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Abstract. Chemical graph theory is a branch of graph thedrgse focus of interest is to
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1. Introduction

Let G be a connected graph. The degdeé/) of a vertexv is the number of vertices
adjacent tos. The edge connecting the vertiaeandv will be denoted byv. Let dg(€)
denote the degree of an edgim G, which is defined bylg(e) = dg(u) + dg(v) — 2 withe

= uv. For all further notation and terminology we retf@reader to [1].

A molecular graph is a simple graph related to streicture of a chemical
compound. Chemical graph theory is a branch oftgthpory which has an important
effect on the development of the chemical sciengetopological index is a numeric
quantity from the structure of a molecule. There several topological descriptors that
have applications in Theoretical Chemistry, esplydia QSPR/QSAR research see [2].

In [3], the first and second Zagreb indices ofaphG are defined as

My(G)= X do(u)® or  My(G)= Y [dg(u)+dgs(v)]

uv(G) uwiE(G)
M,(G)= 2 dg(u)ds(v)
wiE(G)

Considering Zagreb indices, Fath-Tabar definedt faed second Zagreb

polynomials [4] of a grapls as

M, (G, x)= > x3e(U)+de(v) o M, (Gx)= > e (U)da (V)
wE(G) WE(G)
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Considering another first Zagreb index, we defindax Zagreb polynomial of a
graphG as
M, (G x)= > xR,
uv(G)
In [5], Furtula and Gutman studied the forgottepological index or-index
and defined it as

FG)= ¥ do(u)® or  F(G)= ¥ [de(u)f+ds(v)’]
uv(G) wiE(G)

In [6], De et al. defined-polynomial of a grapks as
F(Gx)= 3 oo (u)+ds (v)°

wiE(G)

Also considering anothErindex, we define vertek-polynomial of a grapks as

F(GX)= 3 x&l

uv(G)
In [7], Chaluvaraju et al. defined first and sectwyger-Zagreb polynomials as
WMy (Gx)= 3 et iy, (G x)= 3 et

wiE(G) uwE(G)
In [8], Kulli defined general first and second Zelg polynomails as
a - [do (u)+ds ()] a - [ do (u)ds (v)]"
M7 (G, x) uvuZE;‘e)X , M3 (G,X) WDZE;‘G)X
wherea is a real number.

In [9], Milicevi¢ et al. introduced the reformulated first and secaagreb
indices of a grapks and they are defined as

El\/ll(G)zeuEZ(G)dG (e)*., El\/lz(G):;fdG (e)ds ().

Considering the reformulated Zagreb indices, wendefeformulated first and
second Zagreb polynomials as

EM,(G,x) = @EZ(G) ()’ | EM, (G,x) = ; (Je(€)e( 1)

wheree~f means that the edges are adjacent.
In [10], Kulli introduced th&k-edge index of a grap@ and defined it as

3
Ke(G) = Z dG (e) ’
eJE(G)
Considering th&-edge index, we define thkeedge polynomial as
Ke(GX)= 3 x®(@
eJE(G)
We introduce another polynomial related ®first reformulated Zagreb index as

Mo(G,x)= @Ez(G) x%(®),
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Also we define the general reformulated first aeadomd Zagreb polynomials as

EMA(GX)= 3 x*@  EM2(G,x)= 3 K@%
eJE(G) T

Recently, some topological indices were studield in12,13].
In this paper, certain Zagreb polynomials of deméri nanostars are determined.

For dendrimer nanostaBz[n] see [14] and references cited therein.

2. Results

We consider the dendrimer nanostar withrowth stages, denoted By[n], wheren = 0,
see Figure 1. LeB be the dendrimer nanost2g[n]. From Figure 1, it is easy to see that
the vertices oD3[n] are either of degree 1, 2 or 3. By calculatior, ebtain thaD3[n]

has 24 x 2— 20 vertices and 24(2 — 1) edges.
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Figurel: Dendrimer nanostar with 3-growiby[ n]

We partitionV(G) into three sets, vertices of degree 1, 2 andBeadively.
Vi = {udV(G) | de(u) = 1}, Vil =3 x 2.

V, = {uO0V(G) | dg(u) = 2}, Mo| =6 x2-12.

V3 = {uOV(G) | dg(u) = 3}, V3| =15 x 2-8.

Also by algebraic method, we partiti&{G) into four sets, based on the sum of
degrees of the end vertices of each edge.

Ei3 = {WUE(G) | do(u) = 1,de(V) = 3}, [E1g =3 % 2.

Eoo = {WOE(G) |de(u) =ds(v) =2},  [E2dl =12 x 2-6.

E23 = {UVDE(G) |d(3(U) = 2,dG(V) = 3}, |E23| =24 x2-12.

Ess = {WOE(G) |ds(u) =ds(v) =3},  [Essl =9 x2-6.

The edge degree partition Gfis given in Table 1.

do(U) de(W)\ WOE(G)  E,= (L, 3Y7(2,2) Ee= (2,3) Ee= (3, 3)
da(€) 2 3 4
Number of edge 15x2"- 6 24x2"— 12 9x2"-6

Table 1. Edge degree partition .
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Theorem 1. The vertex Zagreb polynomial of a dendrimer naaxd3t[n] is
M, (D;[n],x)=(15x 2 - §x° +( 6x 2 - 1Ix*+ 3 2x
Proof: For the vertex Zagreb ponnomiaI lg[n], we have
M, (D[] x) = el = Sl Sl 3t
v, A
=3x2'x" +(6x 2 - 12x° +( 15 2- Bx*
:(15><2”—8)x9+(6>< 2- 1;x“+ X 2x

Theorem 2. The vertexr-polynomial of a dendrimer nanost[n] is
F,(Ds[n].x)=(15x 2 - §x7 +( 6x 2- 13x°+ 3 2x

Proof: For the vertex- ponnomiaI of a dendrimer nanostag[n] is
R(Du[n] ) = St = Dl Etl e gl

V, A

=(15x 2 - gx” +(6x 2 - 1z)x + %
=(15% 2 - gx7" +(6x 2 - 12x°+ & 2

Theorem 3. TheF-polynomial of a dendrimer nanosfag[n] is

F(D,[n].x)=3x2x°+(12x 2 - §x°+( 24 2- 1px™+( 8 2= J'®

Proof: For theF-polynomial of a dendrimer nanostag[n] is

F (D3[n] , X) = Z Xde(”)2+de (v)?

wilE

— z e () +de () 4 z e () () o z 3o (1) +de(v)* 4 z 5 (1) % de (v

B3 E Ex Ess
=3x 2%+ (12¢ 2 - §x°+( 24 2- 1pxP+( 8 - o
Theorem 4. The general first Zagreb polynomial of a dendrim&nostabDs[n] is
M7 (Dy[n] x)=(15% 2 - gx* +( 24 2- 13x7 +( & 2- °
Proof: For the general first Zagreb polynomial of a deme nanostab;[n], we have

M2 (0[] )= Z e

uiE

_ZXdG )+dg (v +ZX[dG )+dg (v ]+ZX[dG )+dg (v +ZXdG )+dg (v

E22 E23 E33
:3x2“x4 +(12¢ 2 - gx* +( 24 2- 1T +( 9 2
Corollary 4.1. The first Zagreb polynomial @3[n] is

M, (D,[n],x)=M}(D,[n].x) =(15x 2 - gx* +( 24« 2- 1x®+( 8 2- P
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Corollary 4.2. The first hyper-Zagreb polynomial B&[n] is
HM, (D,[n].x) =M?(D,[n].x) =(15x 2 - §x°+( 24 2- 1px®+( 8 2- *

Theorem 5. The general second Zagreb polynomial of a dendrimarostabD3[n] is
M3 (Dy[n],x)=3x2'x” +(12¢ 2 - gx” +( 24 2- 1x" +( 8 2 &7
Proof: For the general second Zagreb polynomial of a dereimanostabD3[n], we have
M2 (Ds[n] , X) - z X[de(“)de 7"
E

- Z X[%(U)de Ul + Z X[de(U)de w7 + Z X[de(U)de w7 + Z X[de(U)de w7
Es

(=59 Eps Eas
=3x 2% +(12¢ 2 - gx” +( 24 2- 1 +( 8 - JT
Corollary 5.1. The second Zagreb polynomial4[n] is
M, (Dy[n].x) =M3(Dy[n],x) =3x 2x* + (12« 2 - gx*+( 24 2- 1px°+( 8 = )&°

Corollary 5.2. The second hyper-Zagreb polynomiaDafn] is
HM, (D,[n],x)=MZ(D,[n] x) = 3x Z'x*+(12x 2 - §x*°+( 24 2- 1px*+( 8 "= J&™

Theorem 6. The general reformulated first Zagreb polynomiibadendrimer nanostar
Dg[n] is

EM; (Dy[n].x)=(15x 2 - gx* +( 24« 2- 13x” +( & 2- *
Proof: For the general reformulated first Zagreb polyndneiia dendrimer nanostar
Ds[n] is

EM; (D,[n].x)= 3 xel

eJE(G)

= N x%(@" 4§ 7 %@ 7 yds(e)

=(15% 2 - g)x" +(24¢ 2- 137 +( & 2- BX°
Corollary 6.1. The reformulated Zagreb polynomial@f[n] is
EM,(Dy[n].x) =EM}(Dy[n].x)=(15x 2 - §x* +( 24 2- 1x+( 8 2- B’

Corollary 6.2. The reformulated first Zagreb polynomial@fn] is
EM, (D;[n].x) = EMZ(D,[n].x) =(15x 2 - gx* +( 24 2- 1px+( 8 2- B

Corollary 6.3. TheK-edge polynomial ob3[n] is
K. (Ds[n].x) = EM(D,[n].x) =(15% 2 - §x° +( 24 2- 1px*"+( 8 2- Jx™
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