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Abstract. Chemical graph theory is a branch of graph theory whose focus of interest is to 
finding topological indices of chemical graphs, which correlate well with chemical 
properties of the chemical molecules. In this paper, we introduce several new Zagreb 
polynomials of a molecular graph and compute their polynomials of dendrimer nanostars. 
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1. Introduction 
Let G be a connected graph. The degree dG(v) of a vertex v is the number of vertices 
adjacent to v. The edge connecting the vertices u and v will be denoted by uv. Let dG(e) 
denote the degree of an edge e in G, which is defined by dG(e) = dG(u) + dG(v) – 2 with e 
= uv. For all further notation and terminology we refer to reader to [1]. 
 A molecular graph is a simple graph related to the structure of a chemical 
compound. Chemical graph theory is a branch of graph theory which has an important 
effect on the development of the chemical sciences. A topological index is a numeric 
quantity from the structure of a molecule. There are several topological descriptors that 
have applications in Theoretical Chemistry, especially in QSPR/QSAR research see [2]. 
 In [3], the first and second Zagreb indices of a graph G are defined as 
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Considering Zagreb indices, Fath-Tabar defined first and second Zagreb 
polynomials [4] of a graph G as 
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Considering another first Zagreb index, we define vertex Zagreb polynomial of a 
graph G as 
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In [5], Furtula and Gutman studied the forgotten topological index or F-index 
and defined it as 
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In [6], De et al. defined F-polynomial of a graph G as 
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        Also considering another F-index, we define vertex F-polynomial of a graph G as 
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In [7], Chaluvaraju et al. defined first and second hyper-Zagreb polynomials as 
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 In [8], Kulli defined general first and second Zagreb polynomails as 
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where a is a real number. 
 In [9], Mili čević et al. introduced the reformulated first and second Zagreb 
indices of a graph G and they are defined as 
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Considering the reformulated Zagreb indices, we define reformulated first and 
second Zagreb polynomials as 
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where e~f means that the edges e, f are adjacent. 
In [10], Kulli introduced the K-edge index of a graph G and defined it as 
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Considering the K-edge index, we define the K-edge polynomial as 
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      We introduce another polynomial related to the first reformulated Zagreb index as 
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Also we define the general reformulated first and second Zagreb polynomials as 
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Recently, some topological indices were studied in [11,12,13]. 
In this paper, certain Zagreb polynomials of dendrimer nanostars are determined. 

For dendrimer nanostars D3[n] see [14] and references cited therein. 

2. Results 
We consider the dendrimer nanostar with n growth stages, denoted by D3[n], where n ≥ 0, 
see Figure 1. Let G be the dendrimer nanostar D3[n]. From Figure 1, it is easy to see that 
the vertices of D3[n] are either of degree 1, 2 or 3. By calculation, we obtain that D3[n] 
has 24 × 2n – 20 vertices and 24(2n+1 – 1) edges. 

 
Figure1: Dendrimer nanostar with 3-growth D3[n] 

 We partition V(G) into three sets, vertices of degree 1, 2 and 3 respectively. 
 V1 = {u∈V(G) | dG(u) = 1}, |V1| = 3 × 2n. 
 V2 = {u∈V(G) | dG(u) = 2}, |V2| = 6 × 2n – 12. 
 V3 = {u∈V(G) | dG(u) = 3}, |V3| = 15 × 2n – 8. 
 
 Also by algebraic method, we partition E(G) into four sets, based on the sum of 
degrees of the end vertices of each edge. 
 E13 = {uv∈E(G) | dG(u) = 1, dG(v) = 3}, |E13| = 3 × 2n. 
 E22 = {uv∈E(G) | dG(u) = dG(v) = 2}, |E22| = 12 × 2n – 6. 
 E23 = {uv∈E(G) | dG(u) = 2, dG(v) = 3}, |E23| = 24 × 2n – 12. 
 E33 = {uv∈E(G) | dG(u) = dG(v) = 3}, |E33| = 9 × 2n – 6. 

The edge degree partition of G is given in Table 1. 
dG(u) dG(v)\ uv∈E(G) E4= (1, 3)∪(2,2) E5= (2,3) E6= (3, 3) 

dG(e) 2 3 4 
Number of edges 15×2n – 6 24×2n – 12 9×2n–6 

Table 1: Edge degree partition of G. 
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Theorem 1. The vertex Zagreb polynomial of a dendrimer nanostar D3[n] is 

 [ ]( ) ( ) ( )9 4
3 , 15 2 8 6 2 12 3 2n n n

vM D n x x x x= × − + × − + ×  

Proof: For the vertex Zagreb polynomial of D3[n], we have 
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 ( ) ( )2 2 21 2 33 2 6 2 12 15 2 8n n nx x x= × + × − + × −  

 ( ) ( )9 415 2 8 6 2 12 3 2n n nx x x= × − + × − + ×  

 

Theorem 2. The vertex F-polynomial of a dendrimer nanostar D3[n] is 

 [ ]( ) ( ) ( )27 8
3 , 15 2 8 6 2 12 3 2 .n n n

vF D n x x x x= × − + × − + ×  

Proof: For the vertex F-polynomial of a dendrimer nanostar D3[n] is 
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Theorem 3. The F-polynomial of a dendrimer nanostar D3[n] is 

[ ]( ) ( ) ( ) ( )10 8 13 18
3 , 3 2 12 2 6 24 2 12 9 2 6 .n n n nF D n x x x x x= × + × − + × − + × −  

Proof: For the F-polynomial of a dendrimer nanostar D3[n] is 

 [ ]( ) ( ) ( )2 2

3 , G Gd u d v

uv E

F D n x x +

∈
= ∑  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2

13 22 23 33

G G G G G G G Gd u d v d u d v d u d v d u d v

E E E E

x x x x+ + + += + + +∑ ∑ ∑ ∑  

 ( ) ( ) ( )10 8 13 183 2 12 2 6 24 2 12 9 2 6 .n n n nx x x x= × + × − + × − + × −  

Theorem 4. The general first Zagreb polynomial of a dendrimer nanostar D3[n] is 

[ ]( ) ( ) ( ) ( )4 5 6
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Proof: For the general first Zagreb polynomial of a dendrimer nanostar D3[n], we have 
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Corollary 4.1. The first Zagreb polynomial of D3[n] is 

[ ]( ) [ ]( ) ( ) ( ) ( )1 4 5 6
1 3 1 3, , 15 2 6 24 2 12 9 2 6 .n n nM D n x M D n x x x x= = × − + × − + × −  
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Corollary 4.2. The first hyper-Zagreb polynomial of D3[n] is 

[ ]( ) [ ]( ) ( ) ( ) ( )2 16 25 36
1 3 1 3, , 15 2 6 24 2 12 9 2 6 .n n nHM D n x M D n x x x x= = × − + × − + × −  

 
Theorem 5. The general second Zagreb polynomial of a dendrimer nanostar D3[n] is 

[ ]( ) ( ) ( ) ( )3 4 6 9
2 3 , 3 2 12 2 6 24 2 12 9 2 6 .= × + × − + × − + × −

a a a aa n n n nM D n x x x x x  

Proof: For the general second Zagreb polynomial of a dendrimer nanostar D3[n], we have 
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Corollary 5.1. The second Zagreb polynomial of D3[n] is 

[ ]( ) [ ]( ) ( ) ( ) ( )1 3 4 6 9
2 3 2 3, , 3 2 12 2 6 24 2 12 9 2 6 .n n n nM D n x M D n x x x x x= = × + × − + × − + × −  

 
Corollary 5.2. The second hyper-Zagreb polynomial of D3[n] is 

[ ]( ) [ ]( ) ( ) ( ) ( )2 9 16 36 81
2 3 2 3, , 3 2 12 2 6 24 2 12 9 2 6 .n n n nHM D n x M D n x x x x x= = × + × − + × − + × −  

 

Theorem 6. The general reformulated first Zagreb polynomial of a dendrimer nanostar 
D3[n] is 

[ ]( ) ( ) ( ) ( )2 3 4
1 3 , 15 2 6 24 2 12 9 2 6 .

a a aa n n nEM D n x x x x= × − + × − + × −  

Proof: For the general reformulated first Zagreb polynomial of a dendrimer nanostar 
D3[n] is 

 [ ]( ) ( )

( )
1 3 ,

a
Gd ea

e E G

EM D n x x
∈

= ∑  

 
( ) ( ) ( )

4 5 6

a a a
G G Gd e d e d e

e E e E e E

x x x
∈ ∈ ∈

= + +∑ ∑ ∑  

 ( ) ( ) ( )2 3 415 2 6 24 2 12 9 2 6 .
a a an n nx x x= × − + × − + × −  

Corollary 6.1. The reformulated Zagreb polynomial of D3[n] is 

[ ]( ) [ ]( ) ( ) ( ) ( )1 2 3 4
0 3 1 3, , 15 2 6 24 2 12 9 2 6 .n n nEM D n x EM D n x x x x= = × − + × − + × −  

 
Corollary 6.2. The reformulated first Zagreb polynomial of D3[n] is 

[ ]( ) [ ]( ) ( ) ( ) ( )2 4 9 16
1 3 1 3, , 15 2 6 24 2 12 9 2 6 .n n nEM D n x EM D n x x x x= = × − + × − + × −  

 
Corollary 6.3. The K-edge polynomial of D3[n] is 

[ ]( ) [ ]( ) ( ) ( ) ( )3 8 27 64
3 1 3, , 15 2 6 24 2 12 9 2 6 .n n n

eK D n x EM D n x x x x= = × − + × − + × −  
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