Annals of Pure and Applied Mathematics Vol. 14, No. 2, 2017, 213-223 ISSN: 2279-087X (P), 2279-0888(online) Published on 28 August 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n2a2

Annals of **Pure and Applied Mathematics**

Separation Axioms and Graphs of Functions in Nano Topological Spaces via Nano β -open Sets

M. K. Ghosh

Department of Mathematics, Kalyani Mahavidyalaya, Kalyani-741235, Nadia West Bengal, India. Email: <u>manabghosh@gmail.com</u>

Received 28 July 2017; accepted 19 August 2017

Abstract. In this paper, we have introduced some new separation axioms in nano topological spaces in terms of nano β -open sets along with their basic properties. Two new types of graphs, viz. nano β -closed graphs and strongly nano β -closed graphs of functions between two nano topological spaces are initiated in terms of nano β -open sets. We have established some characterizations of functions having these type of graphs. Moreover, some applications of these graphs on the separation axioms defined here are also achieved.

Keywords: nano β -closure, $n\beta - T_i(i = 1, 2)$ spaces; $n\beta$ -Urysohn, nano β -closed graph, strongly nano β -closed graph

AMS Mathematics Subject Classification (2010): 54A05, 54C10, 54D10

1. Introduction

The concept of nano topology and nano open sets were introduced by Thivagar [4] in terms of approximations and boundary region of a universal set using an equivalence relation on it. Some recent works on nano topological spaces can be found in [5, 7, 10, 11]. Beside these, Nasef et al. [8] have investigated some of the properties of nano near open sets and nano continuity and have shown some application examples in nano topology in real life situation. Recently, Azzam [3] have introduced the concept of grill in nano topological spaces and discussed about some usefulness of nano topology. On the other hand, Monsef et al. [1] introduced the notion of β -open sets (=semi-preopen sets [2]) and since its introduction such sets along with some of their relevant concepts have been investigated by many researcher.

In the present paper, we have introduced nano β -closures and which have been used in investigating certain concepts developed in the subsequent sections. In section 4, some new separation axioms have been introduced in a nano topological space using nano β -open sets along with various characterizations and properties. Furthermore, in the last two sections, two new types of functions, namely nano β -closed graph and strongly nano β -closed graph have been introduced between two nano topological spaces. Some characterizations and basic properties along with possible applications of such functions

are also investigated.

2. Preliminaries

Let Ω be a nonempty finite set called the universe and R be an equivalence relation on Ω . Then the pair (Ω, R) is called an approximation space. The equivalence of $x \in \Omega$ is denoted by R(x). Let $X \in P(\Omega)$. Then we define the sets

$$L_{R}(X) = \bigcup_{x \in \Omega} \{R(x) : R(x) \subset X\}, H_{R}(X) = \bigcup_{x \in \Omega} \{R(x) : R(x) \cap X \neq \emptyset\}$$

and $B_R(X) = L_R(X) - H_R(X)$. Here the sets $L_R(X)$, $H_R(X)$ and $B_R(X)$ are called lower approximation of $(\Omega, \tau_R(X))$, upper approximation of $(\Omega, \tau_R(X))$ and boundary region of X with respect to R respectively. Then $\tau_R = \{\Omega, \emptyset, H_R(X), B_R(X), L_R(X)\}$ is a topology on Ω with base $\tau_R(X) = \{\Omega, L_R(X), B_R(X)\}$ [4]. This topology is called a nano topology with respect to the subset $(\Omega, \tau_R(X))$ of the universe Ω and the pair $(\Omega, \tau_R(X))$ is called a nano topological space with respect to the subset X of the universe Ω . The members of $\tau_R(X)$ are called nano open sets [4] and their complements are called nano closed sets [4]. Let A be a subset of a nano topological space $(\Omega, \tau_R(X))$. Then the largest nano open set contained in A is called the nano interior of A [4] and is denoted by nint(A) and the smallest nano closed set containing A is called the nano closure of A [4] and is denoted by ncl(A).

A subset A of a nano topological space $(\Omega, \tau_R(X))$ is called nano β -open [9] if $A \subset ncl(nint(ncl(A)))$. The family of all nano β -open subsets of a nano topological space $(\Omega, \tau_R(X))$ is denoted by $N\beta O(\Omega, R, X) = N\beta O(\Omega, X)$. The family of all nano β -open subsets of a nano topological space $(\Omega, \tau_R(X))$ containing $x \in \Omega$ is denoted by $N\beta O(\Omega, R, X; x) = N\beta O(\Omega, X; x)$. The complement of a nano β -open set is called a nano β -closed set. The family of all nano β -closed subsets of a nano topological space $(\Omega, \tau_R(X))$ is denoted by $N\beta C(\Omega, R, X) = N\beta C(\Omega, X)$.

3. Nano β -closure operators

Some of the concepts and results developed here will be used in the subsequent sections.

Definition 3.1. A nano topological space $(\Omega, \tau_R(X))$ is said to satisfy a property nP if $ncl(A \cap B) = ncl(A) \cap ncl(B)$ for every pair of subsets A and B of a nano topological space $(\Omega, \tau_R(X))$.

Theorem 3.2. (a) Arbitrary union of nano β -open sets of a nano topological space $(\Omega, \tau_R(X))$ is a nano β -open set.

(b) If a nano topological space $(\Omega, \tau_R(X))$ satisfies the property nP, then the intersection of any two nano β -open sets is nano β -open and so $n\beta O(\Omega, X)$ is a

 β -open Sets

topology on Ω finer than nano topology $\tau_R(X)$. **Proof:** (a): Obvious.

(b) Let A and B are any two nano β -open sets. Then $A \subset ncl(nint(ncl(A)))$ and $B \subset ncl(nint(ncl(B)))$.

Now $A \cap B \subset ncl(nint(ncl(B))) = ncl(nint(ncl(A)) \cap nint(ncl(B)))$

 $= ncl(nint(ncl(A) \cap ncl(B))) = ncl(nint(ncl(A \cap B)))$ and so $A \cap B$ is nano β -open.

Definition 3.3. Let A be a subset of a nano topological space $(\Omega, \tau_R(X))$. Then $n\beta$ -interior (resp. $n\beta$ -closure) of A is denoted by $n\beta$ int(A) (respectively $n\beta cl(A)$) and is defined as the set $n\beta$ int(A) = $\cup \{G \subset A : G \in n\beta O(\Omega, X)\}$ (respetively $n\beta cl(A) = \cap \{F \supset A : \Omega - F \in n\beta O(\Omega, X)\}$).

Theorem 3.4. For any subsets A and B of a nano topological space $(\Omega, \tau_R(X))$, the following statements hold:

(i) $x \in n\beta cl(A)$ if and only if $A \cap U \neq \emptyset$ for each $U \in N\beta O(\Omega, X; x)$;

(ii) A is nano β -open if and only if $A = n\beta int(A)$;

(iii) A is nano β -closed if and only if $A = n\beta cl(A)$;

(iv) If $A \subset B$ then $n\beta int(A) \subset n\beta int(B)$ and $n\beta cl(A) \subset n\beta cl(B)$;

(v) $n\beta cl(\Omega - A) = \Omega - n\beta int(A);$

(vi) $nint(A) \subset n\beta int(A)$;

(vii) $ncl(A) \supset n\beta cl(A)$.

Proof: Straightforward.

4. Separation axioms in terms of nano β -open sets

Definition 4.1. A space $(\Omega, \tau_R(X))$ is called

(i) $n\beta - T_1$ if for each pair of distinct points $x, y \in \Omega$, there exist an

 $U_x \in N\beta O(\Omega, X; x)$ and an $U_y \in N\beta O(\Omega, X; y)$ such that $x \notin U_y$ and $y \notin U_x$.

(ii) $n\beta - T_2$ if for each pair of distinct points $x, y \in \Omega$, there exist an $U_x \in N\beta O(\Omega, X; x)$ and an $U_y \in N\beta O(\Omega, X; y)$ such that $U_x \cap U_y = \emptyset$.

(iii) $n\beta$ -Urysohn if for each pair of distinct points $x, y \in \Omega$, there exist an $U_x \in N\beta O(\Omega, X; x)$ and an $U_y \in N\beta O(\Omega, X; y)$ such that

$$n\beta cl(U_{y}) \cap n\beta cl(U_{y}) = \emptyset$$
.

(iv) $n\beta$ -regular if for each point $x \in \Omega$ and each nano β -closed set F such that $x \notin F$, there exist a $V \in N\beta O(\Omega, X; x)$ and a $W \in N\beta O(\Omega, X)$ such that $F \subset W$ and $V \cap W = \emptyset$.

Remark 4.2. A $n\beta$ -Urysohn nano topological space is a $n\beta$ - T_2 nano topological space and a $n\beta$ - T_2 nano topological space is a $n\beta$ - T_1 nano topological space.

The following characterizations of $n\beta - T_1$, $n\beta - T_2$ and $n\beta$ -regular spaces are straightforward.

Theorem 4.3. A nano topological space $(\Omega, \tau_R(X))$ is $n\beta - T_1$ if and only if singletons of $(\Omega, \tau_R(X))$ are nano β -closed.

Theorem 4.4. For a nano topological space $(\Omega, \tau_R(X))$, the following statements are equivalent:

(a) $(\Omega, \tau_R(X))$ is $n\beta - T_2$;

(b) For each $x \in \Omega$ and $y \neq x \in \Omega$, there exist an $U_x \in N\beta O(\Omega, X; x)$ such that $y \notin n\beta cl(U_x)$.

(c) For each $x \in \Omega$, $\cap \{n\beta cl(U) : U \in n\beta O(\Omega, X; x)\} = \{x\}$.

Theorem 4.5. A nano topological space $(\Omega, \tau_R(X))$ is $n\beta$ -regular if and only if for each $x \in \Omega$ and each $U \in N\beta O(\Omega, X; x)$, there exists a $V \in N\beta O(\Omega, X; x)$ such that $n\beta - cl(V) \subset U$.

Theorem 4.6. Every $n\beta$ -regular $n\beta$ - T_2 nano topological space is $n\beta$ -Urysohn. **Proof:** Let the nano topological space $(\Omega, \tau_R(X))$ is $n\beta$ -regular and $n\beta$ - T_2 . Consider any two distinct points $x, y \in \Omega$. Since $(\Omega, \tau_R(X))$ is $n\beta$ - T_2 , there exist an $U_x \in n\beta O(\Omega, X; x)$ and an $U_y \in n\beta O(\Omega, X; y)$ such that $U_x \cap U_y = \emptyset$ and so $n\beta cl(U_x) \cap U_y = \emptyset$. Then $U = \Omega - n\beta cl(U_x) \in n\beta O(\Omega, X; y)$. Since $(\Omega, \tau_R(X))$ is $n\beta$ -regular, by Theorem 4.5, we can find a $V_y \in n\beta O(\Omega, X; y)$ such that $n\beta cl(V_y) \subset U$. Thus $n\beta cl(V_y) \cap n\beta cl(U_x) = \emptyset$. So $(\Omega, \tau_R(X))$ is $n\beta$ -Urysohn.

Definition 4.7. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Then a function $\psi: \Omega \to \Lambda$ is called nano β -open if $\psi(U) \in N\beta O(\Lambda, R^*, Y)$ for every $U \in N\beta O(\Omega, R, X)$.

Remark 4.8. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Then a surjection $\psi : \Omega \to \Lambda$ is nano β -open if and only if $\psi(U) \in N\beta C(\Lambda, R^*, Y)$ for every $U \in N\beta C(\Omega, R, X)$.

β -open Sets

Definition 4.9. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Then a function $\psi : \Omega \to \Lambda$ is called quasi nano β -irresolute if for each $x \in \Omega$ and for each $V \in N\beta O(\Lambda, R^*, Y; \psi(x))$, there exists an $U \in N\beta O(\Omega, R, X; x)$ such that $\psi(U) \subset n\beta cl(V)$.

Theorem 4.10. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Let $\psi: \Omega \to \Lambda$ be a quasi nano β -irresolute and injective mapping, where Λ be $n\beta$ -Urysohn. Then $(\Omega, \tau_R(X))$ is $n\beta - T_2$.

Proof: Let p_1 and p_2 be any two distinct points of $(\Omega, \tau_R(X))$. Since ψ is injective, $\psi(p_1) \neq \psi(p_2)$. Again since Λ is $n\beta$ -Urysohn, there exist a $V_{p_1} \in N\beta O(\Lambda, R^*, Y; \psi(p_1))$ and a $V_{p_2} \in N\beta O(\Lambda, R^*, Y; \psi(p_2))$ such that $n\beta cl(V_{p_1}) \cap n\beta cl(V_{p_2}) = \emptyset$. Also since ψ is quasi nano β -irresolute, there exist a $S_{p_1} \in N\beta O(\Omega, R, X; p_1)$ and a $S_{p_2} \in N\beta O(\Omega, R, X; p_2)$ such that $\psi(S_{p_1}) \subset n\beta cl(V_{p_1})$ and $\psi(S_{p_2}) \subset n\beta cl(V_{p_2})$ and hence $\psi(S_{p_1}) \cap \psi(S_{p_2}) \subset n\beta cl(V_{p_1}) \cap n\beta cl(V_{p_2}) = \emptyset$. Thus $\psi(S_{p_1}) \cap \psi(S_{p_2}) = \emptyset$ and so $S_{p_1} \cap S_{p_2} = \emptyset$. Therefore $(\Lambda, \tau_{R^*}(Y))$ is $n\beta - T_2$.

Theorem 4.11. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Let the function $\psi : \Omega \to \Lambda$ be nano β -open and bijective, where $(\Omega, \tau_R(X))$ be $n\beta$ -Urysohn. Then Λ is $n\beta$ -Urysohn.

Proof: Let q_1 and q_2 be any two distinct points of Λ . Since Ψ is bijective, there exist $p_1, p_2 \in \Omega$ with $p_1 \neq p_2, \Psi(p_1) = q_1$ and $\Psi(p_2) = q_2$. Since $(\Omega, \tau_R(X))$ is $n\beta$ -Urysohn, there exist a $S_{p_1} \in N\beta O(\Omega, R, X; p_1)$ and a $S_{p_2} \in N\beta O(\Omega, R, X; p_2)$ such that $n\beta cl(S_{p_1}) \cap n\beta cl(S_{p_2}) = \emptyset$. But the nano β -open-ness of Ψ ensures that $\Psi(\Omega - n\beta cl(S_{p_1})) = \Lambda - \Psi(n\beta cl(S_{p_1}))$ and $\Psi(\Omega - n\beta cl(S_{p_2})) = \Lambda - \Psi(n\beta cl(S_{p_2}))$ are nano β -open sets and so $\Psi(n\beta cl(S_{p_1}))$ and $\Psi(n\beta cl(S_{p_2}))$ are $n\beta$ -closed in $(\Lambda, \tau_{R^*}(Y))$.

Now $n\beta cl(\psi(S_{p_1})) \cap n\beta cl(\psi(S_{p_2})) \subset n\beta cl(\psi(n\beta cl(S_{p_1}))) \cap n\beta cl(\psi(n\beta cl(S_{p_2})))$ = $\psi(n\beta cl(S_{p_1})) \cap \psi(n\beta cl(S_{p_2})) = \psi(n\beta cl(S_{p_1}) \cap n\beta cl(S_{p_2})) = \emptyset$. Also, since ψ is nano β -open, $\psi(S_{p_1}) \in n\beta O(\Lambda, \mathbb{R}^*, Y; q_1)$ and $\psi(S_{p_2}) \in N\beta O(\Lambda, \mathbb{R}^*, Y; q_2)$. Thus

 $(\Lambda, \tau_{_{p^{\star}}}(Y))$ is $N\beta$ -Urysohn.

5. Nano β -closed and strongly nano β -closed graphs

Definition 5.1. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi : \Omega \to \Lambda$ be a function. Then its graph $G(\psi)$ is called nano β -closed if for each $(x, y) \in \Omega \times \Lambda - G(\psi)$, there exist an $U \in N\beta O(\Omega, X; x)$ and a $V \in N\beta O(\Lambda, R^*, Y; y)$ such that $(U \times V) \cap G(\psi) = \emptyset$.

Lemma 5.2. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi: \Omega \to \Lambda$ be a function. Then following conditions are equivalent.

(i) ψ has nano β -closed graph,

(ii) for each $(x, y) \in \Omega \times \Lambda - G(\psi)$, there exist an $U \in N\beta O(\Omega, R, X; x)$ and a $V \in N\beta O(\Lambda, R^*, Y; y)$ such that $\psi(U) \cap V = \emptyset$.

Proof: The proof is straightforward and thus omitted.

Definition 5.3. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. A function $\psi: \Omega \to \Lambda$ is called nano β -irresolute if for each $x \in \Omega$ and for each $V \in N\beta O(\Lambda, R^*, Y; \psi(x))$, there exists an $U \in N\beta O(\Omega, R, X; x)$ such that $\psi(U) \subset V$.

Theorem 5.4. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi: \Omega \to \Lambda$ be nano β -irresolute, where Λ is $n\beta - T_2$. Then the graph $G(\psi)$ is nano β -closed.

Proof: Let $(x, y) \in \Omega \times \Lambda - G(\psi)$. Then $y \neq \psi(x)$. Since Λ is $n\beta - T_2$, there exist an $U_1 \in N\beta O(\Lambda, R^*, Y; \psi(x))$ and a $V \in N\beta O(\Lambda, R^*, Y; y)$ such that $U_1 \cap V = \emptyset$. Also, since ψ is nano β -irresolute, $U = \psi^{-1}(U_1) \in N\beta O(\Omega, R, X; x)$ and so $\psi(U) \cap V = \emptyset$. Therefore the graph $G(\psi)$ is nano β -closed.

Theorem 5.5. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi: \Omega \to \Lambda$ be a surjective mapping having nano β -closed graph. Then $(\Lambda, \tau_{R^*}(Y))$ is $n\beta - T_1$.

Proof: Let $q_1, q_2 \in \Lambda$ with $q_1 \neq q_2$. Since ψ is surjective, there exists $p_1 \in \Omega$ such that $\psi(p_1) = q_1$ and $\psi(p_1) \neq q_2$. Then $(p_1, q_2) \in \Omega \times \Lambda - G(\psi)$ and so by the Lemma 5.2, we can find $U_{p_1} \in N\beta O(\Omega, R, X; p_1)$ and a $V_{q_2} \in N\beta O(\Lambda, R^*, Y; q_2)$ such that $\psi(U_{p_1}) \cap V_{q_2} = \emptyset$. Thus $q_1 \in \psi(U_{p_1})$ and so $q_1 \notin V_{q_2}$. Similarly, we can ensure the

β -open Sets

existence of an $p_2 \in \Omega$ such that $\psi(p_2) = q_2$ and $\psi(p_2) \neq q_1$ and an $U_{p_2} \in N\beta O(\Omega, R, X; p_2)$ and a $V_{q_1} \in N\beta O(\Lambda, R^*, Y; q_1)$ such that $\psi(U_{p_2}) \cap V_{q_1} = \emptyset$. Then $q_2 \in \psi(U_{p_2})$ and $q_2 \notin V_{q_1}$. So $(\Lambda, \tau_{R^*}(Y))$ is $n\beta \cdot T_1$.

Theorem 5.6. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and the function $\psi : \Omega \to \Lambda$ be nano β -open and surjective. If the graph $G(\psi)$ is β -closed, then $(\Lambda, \tau_{P^*}(Y))$ is $n\beta \cdot T_2$.

Proof: Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Let $q_1, q_2 \in \Lambda$ with $q_1 \neq q_2$. Since Ψ is surjective, there exist $p_1 \in \Omega$ such that $\Psi(p_1) = q_1$ but $\Psi(p_1) \neq q_2$. Thus $(p_1, q_2) \in \Omega \times \Lambda - G(\Psi)$ and so by Lemma 5.2, we can find an $U_{p_1} \in N\beta O(\Omega, R, X; p_1)$ and a $V_{q_2} \in N\beta O(\Lambda, R^*, Y; q_2)$ such that $\Psi(U_{p_1}) \cap V_{q_2} = \emptyset$. Again since Ψ is nano β -open, $\Psi(U_{p_1}) \in N\beta O(\Lambda, R^*, Y; q_1)$. So $(\Lambda, \tau_{R^*}(Y))$ is $n\beta - T_2$.

Theorem 5.7. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi: \Omega \to \Lambda$ be injective. If the graph $G(\psi)$ β -closed, $(\Omega, \tau_R(X))$ is $n\beta \cdot T_1$. **Proof:** Let $p_1, p_2 \in \Omega$ and $p_1 \neq p_2$. Since ψ is injective, $\psi(p_1) \neq \psi(p_2)$. So $(p_1, \psi(p_2)) \in \Omega \times \Lambda - G(\psi)$. Now, by Lemma 5.2, there exist an $U_{p_1} \in N\beta O(\Omega, R, X; p_1)$ and a $V_{p_2} \in N\beta O(\Lambda, R^*, Y; \psi(p_2))$ such that $\psi(U_{p_1}) \cap V_{p_2} = \emptyset$. Therefore $\psi(p_2) \notin (U_{p_1})$ and so $p_2 \notin U_{p_1}$. Hence $p_1 \in U_{p_1}$ but $p_2 \notin U_{p_1}$. Again since $(p_2, \psi(p_1)) \in \Omega \times \Lambda - G(\psi)$, we can find $U_{p_2} \in N\beta O(\Omega, R, X; p_2)$ and $p_1 \notin U_{p_2}$. Hence Ω is $n\beta \cdot T_1$.

Theorem 5.8. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi: \Omega \to \Lambda$ be a nano β -irresolute injection. If the graph $G(\psi)$ is β -closed, $(\Omega, \tau_R(X))$ is $n\beta \cdot T_2$.

Proof: Let $p_1, p_2 \in \Omega$ and $p_1 \neq p_2$. Since ψ is injective, $\psi(p_1) \neq \psi(p_2)$. So $(p_1, \psi(p_2)) \in \Omega \times \Lambda - G(\psi)$. Then Lemma 5.2 ensures the existence of an $U_{p_1} \in N\beta O(\Omega, R, X; p_1)$ and a $V_{p_2} \in N\beta O(\Lambda, R^*, Y; \psi(p_2))$ such that $\psi(U_{p_1}) \cap V_{p_2} = \emptyset$. Since ψ is a nano β -irresolute, $\psi^{-1}(V_{q_2}) \in N\beta O(\Omega, R, X; p_2)$. So $(\Omega, \tau_R(X))$ is $n\beta - T_2$.

Definition 5.9. [8] Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. A function $\psi: \Omega \to \Lambda$ is called nano β -continuous if $\psi^{-1}(V) \in N\beta O(\Omega, R, X)$ for every $V \in NO(\Lambda, R^*, Y)$.

Theorem 5.10. Let a nano topological space $(\Omega, \tau_R(X))$ satisfy the property nP and $(\Lambda, \tau_{R^*}(Y))$ be an arbitrary nano topological spaces. And $\psi: \Omega \to \Lambda$ has nano β -closed graph. Then ψ is nano β -continuous.

Proof: Let $V \in NO(\Lambda, R^*, Y)$ and any $x \in \psi^{-1}(V)$. Then for each $y \in \Lambda - V$, $(x, y) \in \Omega \times \Lambda - G(\psi)$. Since the graph of ψ is nano β -closed, there exists an $U_y \in N\beta O(\Omega, R, X; x)$ and a $V_y \in N\beta O(\Lambda, R^*, Y; y)$ such that $\psi(U_y) \cap V_y = \emptyset$. Since $(\Omega, \tau_R(X))$ is finite, we can find $q_1, q_2, \dots, y_k \in \Lambda - V$ such that $Y = (\bigcup_{i=1}^k V_{y_i}) \cup V$ and so $\Lambda - V \subset \bigcup_{i=1}^k V_{y_i}$. Since $(\Omega, \tau_R(X))$ satisfy the property nP, $S_x = \bigcap_{i=1}^k U_{y_i} \in N\beta O(\Omega, R, X; x)$ and $\psi(S) \cap (\Lambda - V) = \emptyset$. So

 $\psi^{-1}(V) = \bigcup \{S_x : x \in \psi^{-1}(V)\} \in N\beta O(\Omega, R, X)$. Therefore ψ is nano β -continuous.

Definition 5.11. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi: \Omega \to \Lambda$ be a function. Then its graph $G(\psi)$ is called strongly nano β -closed if for $each(x, y) \in \Omega \times \Lambda - G(\psi)$, there exist an $U \in N\beta O(\Omega, R, X; x)$ and a $V \in N\beta O(\Lambda, R^*, Y; y)$ such that $(U \times n\beta cl(V)) \cap G(\psi) = \emptyset$.

Clearly, every function possessing strongly nano β -closed graph has nano β -closed graph.

Lemma 5.12. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Then for a function $\psi: \Omega \to \Lambda$, following conditions are equivalent:

(i) the graph $G(\psi)$ is nano β -closed;

(ii) for each $(x, y) \in \Omega \times \Lambda - G(\psi)$, there exist an $U \in N\beta O(\Omega, R, X; x)$ and a $V \in N\beta O(\Lambda, R^*, Y; y)$ such that $\psi(U) \cap n\beta cl(V) = \emptyset$. **Proof:** The proof is straightforward and so omitted.

Definition 5.13. A filter base \mathcal{F} on a nano topological space $(\Omega, \tau_R(X))$ is said to nano $\beta - \theta$ -converge (respectively nano β -converge) to a point $x \in \Omega$ if for each $V \in N\beta O(\Omega, R, X; x)$, there exists an $F \in \mathcal{F}$ such that $F \subset n\beta cl(V)$ (respectively $F \subset V$).

Theorem 5.14. Let $(\Omega, \tau_R(X))$ and $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces. Let $(\Lambda, \tau_{R^*}(Y))$ be $n\beta$ -regular and $\psi: \Omega \to \Lambda$ be any function. Then the following

 β -open Sets

statements are equivalent:

(i) $G(\psi)$ is strongly nano β -closed;

(ii) If a filter base \mathcal{F} on $(\Omega, \tau_R(X))$, nano β -converges to x and $\psi(\mathcal{F})$ nano $\beta - \theta$ -converges to y in $(\Lambda, \tau_{p^*}(Y))$, then $y = \psi(x)$.

Proof: (i) \Rightarrow (ii): Let \mathcal{F} be a filter base on $(\Omega, \tau_R(X))$ that nano β -converges to x and $\psi(\mathcal{F})$ nano $\beta - \theta$ -converges to y. If possible, let $y \neq \psi(x)$.

Then $(x, y) \in \Omega \times \Lambda - G(\psi)$. Clearly, $N\beta O(\Omega, R, X; x) \subset \mathcal{F}$ and

 $\{n\beta cl(V): V \in N\beta O(\Lambda, R^*, Y; y)\} \subset \psi(\mathcal{F})$. So, for each $U \in N\beta O(\Omega, R, X; x)$ and each $V \in N\beta O(\Lambda, R^*, Y; y)$, there exist $P_1 \in \mathcal{F}$ and $P_2 \in \mathcal{F}$ such that $P_1 \subset U$ and $\psi(P_2) \in n\beta cl(V)$. Hence there exists an $P_0 \in \mathcal{F}$ such that $P_0 \subset P_1 \cap P_2$ and satisfies $P_0 \subset U$ as well as $\psi(P_0) \subset n\beta cl(V)$. Hence $\emptyset \neq \psi(P_0) \subset \psi(U) \cap n\beta cl(V)$. So by Lemma 5.12, $G(\psi)$ is not strongly nano β -closed.

(ii) \Rightarrow (i): Let $(\Lambda, \tau_{R^*}(Y))$ is $n\beta$ -regular and the given condition (ii) holds for ψ . If possible, let $G(\psi)$ is not strongly nano β -closed. Then there exists $(x, y) \in \Omega \times \Lambda - G(\psi)$ such that $(U \times n\beta cl(V)) \cap G(\psi) \neq \emptyset$ for each $U \in N\beta O(\Omega, R, X; x)$ and each $V \in N\beta O(\Lambda, R^*, Y; y)$. Since Λ is $n\beta$ -regular, the family

 $\mathcal{F} = \{F_{UV} = \{p \in U : (p, \psi(p)) \in (U \times n\beta cl(V)) \cap G(\psi)\} : U \in N\beta O(\Omega, R, X; x) \text{ and } V \in N\beta O(\Lambda, R^*, Y; y)\} \text{ is a filter base on } (\Omega, \tau_R(X)). \text{ But } \mathcal{F} \text{ nano } \beta \text{-converges to } x \text{ in } (\Omega, \tau_R(X)) \text{ and } \psi(\mathcal{F}) \text{ nano } \beta \text{-} \theta \text{-converges to } y \text{ and } y = \psi(x) \text{ -- a contradiction.}$

Theorem 5.15. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi: \Omega \to \Lambda$ be a function. If the graph $G(\psi)$ is strongly nano β -closed, then $\psi(x) = \bigcap \{ n\beta cl(\psi(U)) : U \in N\beta O(\Omega, R, X; x) \}$ for each $x \in \Omega$.

Proof: If possible, let there exist an $x \in \Omega$ and an $y(\neq \psi(x)) \in \Lambda$ such that $y \in n\beta cl(\psi(U))$ for each $U \in N\beta O(\Omega, R, X; x)$. Since $(x, y) \in \Omega \times \Lambda - G(\psi)$, by Lemma 5.12, we can find a $U_x \in N\beta O(\Omega, R, X; x)$ and a $V_y \in N\beta O(\Lambda, R^*, Y; y)$ such that $\psi(U_x) \cap n\beta cl(V_y) = \emptyset$ and so $\psi(U_x) \cap V_y \subset \psi(U_x) \cap n\beta cl(V_y) = \emptyset$. Thus $\psi(U_x) \cap V_y = \emptyset$. Then $y \notin n\beta cl(\psi(U_x))$, a contradiction.

Theorem 5.16. Let $(\Omega, \tau_R(X))$ is an arbitrary nano topological space and $(\Lambda, \tau_{R^*}(Y))$ is $n\beta \cdot T_2$. Let $\psi: \Omega \to \Lambda$ be nano β -irresolute. Then the graph $G(\psi)$ is strongly nano β -closed.

Proof: Let $(x, y) \in \Omega \times \Lambda - G(\psi)$. Then $y \neq \psi(x)$. Since $(\Lambda, \tau_{R^*}(Y))$ is $n\beta - T_2$, there exist a $U \in N\beta O(\Lambda, R^*, Y; \psi(x))$ and a $V \in N\beta O(\Lambda, R^*, Y; y)$ such that $U \cap V = \emptyset$. Again since ψ is nano β -irresolute, $K = \psi^{-1}(U) \in N\beta O(\Omega, R, X; x)$ and so $\psi(K) \cap V = \emptyset$, i.e. $V \subset \Lambda - \psi(K)$, i.e. $n\beta cl(V) \subset \Lambda - \psi(K)$, i.e. $\psi(K) \cap n\beta cl(V) = \emptyset$. Hence $G(\psi)$ is strongly nano β -closed.

Theorem 5.17. Let $(\Omega, \tau_R(X))$, $(\Lambda, \tau_{R^*}(Y))$ be two nano topological spaces and $\psi : \Omega \to \Lambda$ be a quasi nano β -irresolute injection. If the graph $G(\psi)$ is strongly nano β -closed, then $(\Omega, \tau_R(X))$ is $n\beta - T_2$.

Proof: Let any two distinct points $p_1, p_2 \in \Omega$. Since ψ is injective, $\psi(p_1) \neq \psi(p_2)$. Thus $(p_1, \psi(p_2)) \in \Omega \times \Lambda - G(\psi)$ and so by lemma 5.12, there exist a $U_{p_1} \in N\beta O(\Omega, R, X; x)$ and a $V_{p_2} \in N\beta O(\Lambda, R^*, Y; y)$ such that $\psi(U_{p_1}) \cap n\beta cl(V_{p_2}) = \emptyset$ and so $\psi^{-1}(n\beta cl(V_{p_2})) \subset \Omega - U_{p_1}$. Since ψ is a quasi nano β -irresolute, there exists $S_{p_2} \in (n)\beta\gamma(\Omega, R, X; p_2)$ such that $\psi(S_{p_2}) \in n\beta cl(V_{p_2})$. Then $S_{p_2} \subset \psi^{-1}(n\beta cl(V_{p_2})) \subset \Omega - U_{p_1}$ and hence $S_{p_2} \cap U_{p_1} = \emptyset$. So $(\Omega, \tau_R(X))$ is $n\beta - T_2$.

Theorem 5.18. Let $(\Omega, \tau_R(X))$ be any nano topological space, $(\Lambda, \tau_{R^*}(Y))$ be $n\beta$ -Urysohn nano topological space and $\psi: \Omega \to \Lambda$ be a quasi nano β -irresolute. Then its graph $G(\psi)$ is strongly nano β -closed.

Proof: Let $(x, y) \in \Omega \times \Lambda - G(\psi)$. Then $y \neq \psi(x)$. Since Λ is $n\beta$ -Urysohn, there exist a $V_1 \in N\beta O(\Lambda, R^*, Y; \psi(x))$ and a $V_2 \in N\beta O(\Lambda, R^*, Y; y)$ such that $n\beta$ - $cl(V_1) \cap n\beta cl(V_2) = \emptyset$. Again since ψ is quasi nano β -irresolute, there exists an $U \in N\beta O(\Omega, R, X; x)$ such that $\psi(U) \subset n\beta cl(V_1) \subset \Omega - n\beta cl(V_2)$. Therefore $\psi(U) \cap n\beta cl(V_2) = \emptyset$. So $G(\psi)$ is strongly nano β -closed.

Theorem 5.19. Let $(\Omega, \tau_R(X))$ be $n\beta$ -Urysohn possessing the property nP and $(\Lambda, \tau_{R^*}(Y))$ be $n\beta$ -regular. Let $\psi: \Omega \to \Lambda$ be nano β -open bijection. Then $G(\psi)$ is strongly nano β -closed.

Proof: Let $(x, y) \in \Omega \times \Lambda - G(\psi)$. Then $y \neq \psi(x)$ and so $x \neq \psi^{-1}(y)$. Since $(\Omega, \tau_R(X))$ is $n\beta$ -Urysohn, for each $p \in \psi^{-1}(y)$, there exist a nano β -open set V_x and a nano β -open set V_p containing x and p respectively such that $n\beta$ - $cl(V_x) \cap n\beta cl(V_p) = \emptyset$. Then $\{V_p : \psi(p) = y\}$ is a cover of $\psi^{-1}(y)$ by nano β -open sets of $(\Omega, \tau_R(X))$. Since $\psi^{-1}(y)$ is finite, there exist finite number of points

β -open Sets

 $p_1, p_2, ..., p_k \in \Omega \quad \text{with} \quad \psi(p_i) = y \quad \text{for each} \quad i \in \{1, 2, ..., k\} \quad \text{such that}$ $\psi^{-1}(y) \subset \bigcup_{i=1}^k V_{p_i} \text{. Let} \quad G = \bigcap_{i=1}^k V_{x_i} \text{ and } H = \bigcup_{i=1}^k V_{p_i} \text{. Since } (\Omega, \tau_R(X)) \text{ satisfies the}$ property nP, $n\beta cl(H) = n\beta cl(\bigcup_{i=1}^k V_{p_i}) = \bigcup_{i=1}^k n\beta cl(V_{p_i})$.

So $n\beta cl(G) \cap n\beta cl(H) = \emptyset$. Again since ψ is nano β -open and bijective, $\psi(H) \in N\beta O(\Lambda, R^*, Y; y)$ and so Theorem 4.5 ensures the existence of an $L \in N\beta O(\Lambda, R^*, Y; y)$ such that $n\beta cl(L) \subset \psi(H)$, i.e. $\psi^{-1}(n\beta cl(L)) \subset H$. Therefore $\psi^{-1}(n\beta cl(L)) \cap G = \emptyset$ and thus $\psi(G) \cap n\beta cl(L) = \emptyset$. Thus by Lemma 5.12, $G(\psi)$ is strongly nano β -closed.

6. Conclusion

Some researchers [3, 6, 8] recently have shown that the concept of nano topology can be used as a tool to study some real life problems. Keeping these in mind, we have extended some separation axioms and graphs of functions via nano β -open sets in nano topology, which may have possible applications in real life situations.

REFERENCES

- 1. M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β -open sets and β -continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12(1) (1983) 77–90.
- 2. D. Andrijevic, Semi-preopen sets, Math. Vesnik, 38 (1986) 24-32.
- 3. A.A.Azzam, Grill nano topological spaces with grill nano generalized closed sets, *Egypt. Math. Soc.*, 25(2) (2017) 164–166. doi.org/10.1016/j.joems.2016.10.005.
- 4. M.Lellis Thivagar and C.Richard, On nano forms of weakly open sets, *Int. J. Math. Stat. Inven.*, 1 (1) (2013) 31–37.
- 5. M.Lellis Thivagar and C.Richard, On nano continuity, *Math. Theory Model.*, 7 (2013) 32–37.
- 6. M.Lellis Thivagar and Carmel Richard, Nutrition modeling through nano topology, *Int. Journal of Engineering Research and Applications*, 4(10) (2014) 327-334.
- 7. D.A.Mary and I.Arockiarani, On b-open sets and b-continuous functions in nano topological spaces, *Int. J. Innov. Res. Stud.*, 3(11) (2014) 98–116.
- 8. A.A.Nasef, A.I.Aggour and S.M.Darwesh, On some classes of nearly open sets in nano topological spaces, *Egypt. Math. Soc.*, 24 (2016) 585–589.
- 9. A.Revathy and G.Ilango, On nano β -open sets, Int. J. Eng. Contemp. Math. Sci., 1(2) (2015) 1–6.
- 10. M. L.Thivagar and C.Richard, On nano forms of weakly open sets, *Int. J. Math. Stat. Invention*, 1 (1) (2013), 31-37.
- 11. M.L.Thivagar and C.Richard, On nano continuity, *Math. Theory Model.*, 7 (2013) 32-37.