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Abstract. In this paper, we have introduced some new separation axioms in nano 
topological spaces in terms of nano β -open sets along with their basic properties. Two 

new types of graphs, viz. nano β -closed graphs and strongly nano β -closed graphs of 

functions between two nano topological spaces are initiated in terms of nano β -open sets. 
We have established some characterizations of functions having these type of graphs. 
Moreover, some applications of these graphs on the separation axioms defined here are 
also achieved.  

Keywords: nano β -closure, βn - 1,2)=(iTi  spaces; βn -Urysohn, nano β -closed 

graph, strongly nano β -closed graph 

AMS Mathematics Subject Classification (2010): 54A05, 54C10, 54D10 

1. Introduction 
The concept of nano topology and nano open sets were introduced by Thivagar [4] in terms 
of approximations and boundary region of a universal set using an equivalence relation on 
it. Some recent works on nano topological spaces can be found in [5, 7, 10, 11]. Beside 
these, Nasef et al. [8] have investigated some of the properties of nano near open sets and 
nano continuity and have shown some application examples in nano topology in real life 
situation. Recently, Azzam [3] have introduced the concept of grill in nano topological 
spaces and discussed about some usefulness of nano topology. On the other hand, Monsef 
et al. [1] introduced the notion of β -open sets (=semi-preopen sets [2]) and since its 
introduction such sets along with some of their relevant concepts have been investigated by 
many researcher. 

In the present paper, we have introduced nano β -closures and which have been 
used in investigating certain concepts developed in the subsequent sections. In section 4, 
some new separation axioms have been introduced in a nano topological space using nano 
β -open sets along with various characterizations and properties. Furthermore, in the last 

two sections, two new types of functions, namely nano β -closed graph and strongly nano 

β -closed graph have been introduced between two nano topological spaces. Some 
characterizations and basic properties along with possible applications of such functions 
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are also investigated. 
 

2. Preliminaries 
Let Ω  be a nonempty finite set called the universe and R  be an equivalence relation on 
Ω . Then the pair ),( RΩ  is called an approximation space. The equivalence of Ω∈x  is 

denoted by )(xR . Let )(Ω∈ PX . Then we define the sets 

        })(:)({=)( XxRxRXL
xR ⊂

Ω∈∪ , })(:)({=)( ∅≠∩
Ω∈

XxRxRXH
xR ∪   

and )()(=)( XHXLXB RRR − . Here the sets )(XLR , )(XHR  and )(XBR  are 

called lower approximation of ))(,( XRτΩ , upper approximation of ))(,( XRτΩ  and 

boundary region of X  with respect to R  respectively. Then ),(,,{= XH RR ∅Ωτ  

)}(),( XLXB RR  is a topology on Ω  with base )}(),(,{=)( XBXLX RRR Ωτ  [4]. 

This topology is called a nano topology with respect to the subset ))(,( XRτΩ  of the 

universe Ω  and the pair ))(,( XRτΩ  is called a nano topological space with respect to 

the subset X  of the universe Ω . The members of )(XRτ  are called nano open sets [4] 

and their complements are called nano closed sets [4]. Let A  be a subset of a nano 
topological space ))(,( XRτΩ . Then the largest nano open set contained in A  is called 

the nano interior of A  [4] and is denoted by )(Anint  and the smallest nano closed set 

containing A  is called the nano closure of A  [4] and is denoted by )(Ancl . 

A subset A  of a nano topological space ))(,( XRτΩ  is called nano β -open [9] 

if )))((( AnclnintnclA ⊂ . The family of all nano β -open subsets of a nano topological 

space ))(,( XRτΩ  is denoted by ),(=),,( XONXRON ΩΩ ββ . The family of all nano 

β -open subsets of a nano topological space ))(,( XRτΩ  containing Ω∈x  is denoted 

by );,(=);,,( xXONxXRON ΩΩ ββ . The complement of a nano β -open set is called 

a nano β -closed set. The family of all nano β -closed subsets of a nano topological space 

))(,( XRτΩ  is denoted by ),(=),,( XCNXRCN ΩΩ ββ . 
 

3. Nano β -closure operators 
Some of the concepts and results developed here will be used in the subsequent sections. 

 
Definition 3.1. A nano topological space ))(,( XRτΩ  is said to satisfy a property nP  if 

)()(=)( BnclAnclBAncl ∩∩  for every pair of subsets A  and B  of a nano 

topological space ))(,( XRτΩ .  
 

Theorem 3.2. (a) Arbitrary union of nano β -open sets of a nano topological space 

))(,( XRτΩ  is a nano β -open set.  

(b) If a nano topological space ))(,( XRτΩ  satisfies the property nP , then the 

intersection of any two nano β -open sets is nano β -open and so ),( XOn Ωβ  is a 
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topology on Ω  finer than nano topology )(XRτ .  
Proof: (a): Obvious.  
(b) Let A  and B  are any two nano β -open sets. Then )))((( AnclnintnclA ⊂  and 

)))((( BnclnintnclB ⊂ .  

Now )))(())(((=)))((( BnclnintAnclnintnclBnclnintnclBA ∩⊂∩   

)))(((=)))()(((= BAnclnintnclBnclAnclnintncl ∩∩  and so BA∩  is 

nano β -open.  
 

Definition 3.3. Let A  be a subset of a nano topological space ))(,( XRτΩ . Then βn
-interior (resp. βn -closure) of A  is denoted by )(Aintnβ  (respectively )(Aclnβ ) 

and is defined as the set )},(:{=)( XOnGAGAintn Ω∈⊂∪ ββ  (respetively  

)}),(:{=)( XOnFAFAcln Ω∈−Ω⊃∩ ββ .  
 

Theorem 3.4. For any subsets A  and B  of a nano topological space ))(,( XRτΩ , the 
following statements hold:  

(i) )(Aclnx β∈  if and only if ∅≠∩UA  for each );,( xXONU Ω∈ β ;  

(ii) A  is nano β -open if and only if )(= AintnA β  ;  

(iii) A  is nano β -closed if and only if )(= AclnA β ;  

(iv) If BA ⊂  then )()( BintnAintn ββ ⊂  and )()( BclnAcln ββ ⊂ ;  

(v) )(=)( AintnAcln ββ −Ω−Ω ;  

(vi) )()( AintnAnint β⊂ ;  

(vii) )()( AclnAncl β⊃ .  
Proof: Straightforward.  

 
4. Separation axioms in terms of nano β -open sets 

Definition 4.1. A space ))(,( XRτΩ  is called  

(i) βn - 1T  if for each pair of distinct points Ω∈yx, , there exist an 

);,( xXONU x Ω∈ β  and an );,( yXONU y Ω∈ β  such that yUx ∈/  and xUy ∈/ .  

(ii) βn - 2T  if for each pair of distinct points Ω∈yx, , there exist an 

);,( xXONU x Ω∈ β  and an );,( yXONU y Ω∈ β  such that ∅∩ =yx UU .  

(iii) βn -Urysohn if for each pair of distinct points Ω∈yx, , there exist an 

);,( xXONU x Ω∈ β  and an );,( yXONU y Ω∈ β  such that  

∅∩ =)()( yx UclnUcln ββ .  

(iv) βn -regular if for each point Ω∈x  and each nano β -closed set F  such that 

Fx ∈/ , there exist a );,( xXONV Ω∈ β  and a ),( XONW Ω∈ β  such that WF ⊂  

and ∅∩ =WV .  
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Remark 4.2. A βn -Urysohn nano topological space is a βn - 2T  nano topological 

space and a βn - 2T  nano topological space is a βn - 1T  nano topological space.  
 

        The following characterizations of βn - 1T , βn - 2T  and βn -regular spaces are 
straightforward. 

 
Theorem 4.3. A nano topological space ))(,( XRτΩ  is βn - 1T  if and only if singletons 

of ))(,( XRτΩ  are nano β -closed.  
 

Theorem 4.4. For a nano topological space ))(,( XRτΩ , the following statements are 
equivalent:  
(a) ))(,( XRτΩ  is βn - 2T ;  

(b) For each Ω∈x  and Ω∈≠ )( xy , there exist an );,( xXONU x Ω∈ β  such that 

)( xUclny β∈/ .  

(c) For each Ω∈x , }{=)};,(:)({ xxXOnUUcln Ω∈∩ ββ .  
 

Theorem 4.5.  A nano topological space ))(,( XRτΩ  is βn -regular if and only if for 

each Ω∈x  and each );,( xXONU Ω∈ β , there exists a );,( xXONV Ω∈ β  such 

that βn - UVcl ⊂)( .  
 

Theorem 4.6. Every βn -regular βn - 2T  nano topological space is βn -Urysohn.  

Proof: Let the nano topological space ))(,( XRτΩ  is βn -regular and βn - 2T . Consider 

any two distinct points Ω∈yx, . Since ))(,( XRτΩ  is βn - 2T , there exist an 

);,( xXOnU x Ω∈ β  and an );,( yXOnU y Ω∈ β  such that ∅∩ =yx UU  and so 

∅∩ =)( yx UUclnβ . Then );,()(= yXOnUclnU x Ω∈−Ω ββ . Since ))(,( XRτΩ  is 

βn -regular, by Theorem 4.5, we can find a );,( yXOnVy Ω∈ β  such that 

UVcln y ⊂)(β . Thus ∅∩ =)()( xy UclnVcln ββ . So ))(,( XRτΩ  is βn -Urysohn.  

 
Definition 4.7. Let ))(,( XRτΩ  and ))(,( Y

R⊻
τΛ  be two nano topological spaces. Then 

a function Λ→Ω:ψ  is called nano β -open if ),,()( YRONU ⊻Λ∈ βψ  for every 

),,( XRONU Ω∈ β .  
 

Remark 4.8. Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces. Then a 

surjection Λ→Ω:ψ  is nano β -open if and only if ),,()( YRCNU ⊻Λ∈ βψ  for 

every ),,( XRCNU Ω∈ β .  
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Definition 4.9. Let ))(,( XRτΩ  and ))(,( Y

R⊻
τΛ  be two nano topological spaces. Then 

a function Λ→Ω:ψ  is called quasi nano β -irresolute if for each Ω∈x  and for 

each ))(;,,( xYRONV ψβ ⊻Λ∈ , there exists an );,,( xXRONU Ω∈ β  such that 

)()( VclnU βψ ⊂ .  
 

Theorem 4.10. Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces. Let 

Λ→Ω:ψ  be a quasi nano β -irresolute and injective mapping, where Λ  be βn

-Urysohn. Then ))(,( XRτΩ  is βn - 2T .  

Proof: Let 1p  and 2p  be any two distinct points of ))(,( XRτΩ . Since ψ  is injective, 

)()( 21 pp ψψ ≠ . Again since Λ  is βn -Urysohn, there exist a ,,(
1

⊻RONVp Λ∈ β  

))(; 1pY ψ and a ))(;,,( 22
pYRONVp ψβ ⊻Λ∈  such that ∅∩ =)()(

21 pp VclnVcln ββ .  

Also since ψ  is quasi nano β -irresolute, there exist a );,,( 11
pXRONS p Ω∈ β  and a 

);,,( 22
pXRONS p Ω∈ β  such that )()(

11 pp VclnS βψ ⊂  and )()(
22 pp VclnS βψ ⊂  

and hence ∅∩⊂∩ =)()()()(
2121 pppp VclnVclnSS ββψψ . Thus  

∅∩ =)()(
21 pp SS ψψ  and so ∅∩ =

21 pp SS . Therefore ))(,( Y
R⊻

τΛ  is βn - 2T .  

 
Theorem 4.11.  Let ))(,( XRτΩ  and ))(,( Y

R⊻
τΛ  be two nano topological spaces. Let 

the function Λ→Ω:ψ  be nano β -open and bijective, where ))(,( XRτΩ  be βn
-Urysohn. Then Λ  is βn -Urysohn.  

Proof: Let 1q  and 2q  be any two distinct points of Λ . Since ψ  is bijective, there exist 

1p , Ω∈2p  with 21 pp ≠ , 11 =)( qpψ  and 22 =)( qpψ . Since ))(,( XRτΩ  is βn

-Urysohn, there exist a );,,( 11
pXRONS p Ω∈ β  and a );,,( 22

pXRONS p Ω∈ β  such 

that ∅∩ =)()(
21 pp SclnScln ββ . But the nano β -open-ness of ψ  ensures that 

))((=))((
11 pp SclnScln βψβψ −Λ−Ω  and ))((=))((

22 pp SclnScln βψβψ −Λ−Ω  

are nano β -open sets and so ))((
1pSclnβψ  and ))((

2pSclnβψ  are βn -closed in 

))(,( Y
R⊻

τΛ .  

Now )))((()))((())(())((
2121 pppp SclnclnSclnclnSclnScln βψββψβψβψβ ∩⊂∩

 
∅∩∩ =))()((=))(())((=

2121 pppp SclnSclnSclnScln ββψβψβψ . Also, since ψ  is 

nano β -open, );,,()( 11
qYROnS p

⊻Λ∈ βψ  and );,,()( 22
qYRONS p

⊻Λ∈ βψ . Thus 
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))(,( Y
R⊻

τΛ  is βN -Urysohn.  

 
5. Nano β -closed and strongly nano β -closed graphs 

Definition 5.1.  Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be a function. Then its graph )(ψG  is called nano β -closed if for each 

)(),( ψGyx −Λ×Ω∈ , there exist an );,( xXONU Ω∈ β  and a 

);,,( yYRONV ⊻Λ∈ β  such that ∅∩× =)()( ψGVU .  
 

Lemma 5.2. Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be a function. Then following conditions are equivalent.  

(i) ψ  has nano β -closed graph,  

(ii) for each )(),( ψGyx −Λ×Ω∈ , there exist an );,,( xXRONU Ω∈ β  and a 

);,,( yYRONV ⊻Λ∈ β  such that ∅∩ =)( VUψ .  
Proof: The proof is straightforward and thus omitted.  

Definition 5.3. Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces. A 

function Λ→Ω:ψ  is called nano β -irresolute if for each Ω∈x  and for each 

))(;,,( xYRONV ψβ ⊻Λ∈ , there exists an );,,( xXRONU Ω∈ β  such that 

VU ⊂)(ψ .  

Theorem 5.4. Let ))(,( XRτΩ , ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be nano β -irresolute, where Λ  is βn - 2T . Then the graph )(ψG  is 

nano β -closed.  

Proof: Let )(),( ψGyx −Λ×Ω∈ . Then )(xy ψ≠ . Since Λ  is βn - 2T , there exist an 

))(;,,(1 xYRONU ψβ ⊻Λ∈  and a );,,( yYRONV ⊻Λ∈ β  such that ∅∩ =1 VU . 

Also, since ψ  is nano β -irresolute, );,,()(= 1
1 xXRONUU Ω∈− βψ  and so 

∅∩ =)( VUψ . Therefore the graph )(ψG  is nano β -closed.  
 

Theorem 5.5. Let ))(,( XRτΩ , ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be a surjective mapping having nano β -closed graph. Then ))(,( Y
R⊻

τΛ  is 

βn - 1T .  

Proof: Let Λ∈21,qq  with 21 qq ≠ . Since ψ  is surjective, there exists Ω∈1p  such 

that 11 =)( qpψ  and 21)( qp ≠ψ . Then )(),( 21 ψGqp −Λ×Ω∈  and so by the Lemma 

5.2, we can find );,,( 11
pXRONU p Ω∈ β  and a );,,( 22

qYRONVq
⊻Λ∈ β  such that 

∅∩ =)(
21 qp VUψ . Thus )(

11 pUq ψ∈  and so 
21 qVq ∈/ . Similarly, we can ensure the 
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existence of an Ω∈2p  such that 22 =)( qpψ  and 12)( qp ≠ψ  and an 

);,,( 22
pXRONU p Ω∈ β  and a );,,( 11

qYRONVq
⊻Λ∈ β  such that  

∅∩ =)(
12 qp VUψ . Then )(

22 pUq ψ∈  and 
12 qVq ∈/ . So ))(,( Y

R⊻
τΛ  is βn - 1T .  

 
Theorem 5.6. Let ))(,( XRτΩ , ))(,( Y

R⊻
τΛ  be two nano topological spaces and the 

function Λ→Ω:ψ  be nano β -open and surjective. If the graph )(ψG  is β -closed, 

then ))(,( Y
R⊻

τΛ  is βn - 2T .  

Proof: Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces. Let 

Λ∈21,qq  with 21 qq ≠ . Since ψ  is surjective, there exist Ω∈1p  such that 

11 =)( qpψ  but 21)( qp ≠ψ . Thus )(),( 21 ψGqp −Λ×Ω∈  and so by Lemma 5.2, we 

can find an );,,( 11
pXRONU p Ω∈ β  and a );,,( 22

qYRONVq
⊻Λ∈ β  such that 

∅∩ =)(
21 qp VUψ . Again since ψ  is nano β -open, );,,()( 11

qYRONU p
⊻Λ∈ βψ . So 

))(,( Y
R⊻

τΛ  is βn - 2T .  

Theorem 5.7.  Let ))(,( XRτΩ , ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be injective. If the graph )(ψG  β -closed, ))(,( XRτΩ  is βn - 1T .  

Proof: Let Ω∈21, pp  and 21 pp ≠ . Since ψ  is injective, )()( 21 pp ψψ ≠ .  

So )())(,( 21 ψψ Gpp −Λ×Ω∈ . Now, by Lemma 5.2, there exist an  

);,,( 11
pXRONU p Ω∈ β  and a ))(;,,( 22

pYRONVp ψβ ⊻Λ∈ such that  

∅∩ =)(
21 pp VUψ . Therefore )()(

12 pUp ∈/ψ  and so 
12 pUp ∈/ . Hence 

11 pUp ∈  but 

12 pUp ∈/ . Again since )())(,( 12 ψψ Gpp −Λ×Ω∈ , we can find  

);,,( 22
pXRONU p Ω∈ β  and 

21 pUp ∈/ . Hence Ω  is βn - 1T .  

Theorem 5.8. Let ))(,( XRτΩ , ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be a nano β -irresolute injection. If the graph )(ψG  is β -closed, 

))(,( XRτΩ  is βn - 2T .  

Proof: Let Ω∈21, pp  and 21 pp ≠ . Since ψ  is injective, )()( 21 pp ψψ ≠ . So 

)())(,( 21 ψψ Gpp −Λ×Ω∈ . Then Lemma 5.2 ensures the existence of an  

);,,( 11
pXRONU p Ω∈ β  and a ))(;,,( 22

pYRONVp ψβ ⊻Λ∈  such that  

∅∩ =)(
21 pp VUψ . Since ψ  is a nano β -irresolute, );,,()( 22

1 pXRONVq Ω∈− βψ . 

So ))(,( XRτΩ  is βn - 2T .  
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Definition 5.9. [8] Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces. A 

function Λ→Ω:ψ  is called nano β -continuous if ),,()(1 XRONV Ω∈− βψ  for 

every ),,( YRNOV ⊻Λ∈ .  

Theorem 5.10. Let a nano topological space ))(,( XRτΩ  satisfy the property nP  and 

))(,( Y
R⊻

τΛ  be an arbitrary nano topological spaces. And Λ→Ω:ψ  has nano β
-closed graph. Then ψ  is nano β -continuous.  

Proof: Let ),,( YRNOV ⊻Λ∈  and any )(1 Vx −∈ψ . Then for each Vy −Λ∈ , 

)(),( ψGyx −Λ×Ω∈ . Since the graph of ψ  is nano β -closed, there exists an 

);,,( xXRONU y Ω∈ β  and a );,,( yYRONVy
⊻Λ∈ β  such that ∅∩ =)( yy VUψ . 

Since ))(,( XRτΩ  is finite, we can find Vyqq k −Λ∈,...,, 21  such that 

VVY
iy

k
i ∪∪ )(= 1=  and so 

iy
k
i VV 1=∪⊂−Λ . Since ))(,( XRτΩ  satisfy the property 

nP , );,,(= 1= xXRONUS
iy

k
ix Ω∈∩ β  and ∅−Λ∩ =)()( VSψ . So  

),,()}(:{=)( 11 XRONVxSV x Ω∈∈∪ −− βψψ . Therefore ψ  is nano β -continuous.  

Definition 5.11. Let ))(,( XRτΩ , ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be a function. Then its graph )(ψG  is called strongly nano β -closed if for 

each )(),( ψGyx −Λ×Ω∈ , there exist an );,,( xXRONU Ω∈ β  and a  

);,,( yYRONV ⊻Λ∈ β  such that ∅∩× =)())(( ψβ GVclnU .  

     Clearly, every function possessing strongly nano β -closed graph has nano β
-closed graph. 

 
Lemma 5.12. Let ))(,( XRτΩ  and ))(,( Y

R⊻
τΛ  be two nano topological spaces. Then 

for a function Λ→Ω:ψ , following conditions are equivalent:  

(i) the graph )(ψG  is nano β -closed;  

(ii) for each )(),( ψGyx −Λ×Ω∈ , there exist an );,,( xXRONU Ω∈ β  and a 

);,,( yYRONV ⊻Λ∈ β  such that ∅∩ =)()( VclnU βψ .  
Proof: The proof is straightforward and so omitted.  

 
Definition 5.13. A filter base F  on a nano topological space ))(,( XRτΩ  is said to 

nano β - θ -converge (respectively nano β -converge) to a point Ω∈x  if for each 

);,,( xXRONV Ω∈ β , there exists an F∈F  such that )(VclnF β⊂  (respectively 

VF ⊂ ).  

Theorem 5.14. Let ))(,( XRτΩ  and ))(,( Y
R⊻

τΛ  be two nano topological spaces. Let 

))(,( Y
R⊻

τΛ  be βn -regular and Λ→Ω:ψ  be any function. Then the following 
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statements are equivalent:  
(i) )(ψG  is strongly nano β -closed;  

(ii) If a filter base F  on ))(,( XRτΩ , nano β -converges to x  and )(Fψ  

nano β -θ -converges to y  in ))(,( Y
R⊻

τΛ , then )(= xy ψ .  

Proof: (i) ⇒  (ii): Let F  be a filter base on ))(,( XRτΩ  that nano β -converges to x  

and )(Fψ  nano β -θ -converges to y . If possible, let )(xy ψ≠ .  

Then )(),( ψGyx −Λ×Ω∈ . Clearly, F⊂Ω );,,( xXRONβ  and  

)()};,,(:)({ F
⊻ ψββ ⊂Λ∈ yYRONVVcln . So, for each );,,( xXRONU Ω∈ β  and 

each );,,( yYRONV ⊻Λ∈ β , there exist F∈1P  and F∈2P  such that UP ⊂1  and 

)()( 2 VclnP βψ ∈ . Hence there exists an F∈0P  such that 210 PPP ∩⊂  and satisfies 

UP ⊂0  as well as )()( 0 VclnP βψ ⊂ . Hence )()()( 0 VclnUP βψψ ∩⊂≠∅ . So by 

Lemma 5.12, )(ψG  is not strongly nano β -closed.  

(ii) ⇒  (i): Let ))(,( Y
R⊻

τΛ  is βn -regular and the given condition (ii) holds for 

ψ . If possible, let )(ψG  is not strongly nano β -closed. Then there exists 

)(),( ψGyx −Λ×Ω∈  such that ∅≠∩× )())(( ψβ GVclnU  for each 

);,,( xXRONU Ω∈ β  and each );,,( yYRONV ⊻Λ∈ β . Since Λ  is βn -regular, the 
family

);,,(:)}())(())(,(:{={= xXRONUGVclnUppUpFUV Ω∈∩×∈∈ βψβψF  and 

)};,,( yYRONV ⊻Λ∈ β  is a filter base on ))(,( XRτΩ . But F  nano β -converges to 

x  in ))(,( XRτΩ  and )(Fψ  nano β - θ -converges to y  and )(= xy ψ  — a 
contradiction.  

Theorem 5.15. Let ))(,( XRτΩ , ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be a function. If the graph )(ψG  is strongly nano β -closed, then 

)};,,(:))(({=)( xXRONUUclnx Ω∈∩ βψβψ  for each Ω∈x .  

Proof: If possible, let there exist an Ω∈x  and an Λ∈≠ ))(( xy ψ  such that 

))(( Uclny ψβ∈  for each );,,( xXRONU Ω∈ β . Since )(),( ψGyx −Λ×Ω∈ , by 

Lemma 5.12, we can find a );,,( xXRONU x Ω∈ β  and a );,,( yYRONVy
⊻Λ∈ β  such 

that ∅∩ =)()( yx VclnU βψ  and so ∅∩⊂∩ =)()()( yxyx VclnUVU βψψ . Thus 

∅∩ =)( yx VUψ . Then ,))(( xUclny ψβ∈/ a contradiction.  

Theorem 5.16.  Let ))(,( XRτΩ  is an arbitrary nano topological space and  

))(,( Y
R⊻

τΛ  is βn - 2T . Let Λ→Ω:ψ  be nano β -irresolute. Then the graph )(ψG  

is strongly nano β -closed.  
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Proof: Let )(),( ψGyx −Λ×Ω∈ . Then )(xy ψ≠ . Since ))(,( Y
R⊻

τΛ  is βn - 2T , 

there exist a ))(;,,( xYRONU ψβ ⊻Λ∈  and a );,,( yYRONV ⊻Λ∈ β  such that 

∅∩ =VU . Again since ψ  is nano β -irresolute, );,,()(= 1 xXRONUK Ω∈− βψ  

and so ∅∩ =)( VKψ , i.e. )(KV ψ−Λ⊂ , i.e. )()( KVcln ψβ −Λ⊂ , i.e. 

∅∩ =)()( VclnK βψ . Hence )(ψG  is strongly nano β -closed.  

Theorem 5.17. Let ))(,( XRτΩ , ))(,( Y
R⊻

τΛ  be two nano topological spaces and 

Λ→Ω:ψ  be a quasi nano β -irresolute injection. If the graph )(ψG  is strongly nano 

β -closed, then ))(,( XRτΩ  is βn - 2T .  

Proof: Let any two distinct points Ω∈21, pp . Since ψ  is injective, )()( 21 pp ψψ ≠ . 

Thus )())(,( 21 ψψ Gpp −Λ×Ω∈  and so by lemma 5.12, there exist a 

);,,(
1

xXRONU p Ω∈ β  and a );,,(
2

yYRONVp
⊻Λ∈ β  such that ∩)(

1pUψ

)(
2pVclnβ ∅= and so 

12

1 ))(( pp UVcln −Ω⊂− βψ . Since ψ  is a quasi nano β

-irresolute, there exists );,,()( 22
pXRnS p Ω∈ βγ  such that )()(

22 pp VclnS βψ ∈ . 

Then 
12

1

2
))(( ppp UVclnS −Ω⊂⊂ − βψ  and hence ∅∩ =

12 pp US . So ))(,( XRτΩ  

is βn - 2T .  

Theorem 5.18. Let ))(,( XRτΩ  be any nano topological space, ))(,( Y
R⊻

τΛ  be βn

-Urysohn nano topological space and Λ→Ω:ψ  be a quasi nano β -irresolute. Then 

its graph )(ψG  is strongly nano β -closed.  

Proof: Let )(),( ψGyx −Λ×Ω∈ . Then )(xy ψ≠ . Since Λ  is βn -Urysohn, there 

exist a ))(;,,(1 xYRONV ψβ ⊻Λ∈  and a );,,(2 yYRONV ⊻Λ∈ β  such that βn -

∅∩ =)()( 21 VclnVcl β . Again since ψ  is quasi nano β -irresolute, there exists an 

);,,( xXRONU Ω∈ β  such that )()()( 21 VclnVclnU ββψ −Ω⊂⊂ . Therefore  

∅∩ =)()( 2VclnU βψ . So )(ψG  is strongly nano β -closed.  

Theorem 5.19. Let ))(,( XRτΩ  be βn -Urysohn possessing the property nP  and 

))(,( Y
R⊻

τΛ  be βn -regular. Let Λ→Ω:ψ  be nano β -open bijection. Then )(ψG  

is strongly nano β -closed.  

Proof: Let )(),( ψGyx −Λ×Ω∈ . Then )(xy ψ≠  and so )(1 yx −≠ψ . Since 

))(,( XRτΩ  is βn -Urysohn, for each )(1 yp −∈ψ , there exist a nano β -open set xV  

and a nano β -open set pV  containing x  and p  respectively such that βn -

∅∩ =)()( px VclnVcl β . Then }=)(:{ ypVp ψ  is a cover of )(1 y−ψ  by nano β -open 

sets of ))(,( XRτΩ . Since )(1 y−ψ  is finite, there exist finite number of points 
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Ω∈kppp ,...,, 21  with ypi =)(ψ  for each }{1,2,...,ki ∈  such that 

ip
k
i Vy 1=

1 )( ∪⊂−ψ . Let 
ix

k
i VG 1== ∩  and 

ip
k
i VH 1== ∪ . Since ))(,( XRτΩ  satisfies the 

property nP , )(=)(=)( 1=1= ip
k
iip

k
i VclnVclnHcln βββ ∪∪ .  

     So ∅∩ =)()( HclnGcln ββ . Again since ψ  is nano β -open and bijective, 

);,,()( yYRONH ⊻Λ∈ βψ  and so Theorem 4.5 ensures the existence of an 

);,,( yYRONL ⊻Λ∈ β  such that )()( HLcln ψβ ⊂ , i.e. HLcln ⊂− ))((1 βψ . 

Therefore ∅∩− =))((1 GLclnβψ  and thus ∅∩ =)()( LclnG βψ . Thus by Lemma 

5.12, )(ψG  is strongly nano β -closed.  
 

6. Conclusion 
Some researchers [3, 6, 8] recently have shown that the concept of nano topology can be 
used as a tool to study some real life problems. Keeping these in mind, we have extended 
some separation axioms and graphs of functions via nano β -open sets in nano topology, 
which may have possible applications in real life situations. 
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