,y € X thenx <y ifand only if 4 —x € K. A coneK is called normal
if the norm |||| is monotone increasing oK. It is known that if the coneK is
normal in X then every order-bounded set¥h is norm-bounded set iX. The details
of cone and their properties appear in Guo andhikistham [7].

We equip the spac€(J,R) of continuous real valued function dR, with the
order relation < with the help of cone defined by,

K={xe€C(,R):x(t) =0Vt €[} 5)

We well known that the con& is normal and positive i€ (], R). As a result of
positivity of the coneK we have:

Lemma 2.1.[8] Let p1,22,91,92 € K be such that p; < g, and p, < g,then
P1P2 = G1%2-
For any,g e X=C(R,,R),p < g the order intervalp, g] is a set iNX
given by,
[pal={xeXip <x<qg} (6)

Definition 2.7. [6] A mappingG: [p,g] —» X is said to be nondecreasing or monotone
increasing ifx < ¢ implies Gx < Gy forall x,¢4 € [p, g].

We use following fixed point theorem of Dhage [8t fproving the existence of
extremal solution for the FQIE (1.1) under certaionotonicity conditions.

Theorem 2.4. [8]Let K be a cone in Banach AlgebB and let [p,g] € X. Suppose
that A, B: [p,g] » K and C: [p, ¢] - X be three nondecreasing operators such that
a. A andC are a Lipschitz with Lipschitz constants
b. B is completely continuous,
c. The elementp, g € X satisfyp < ApBp + Cp and AgBg + Cq < g
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Further if the con& is normal and positive then the operator equatios AxBy +
Cx has the least and greatest positive solutiofying] wheneveraM + g < 1, where

M = ||B([z, gDl = sup{l|Bx||: x € [p, 4]}

3. Existence theory
LetX = C(R,, R) be a space of continuous real valued functionmeléfonR . Define
a norm ||-|| and a multiplication inX by, [[x|| = supier, [x(®)| and (xgy)(t) =
By),VtER,.

Clearly X is Banach Algebra with respect to above supremuwrmnand
multiplication in it.

Definition 3.1. [9] A mappingr: R, X R, X R - R is Caratheodory if:
i) (t,s) = v(t,s,x) is measurable for eaghe R and
i) (x) » v (¢, s, x)is continuous almost everywhere fo€ R.,.
Furthermore a Caratheodary functieris L —Caratheodary if:
iii) For each real number> 0 there exists a functios, € £L1(R; X R;,R)
such thatv (t,s,x)| < A,.(t,s) a.e. t € R, forallx € R with x|, <.
Finally a caratheodary functian is £ —caratheodary if:
iv) There exists a functiomt € L1(R, x R,,R) such that|v(t,s,x)| <
#(t,s), a.e. teER, forallx eR
For convenience, the functighis referred to as a bound function fer

4. Existence of extremal solutions

We need following definitions in sequel.
Definition 4.1. A function p € AC(R,,R) is called dower solution of the FQIE (1)
r)-g(tp®)

F(tr®rr®))

f(tz®p(y®)) to(tspls)
p) < g(t,z’(t)) + ( NG) )fo ((t—ss;vl-sf) ds )7

Again a functiong € AC(R,,R) is called arupper solution of the FQIE (1) ok, if
a()-g(ta®)
F(ta®alr®))

F(£a®.a(r®)) ¢ o(ts.als)
4 2 g(t,a(0) + ot [l 4 (®)
Definition 4.2. A solution x,, of the FQIE (1) is said to bmaximal if for any other
solutionx to FQIE (1) hasx(t) < xy(t) for allt € R,. Again a solutionx,, of the
FQIE (1) is said to be minimal iy, (t) < x(t) for allt € R, wherex is any solution
of the FQIE (1) onR,.

Definition 4.3. (Caratheodory casg A functions: R — R is nondecreasing #(x) <
o(yp)Vx,4 € R for which x < y¢. Similarly o(x) is increasing inx if o(x) <
o(y) Vx,4 € R for which x < y.

We consider the following assumptions:

2(t)-g(tx(t))
F(ex®2(r(©))

on R, if the functiont — { } is continuous absolutely and

the functiont —» { } is continuous absolutely and

B,) The functiorw — { } is increasing in the interval
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[minteRJj’(t)l maxieg, ('Z(t)] :
B,) The functionsg:R, X R-> R, fiR, XxRXR->R and¢:R, xR, XR->R
are on decreasing imalmost everywhere fot € R,.
B3) The FQIE (1) has a lower solutignand upper solutiog onRR, withp < g.
8,) The functionv (¢, s, x(s)) is caratheodory.
B5) The function I:R, >R defined byl(t) = |v(t,s, p(s))| + |v(t. s, a(s))]| is
Lebesgue measurable.

Remark 4.1. Assume that the hypothesé®, -3,) holds, then the function —
v(t,s,%(s)) is lebesgue integrable gnsay|v(t,s,x(s))| < I(t), a.e.t € Ry, for all

x € [p, q] and some lebesgue integrable funcfion

Theorem 4.1. Assume that the hypotheg®,-8,) holds and is given in above remark,
further||a|| Té|lzx + |IBIl < 1, then FQIE (1) has minimal and maximal positive

. (f i)
solution onR,.

Proof: Let X = C(J, R) and we define an order relatiog™ by the coneK given by (5).
ClearlyK is a normal cone irX.
Now we define three operator, B: [p,g¢] » K and C: [p, g] - X by,

Ax(t) = f(t x(t), x(y(t))) teR, (9)
Bx(t) = 725 Jy ”é“;“? ds,t € R, (10)
Cx(t) = g(t, (), t € Ry (11)
The FQIE is equivalent to the operator equation

x(t) = Ax(t)Bx(t) + Cx(t),Vt € R, (12)

We shall show that, the operatagis B andC satisfy all the conditions of
Theorem (2.4).
This will be achieved in the following series ofss.
Notice that(8B,) implies A,B:[p,g] - K also note thaf{®B3) ensures thatp <
ApBp + Cp and AgBg + Cq < g. Since the coneK in X is normal[p, glis a horm
bounded set irX. Now it is shown, as in the proof of theorem (4ril)he paper [5], that
A and C are Lipschitz with a Lipschitz constdiit¢ ||| and|ll|n|l|l respectively. Similarly
B is completely continuous operator ¢, g]. Again the hypothesigB2) implies that
A, BandC are non-decreasing ¢, g].

Step I: To show that the operatofsBandC are non-decreasing ¢, g]. let x,y €
[p,q] be such thate < y.

Ax(t) = f (t x®,2(r(0)) < f (640 4(r(©)) < Ay(®), vt € R,

t v(t S, x(s)) 1t v(t,s,y(s))
Bx(t) = F(s‘) 0 (o)1 < r®Jo ot ds < By(t),t € R,

And Cx(t) = g(t,2(0)) < g(t, 2(t)) < Cy(t),t € R,
Implies thatA, B andC are non-decreasing operators[gng].

Step II: Again definition (4.1) and hypothes{&5) implies that

F(Er®2(0®)) cto(tsp()
W(t) < g(t' W(t)) + L) fo (t- 5)1 & d
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t,x(t), t
F(ex@®2(r®)) J-tv(t,s,x(f)) s
NG) 0 (t-s)1%

F(ta®a(r®)) ctv(tsa)
< g(t, ‘l(t)) + r'E) fo (t-s)1—¢

<g(tx@®)+

ds < g(t),Vt e R,

andx € [p,q]
As aresulip(t) < Ax(t)Bx(t) + Cx(t) < g(t),Vt e R, andx € [p, g]
Hence AxBx + Cx € [p,q],Vx € [p, g]

Step lll: AgainM = ||B([», DIl = sup{l|Bx||: x € [, 4]}

SinceaM + B < |||

< sup {supteﬂh fg%(t — )7 (t,5,2(9)|: x € [, 4]}

1 [(e-5)% t 1
< sup =[S Wil < s TN
: ¢ [, T+ £

ren Tl + 1Bl < 1
We apply Theorem 2.4 to the operator equatforiBx + Cx = x to yield that

the FQIE (1.1) has minimum and maximum positivaisoh onRR,. This completes the
proof.

5. Conclusion

In this paper, we have studied the existence thrermal solution for fractional quadratic
integral equation. The result has been obtaineddiyg hybrid fixed point theorem for
three operators in Banach space due to Dhage.

1.

2.

3.

REFERENCES

S.Samko, A.A Kilbas and O.Marivchelvractional Integrals and Derivative: Theory
and Applications, Gordon and Breach, Amsterdam (1993).

J.Dugundji and A.Granadsixed Point Theory, in. Monographie Math., Warsaw
(1982).

M.l.Abbas, On the Existence of locally attractivausion of a nonlinear quadratic
voltera integral equation of fractional ordédvances in Difference Equations, 2010
(2010) 1-11.

B.D.Karande, Fractional order functional integréfatiential equation in Banach
AlgebrasMalaysian Journal of Mathematical Sciences, 8 (2013) 1-16.

B.D.Karande and S.S.Yachawad, Attractivity resalt fractional quadratic integral
equation in banach spachjternational Journal of Mathematical Archive, 8(6)
(2017) 125-132.

B.C.Dhage, Nonlinear functional boundary value peois in Banach Algebras
involving Caratheodorie&yungpook Math. J., 46 (2006) 527-541.

D.Guo and V.Lakshmikantham, Nonlinear problems listeact spaceshcademic
Press, (1982).

B.C.Dhage, Periodic boundary value problems oft foeder Caratheodory and
discontinuous differential equatioNonlinear Func. Anal. Appl., 13(2) (2008) 323-
352.

J.Banas and B.Rzepka, Monotonic solution of a catadrintegral equation of
fractional order,J. Math. Anal. Appl., 332 (2007) 1371-1379.

352



