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1. Introduction and mathematical preliminaries
In 2007, Huang and Zhang [10] introduced the conoégone metric spaces and fixed
point theorems of contraction mappings; Any mapfiraf a complete cone metric space
X into itself that satisfies, for som@< k < 1 , the inequalityd(Tx, Ty) < kd(x,y)
Vx,y € X has a unique fixed point. In 2012, Sedghi et@l.ifitroduced the concept of
generalization of fixed point theorems §ametric spaces. Rahman and Sarwar [7] are
discussed in fixed point results of Altman integigde mappings irs-metric space. In
recently, Ozgur and Tas [8] are discuss new cotiteaconditions of integral type on
completeS-metric spaces. In 2017, Gholidahneh, et al. [¥2]iatroduce the notion of
integral type contractive mapping with respect tdeved s-metric spaces and coupled
common fixed point theorems of integral type coctica.

In this paper, we discuss the concept of chmeetric space for some contraction
of fixed point theorems.

Definitionl.1. [10] Let E be a Banach space. A subBetf E is called a cone if and only
if:
1. P isclosed, nonempty aitd+= 0
2. ax + by € P for all x,y € P and nonnegative real numbetd
3. Pn(—P)={0}.

Given a cone c E, we define a partial ordering with respectto P by < y if
and only ify — x € P. We will writex < y to indicate thatx < y butx # y , whilex, y
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will stand fory — x € intP, whereintP denotes the interior df. The coneP is called
normal if there is a numbéf > 0 such that0 < x < y implies |[x|| < K ||y| for all
X,y € E. The least positive number satisfying the abovaied the normal constant.

The coneP is called regular if every increasing sequencectvlis bounded from
above is convergent. That is{if,,} is sequence such that; < x, < --- < x,, -+ < yfor
somey € E, then there ix € E such thafl x,, — x ll- 0 asn — 0. Equivalently the cone
P is regular if and only if every decreasing seqeewhich is bounded from below is
convergent. It is well known that a regular cona iormal cone. Supposeis a Banach
spacepP is a cone itE with intP # 0 and <is partial ordering with respect fo

Example 1.2. [4] Let K > 1 be given. Consider the real vector space with
1
E={ax+b:a,bER;x € [1_E'1]}

with supremum norm and the cone
P={ax+b:a=0b= 0}
in E. The coneP is regular and so normal.

Definition 1.3. [10] Let X be a nonempty set. Suppose the mapping x X - E
satisfies

1. d(x,y)=0, and d(x,y) =0 ifand only if x =y Vx,y € X,

2. dx,y)=dy,x), Vx,y EX,

3. d(x,y)<d(x,z)+d(z,y), Vx,y,Z€ X,

Then(X, d) is called a cone metric space simply CMS.

Lemma 1.4. [11] Every regular cone is normal.

Example 1.5. [10] LetE = R?

P ={(x,y):x,y =0}
X =R andd: X X X —» E such that

dx,y)=>Ux—ylalx—yl)
wherea > 0 is a constant. ThéX, d) is a Cone metric space.

Definition 1.6. [9] Let X # @ be any set and: X X X X X — [0,0) be a function
satisfying the following conditions for all, v, z,a € X.

1. S(wv,z)=0

2. Slw,v,z)y=0ifandonlyifu =v = z.

3. S(wu,v,2) £S(wu,a)+SW,v,a)+S5(z,2a)

Then the function S is called an S-metric on X #relpair(X,S) is called anS-metric
space simply SMS.

Example 1.7. [12] Let X be a non empty set is ordinary metric space ati , then
S(x,y,z) =d(x,z) + d(y, z) is anS- metric onX.

Definition 1.8. Suppose thaf is a real Banach space, thénis a cone inE with
intP # @, and<is partial ordering with respect fa LetX be a nonempty set, a function
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d:X XX x X — E is called a cong metric onX if it satisfies the following conditions
with

1. Swv,z)= 0

2. S(u,v,z)=0ifandonlyifu =v =z

3. Su,v,2)<x S(wu,a)+Sw,v,a)+S(z,z,a)

Then the function S is called an cone S-metric cenX the paifX,S) is called an cone
S-metric space simply CSMS.

Example 1.9. LetE = R?, P = {(x,y):x,y * 0}, X =R andd:X X X X X » E such
that thenS(x,y,z) = (d(x,z) + d(y,2), a(d(x,z) + d(y,2))), (e > 0) is an conesS-
metric onX.

Lemma 1.10. Let (X,S) be an coneS-metric space. Then we haw(u,u,v) =
S(v,v,u).

Definition 1.11. Let (X, S) be an con&-metric space .

1. A sequencdqu,} in X converges ta: if and only if S(u,, u,, u) - 0 asn - oo.
That is, there exista, € N such that for alln > ny, S(u,, u,, u) < ¢ for each
c € E,0 < c¢. We denote this b%_{‘goun =u orrlli_r)rgOS(un, uy,u) = 0.

2. A sequencdu,}in X is called a Cauchy sequence (i, u,,, u,) = 0 asn,m -
oo, That is, there exists, € N such that for alln,m > ng, S(up, u,, uy) < c for
eachc € E,0 < c.

3. The coneS-metric spacgX,S) is called complete if every Cauchy sequence is
convergent.

In the following lemma we see the relationship lew a cone metric and an cone S-

metric.

Lemma 1.12. Let (X,d) be a cone metric space. Then the following progerare
satisfied:

S(u,v,2) =d(u,z) +d(v,z) forallu,v,z € X is an cone S-metric on X.

u, — uin{X,d} ifand only ifu, » uin (X,S;) :

{u,} is Cauchy in{X, d} if and only if{u,} is Cauchy in(X,S,) :

{X,d} is complete if and only ifX, S,;) is complete.

N

2. Main result

Theorem 2.1. Let (X, S) be a complete corfemetric space anH be a normal cone with

normal constank. Suppose the mappiffg X — X satisfies the following conditions:
S(Tu,Tu,Tv) < h S(u,u,v) (2.1)

for all u,v € X. ThenT has a unique fixed poimt € X and we hav%mT”u =w, for

eachu € X
Proof: Let uy € X and the sequencfu,} be defined ag"u, = u,. Suppose that
U, # Uy4q for alln. Using the inequality (2.1), we obtain
S(Un, Un, Unt1) S A SUp-1,Up-1,Un) < -+ < R™ S(uo, Up, Uz) (2.2)
If we take limit forn — oo, using the inequality (2.2) we get
rlli_I)IOIOS(un, Up, Un41) = 0,
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Sinceh € (0,1). Thee > 0 implieslim S(u,, Uy, Un4+1) = 0.
n—->oo
Now we show that the sequengte,} is a Cauchy sequence.Assume that} is not
Cauchy. Then there exists ik € and subsequencés,} and{n;} such thatm; <
Ny < My41q W|th
S(umk,umk, unk) Fe€ (2.3)
And
S (U Uy Un,,_,) < € (2.4)
Hence using Lemma (1.10), we have
S(umk—l’umk—l’unk—l) < Zs(umk—l’umk—l’umk) + S(unk—l’unk—l’umk)
< 28(Ump_ Ump_q Umy) TE
And
limy_, o S(umk = Ly, — LUy, — 1) <€ (2.5)
Using the inequalities (2.1), (2.3) and (2.5), vatain
€ < S(umk ,umk,unk) < S(umk —Luy, —Lu, — 1) < he
which is a contradiction with our assumption simce (0,1). So the sequende,} is
Cauchy. Using the completeness hypothesis, théstsexe X such thatlim T"u, = w.
n—-oo

From the inequality (2.1) we find

S(Tw, Tw,u, +1) = S(Tw,Tw,u,) < h S(w,w,u,)
Therefore lim ||S(Tw, Tw, uy + D[ < h K[|S(Tw, Tw, w)|
n-—

}lirr(l)“S(TW, Tw,w)|| < hK||IS(Tw, Tw,w)||

Sinceh € (0,1), thenS(Tw, Tw,w) = 0 which is implies tha§(Tw, Tw,w) « 0 thus
Tw =w.
To prove T has unique fixed point.
Let w,w; be two fixed points off such thatw # w;. Takingu =w andv = w; in
equation (2.1) we have

Sw,w,w;y) =S(Tw,Tw,w;) < hS(w,w,w;)
whereh € (0,1), which is implies

Sw,w,w;) =0

Thusw = w;.

Corollary 2.2. Let (X, S) be a complete coremetric space anH be a normal cone with

normal constank. Suppose the mappiffg X — X satisfies the following conditions:
S(Tu,Tu,Tv) < h S(u,u,v) (2.6)

for all u,v € X. ThenT has a unique fixed poim¢ € X and we ha"%i_r,{}oTn” =w, for

eachu € X.

Theorem 2.3. Let (X, S) be a complete corfemetric space anél be a normal cone with
normal constank. Suppose the mappiffg X — X satisfies the following conditions:
S(Tu, Tu, Tv) < hyS(u,u,v) + h,S(Tu, Tu,v) + h3S(Tv, Ty, u) +

hymax{S(Tu, Tu,v),S(Tv,Tv,u)} (2.7
for all u,v € X with non negative real numbefs(i € {1,2,3,4) satisfyingnax{h; +
3hs + 2hy,hy + hy + h3} < 1.
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ThenT has a unique fixed poimt € X and we havdim T"u = w, for eachu € X.
n—-oo
Proof: Let u, € X and the sequende:,,} be defined adim T"uy = u,, Suppose that
n—-oo

U, # uy4q for alln. Using the inequality (2.7), the condition (S3) drainma (1.10), we
get
S(Un, U, Up1) = S(Tup_q,Tuy_q,Tuy)
S hyS(up—1, Un—1, Up) + By S(up, Up, upn) + h3S(Ungq, Unsr, Un—1)
+h4 maX{S(un: Un, un—l): S‘(un+1: Un+1) un)}
= hy S(Up—1,Un—1,Up) + h3 S(Upt1, U1, Un—1)
+hy max{S(un, un, Un—1), S WUnt1, Un+1, Un)}
< hls(un—lnun—lnun) + hB{ZS(un+1:un+1:un) + h3 S(un—lnun—llun)
+hy S(Ups1, Unsr, Un—1) + hg SQUpi1, Ung1, Un)
= (hy + hg + hy) + hy S(up_1, Un_1,un) + (Zhg + hy) + hy S(up, Up, Ungt)

which implies
Sun:un:un+1) < 1_2h3_hzs(un—1:un—1:un) (2-8)

If we put h= % then we findh <1 since h; + 3h; + 2h, < 1. Using the
- 3~ It

inequality (2.8), we have
Lim|1S(un, tny uns)ll < A" K 1] S(uo, to,ua)11(2:9)

If we take limit forn — oo, using the inequality (2.9), we get
lim S (up, Un, Un+1) =0

n-—
sinceh € (0,1). For alle > 0 implies lim S(u,, u,, u,41) = 0. By the similar arguments
n—oo
used in the proof of theorem (2.1), we see thasttencgu,} is Cauchy. Then there
existsw € X such thatlim T"u, = w, since(X, S) is a complete con&-metric space.
n—oo

From the inequality (9) we find
S(uy, Uy, TW) = S(Tup—q, Ty_1,TW)
< hy S(up_q, Up_1, TW) + hy S(uy, up, w) + h3 S(Tw, Tw, u,,_1)
+hy, max{S(uy, Uy, Un—1), S(Tw, Tw,w)}
Thereforerlliir(l)||5(un, Un, TW)|| < (hz + hy)K|| S(Tw, Tw, w)||
[|S(Tw, Tw,w)|| < (hg + h)K]|| S(Tw,Tw,w) ||,
sinceh; + hy, < 1. ThenS(Tw, Tw,w) = 0 which implies thatS(Tw, Tw,w) « 0 thus
Tw=w.

hy+hg+h

Prove thaf" has unique fixed point. Let, w; be two fixed points of such thatv # w;.
Takingu = w andv = wy in equation (2.7), we have
Sw,w,wy) = S(Tw,Tw,w;)
< hy Sw,w,wy) + hy S(w,w,wy) + hy S(wy,wy,w)
+ hymax{S(w,w,w),S(wy,wy,wq)}
which implies
Sw,w,wy) < (hy + hy + h3) S(w,w,wy)
Then we obtain
Sw,w,wy;) =0
that is,w = w; sinceh, + h, + h; < 1. Consequentlyl’ has a unique fixed poimt € X.
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Corollary 2.4. Let (X, S) be a complete corfemetric space an8 be a nhormal cone with
normal constank.Suppose the mappify X — X satisfies the following conditions:
S(Tu, Tu, Tv) < hyS(u,u,v) + h,S(Tu, Tu,v) + hy S(Tv, Tv,u) +
hy max {S(Tu, Tu,v),S(Tv,Tv,u)}
for all u,v € X with non-negative real numbers(i € {1,2,3,4) satisfyingmax{h, +
3hs + 2hy,hy + hy, + h3} <1, ThenT has a unique fixed point € X and we have
lim T"u = w, for eachu € X.

n—oo

Theorem 2.5. Let (X, S) be a complete corfemetric space anél be a normal cone with
normal constank. Suppose the mappiffg X — X satisfies the following conditions:
S(Tu, Tu, Tv) < hy S(u,u,v) + h,S(Tu, Tu, u) + h3S(Tu, Tu,v) + hy S(Tv, Tv, u)
+hs S(Tv, Tv,v) + hgmax {S(u, u, v), S(Tu, Tu, w),S(Tu, Ty, v), S(Tv, Tv,u),
S(Tv, Tv,v) } (2.10)
for all u, v € X with non negative real numbetg(i € {1,2,3,4,5,6) satisfyingmax{h, +
hy, +3hy + hs + 3hg,hy + h3 + hy + hg} < 1 ThenT has a unique fixed poinw € X
and we havgili_r}c}oT"u = w, for eachu € X.

Proof: Let u, € X and the sequende:,,} be defined a%iToTnuO = u, Suppose that

u, # Uy, for all n. Using the inequality (2.7) the condition (S3) dreimma (2.10) we
get

S(un' Un, un+1) = S(Tun—liTun—liTun)

< hl S(un—l'un—l'un) + hzs(unt Up, un—l) + h35(unt Un, un)

+ h4S(un+1:un+1:un—1) + h5 S(un+1:un+1:un)
+h6 maX{S(un—lnun—llun) :S(un: Uy, un—l):S(un: Uy, un):s(un+1: un+1:un—1):
S(un+1lun+1lun)}

S (hg + hy +hy + he) S(Un—1,Un—1,Up) + (2hy + hs + 2he) S(Ups1, Unt1, Un)
which implies
hy+hy+he+h
S(un: Up, Up + =< (m)s(un—llun—llun) (2-11)
If we puth = —1h1;:2+:4+2h; then we find h < 1 sinceh; + h, + 3h, + hg + 3hg < 1.
- 4~ It5— 6

Using the inequality (13) we have

1imn—>00||5(un' untun+1)|| < h"K ” S(uOIuO'ul)l (212)
If we take limit forn — oo, using the inequality (2.12), we get

limS (u,, up, Upsr) =0
n-0

sinceh € (0,1) The e > 0 implies lim S(u,, u,, u,+,1) = 0 By the similar arguments
n—oco

used in the proof of Theorem (2.4), we see thasdwpiencgu,} is Cauchy. Then there

existsw € X such thatlim T"u, = w, since(X,S) is a complete cong-metric space.

n—-oo

From the inequality (2.12) we find
S(up, Uy, TW) =S(Tu, — 1, Tu, —1,Tw)
< hls(un—lt Un-1, W) + hzs(un' Un, un—l) + h35(un' Un, W)
+hy S(Tw, Tw,uy,_1) + hs S(Tw, Tw, w)
+ hgmax{S(u,_1, Un_1, W), S (Up, Up, Upn_1), S(Uy, Uy, W), S(TW, Tw, up,_1),S(Tw, Tw, w)}
Therefore,}li%| IS (i, U, TWI| < (hy + hs + he)K|[S(Tw, Tw,w]],
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sinceh, + hs + hg < 1.ThenS(Tw, Tw,w) = 0 which implies thatS(Tw,Tw,w) « 0
thusTw = w.
Prove thatT has unique fixed point. Lav,w; be two fixed points off such that
w # wy. Takingu = w andv = w; in equation (2.10), we have
Sw,w,wy) = S(Tw,Tw,Tw;)
< by Sw,w,wy) + hy, S(Ww,w,w) + hy S(W,w,wy) + hy S(wq,wq,w)
+ hs S(wq, wy,wq)

+ hg max{S(w,w,wy),S(w,w,w),S(w,w,w;),S(wy,ws,w),S(wy,wq,wq)},

which implies
Sw,w,wy) < (hy + hz + hy + hg) S(w,w,wy)
Then we obtain
Sw,w,w;) =0,

that is,w = w; sinceh; + h; + h, + hg < 1. Consequentlyl’ has a unique fixed point
w € X.
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