Annals of Pure and Applied Mathematics Vol. 14, No. 2, 2017, 225-229 ISSN: 2279-087X (P), 2279-0888(online) Published on 30 August 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v14n2a3

Annals of **Pure and Applied Mathematics**

On Nano Generalized β Regular Spaces and Nano Generalized β Normal Spaces in Nano Topological Spaces

¹S.B.Shalini, G. Sindhu and K.Indirani

Department of Mathematics, Nirmala College for Women, Coimbatore Tamil Nadu, India. ¹Corresponding author. Email: shal.manogar@gmail.com

Corresponding author. Email: shar.manogar@gmail.com

Received 17 July 2017; accepted 18 August 2017

Abstract. The aim of this paper is to introduce Nano generalized β regular spaces and Nano generalized β normal spaces in Nano topological spaces and we discuss some of its properties.

Keywords: Ng β regular spaces, Ng β normal spaces.

AMS Mathematics Subject Classification (2010): 18B30

1. Introduction

The notion of Nano topology was introduced by Thivagar [4] which was defined in terms of approximations and boundary regions of a subset of an universe using an equivalence relation on it and he also defined Nano closed set, Nano interior and Nano closure. Levine [5] introduced generalized closed sets as a generalization of closed sets in topological spaces. Monsef et al. [1] introduced the notion of β -open set in topology, and further investigation of Nano β open sets was given by Gnanambal [3]. Munshi [6] introduced g-regular and g-normal spaces using g-closed sets in topological spaces. In this paper Ng β regular spaces and Ng β normal spaces are introduced and some of its properties are investigated.

2. Preliminaries

Definition 2.1. [4] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. Then it satisfies the following axioms:

- i) U and $\phi \in \tau_R(X)$.
- ii) The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.
- iii) The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

S.B.Shalini, G. Sindhu and K.Indirani

Then $\tau_R(X)$ is called the Nano topology on U with respect to X, $(U, \tau_R(X))$ is called the Nano topological space. Elements of the Nano topology are known as Nano open sets in U. Elements of $[\tau_R(X)]^C$ are called Nano closed sets in U.

Definition 2.2. [4] If $(U, \tau_R(X))$ is a Nano topological space with respect X where $X \subseteq U$ and if $A \subseteq U$, then

- The Nano interior of a set A is defined as the union of all Nano open subsets contained in A and is denoted by Nint(A). Nint(A) is the largest Nano open subset of A.
- The Nano closure of a set A is defined as the intersection of all Nano closed sets containing A and is denoted by Ncl(A). Ncl(A) is the smallest Nano closed set containing A.

Definition 2.3. [2] A subset A of $(U, \tau_R(X))$ is called Nano generalized closed set (briefly Ng closed) if $Ncl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano open in $(U, \tau_R(X))$.

Definition 2.4. [7] A subset A of Nano topological space $(U, \tau_R(X))$ is called Nano generalized β closed set (briefly Ng β closed) if $N\beta cl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano open in $(U, \tau_R(X))$.

Definition 2.5. [8] Let $(U, \tau_R(X))$ and $(V, \sigma_{R'}(Y))$ be Nano topological spaces. Then a mapping $f : (U, \tau_R(X)) \to (V, \sigma_{R'}(Y))$ is called Ng β continuous on U if the inverse image of every Nano open set in V is Ng β open in U.

Definition 2.6. [8] Let $(U, \tau_R(X))$ and $(V, \sigma_{R'}(Y))$ be Nano topological spaces. Then a mapping $f : (U, \tau_R(X)) \to (V, \sigma_{R'}(Y))$ is called Ng β irresolute on U if the inverse image of every Ng β closed set in V is Ng β closed in U.

Definition 2.7. [8] A map $f: (U, \tau_R(X)) \to (V, \sigma_R(Y))$ is said to be Ng β closed map on U if the image of every Nano closed set in U is Ng β closed in V.

Definition 2.8. [8] A map $f: (U, \tau_R(X)) \to (V, \sigma_{R'}(Y))$ is said to be strongly Ng β closed map on U if the image of every Ng β closed set in U is Ng β closed in V.

3. Ng β regular spaces and Ng β normal spaces

On Nano Generalized β Regular Spaces and Nano Generalized β Normal Spaces in Nano Topological Spaces

Definition 3.1. A Nano topological space $(U, \tau_R(X))$ is said to be Ng β regular space, if for each Nano closed set F and each point $x \notin F$, there exists disjoint Ng β open sets G and H such that $x \in G$ and $F \subset H$.

Remark 3.2. Every Nano regular space is Ng β regular space.

Theorem 3.3. If $f: U \to V$ is Nano continuous bijective, Ng β open function and U is a Nano regular space then V is Ng β regular.

Proof: Let F be a Nano closed set in V and $y \notin F$. Take y = f(x) for some $x \in U$. Since f is Nano continuous, $f^{-1}(F)$ is Nano closed in U such that $x \notin f^{-1}(F)$. Now U is Nano regular space, there exist disjoint Nano open sets G and H such that $x \in G$ and $f^{-1}(F) \subset H$. That is $y = f(x) \in f(G)$ and $F \subset f(H)$. Since f is Ng β open function, f(G), f(H) are Ng β open sets in V and f is bijective, $f(G) \cap f(H) = f(G \cap H) = f(\phi) = \phi$. Therefore V is Ng β regular space.

Theorem 3.4. If $f: U \to V$ is Nano continuous surjective, strongly Ng β open function and U is a Ng β regular then V is also Ng β regular.

Proof: Let F be a Nano closed set in V and $y \notin F$. Take y = f(x) for some $x \in U$. Since f is Nano continuous surjective, $f^{-1}(F)$ is Nano closed in U such that $x \notin f^{-1}(F)$. Now U is Ng β regular, there exist disjoint Ng β open sets G and H such that $x \in G$ and $f^{-1}(F) \subset H$. That is $y = f(x) \in f(G)$ and $F \subset f(H)$. Since f is strongly Ng β open and surjective, f(G), f(H) are disjoint Ng β open sets in V. Therefore V is Ng β regular space.

Theorem 3.5. If $f: U \to V$ is Ng β continuous, Nano closed injection and V is a Nano regular space then U is Ng β regular.

Proof: Let F be a Nano closed set in U and $x \notin F$. Since f is Nano closed injection, f(F) is Nano closed set in V such that $f(x) \notin f(F)$. Now V is Nano regular, there exist disjoint Nano open sets G and H such that $f(x) \in G$ and $f(F) \subset H$. This implies $x \in f^{-1}(G)$ and $F \subset f^{-1}(H)$. Since f is Ng β continuous function, $f^{-1}(G), f^{-1}(H)$ are Ng β open sets in U. Further, $f^{-1}(G) \cap f^{-1}(H) = \phi$. Hence U is Ng β regular space.

Theorem 3.6. If $f: U \to V$ is Ng β irresolute, Nano closed injection and V is a Ng β regular then U is also Ng β regular.

S.B.Shalini, G. Sindhu and K.Indirani

Proof: Let F be a Nano closed set in U and $x \notin F$. Since f is Nano closed injection, f(F) is Nano closed set in V such that $f(x) \notin f(F)$. Now V is Nano regular, there exist disjoint Nano open sets G and H such that $f(x) \in G$ and $f(F) \subset H$. This implies $x \in f^{-1}(G)$ and $F \subset f^{-1}(H)$. Since f is Ng β irresolute, $f^{-1}(G)$, $f^{-1}(H)$ are Ng β open sets in U. Further, $f^{-1}(G) \cap f^{-1}(H) = \phi$. Hence U is Ng β regular space.

Definition 3.7. A Nano topological space $(U, \tau_R(X))$ is said to be Ng β normal space, if for each pair of disjoint Nano closed sets *E* and *F* of *U*, there exists disjoint Ng β open sets *G* and *H* such that $E \subset G$ and $F \subset H$.

Remark 3.8. Every Nano normal space is Ng β normal space.

Theorem 3.9. If $f: U \to V$ is Nano continuous bijective, Ng β open function and U is Nano normal space then V is Ng β normal.

Proof: Let *E* and *F* be disjoint Nano closed set in *V*. Since *f* is Nano continuous bijective, $f^{-1}(E)$ and $f^{-1}(F)$ are disjoint Nano closed in *U*. Now *U* is Nano normal space, there exist disjoint Nano open sets *G* and *H* such that $f^{-1}(E) \subset G$ and $f^{-1}(F) \subset H$. That is $E \subset f(G)$ and $F \subset f(H)$. Since *f* is Ng β open function, f(G), f(H) are Ng β open sets in *V* and *f* is injective, $f(G) \cap f(H) = f(G \cap H) = f(\phi) = \phi$. Therefore *V* is Ng β normal space.

Theorem 3.10. If $f: U \to V$ is Ng β continuous, Nano closed injection and V is a Nano normal space then U is Ng β normal.

Proof: Let *E* and *F* be disjoint Nano closed set in *V*. Since *f* is Nano closed injection, f(E) and f(F) are disjoint Nano closed in *V*. Now *V* is Nano normal space, there exist disjoint Nano open sets *G* and *H* such that $f(E) \subset G$ and $f(F) \subset H$. That is $E \subset f^{-1}(G)$ and $F \subset f^{-1}(H)$. Since *f* is Ng β continuous function, $f^{-1}(G)$, $f^{-1}(H)$ are Ng β open sets in *U*. Further $f^{-1}(G) \cap f^{-1}(H) = \phi$. Therefore *U* is Ng β normal space.

Theorem 3.11. If $f: U \to V$ is Ng β irresolute, Nano closed injection and V is a Ng β normal then U is Ng β normal.

Proof: Let *E* and *F* be disjoint Nano closed set in *V*. Since *f* is Nano closed injection, f(E) and f(F) are disjoint Nano closed in *V*. Now *V* is Ng β normal space, there exist disjoint Ng β open sets *G* and *H* such that $f(E) \subset G$ and $f(F) \subset H$. That is

On Nano Generalized β Regular Spaces and Nano Generalized β Normal Spaces in Nano Topological Spaces

 $E \subset f^{-1}(G)$ and $F \subset f^{-1}(H)$. Since f is Ng β irresolute, $f^{-1}(G)$, $f^{-1}(H)$ are Ng β open sets in U. Further $f^{-1}(G) \cap f^{-1}(H) = \phi$. Therefore U is Ng β normal space.

Theorem 3.12. If $f: U \to V$ is Nano continuous bijective, strongly Ng β open function and U is Ng β normal then V is also Ng β normal.

Proof: Let E and F be disjoint Nano closed set in V. Since f is Nano continuous bijective, $f^{-1}(E)$ and $f^{-1}(F)$ are disjoint Nano closed in U. Now U is Ng β normal, there exist disjoint Ng β open sets G and H such that $f^{-1}(E) \subset G$ and $f^{-1}(F) \subset H$. That is $E \subset f(G)$ and $F \subset f(H)$. Since f is strongly Ng β open function, f(G), f(H) are Ng β open sets in V and f is injective, $f(G) \cap f(H) = f(G \cap H) = f(\phi) = \phi$. Therefore V is Ng β normal space.

4. Conclusion

In this paper, some of the properties of Ng β regular spaces and Ng β normal spaces are discussed. This shall be extended in the future research with some applications.

REFERENCES

- 1. M. E.Abd EL-Monsef, S.N.EL-Deep and R.A.Mahmoud, β -open sets and β -continuous mappings, *Bull. Fac. Sci.*, 12 (1983) 77-90.
- K.Bhuvaneswari and K.Mythili Gnanapriya, Nano generalised closed sets in nano topological spaces, International Journal of Scientific and Research Publications, 4(5) (2014) 1-3.
- 3. Y.Gnanambal, On Nano β open sets, Int. Jr. of Engineering, 1(2) (2015) 1-6.
- 4. M.L.Thivagar and C.Richard, On Nano forms of weakly open sets, International *Journal of Mathematics and Statistics Invention*, 1(1) (2013) 31 -37.
- 5. N.Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, 19(2) (1970) 89-96.
- 6. B.M.Munshi, Separation axioms, Acta Ciencia Indica, 12 (1986) 140-144.
- 7. S.B.Shalini and K.Indirani, Characterisation of nano generalized β closed sets in nano topological spaces, *International Journal of Science and Applied Research*, 4(1) (2017) 7-11.
- 8. S.B.Shalini and K.Indirani, On Nano generalized β continuous functions and Nano generalized β irresolute functions in Nano topological spaces, *IOSR Journal of Mathematics*, 13(1) (2017) 79-86.
- 9. R.S.Wali and V.Dembre, On pre generalized pre regular weakly open sets and pre generalized pre regular weakly neighbourhoods in topological spaces, *Annals of Pure and Applied Mathematics*, 10(1) (2016) 15-20.