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1. Introduction 
A signed graph is obtained from a graph when one regards some of the lines as positive 
and the remaining lines as negative [7]. Precisely, a signed graph is a pair (G,�) where G 
is called the underlying graph and � : E(G) →	��,-}	 is called the signature function or 
sign to the edges. The collection of all positive edges and the collection of all negative 
edges are denoted by E+(S) and E-(S), respectively. In social psychology, signed graphs 
have been used to model social situations (examples in [13], [14] and [9]).  A signed 
graph in which all the edges are positive (negative) is called all-positive (all-negative) 
signed graph. A signed graph is said to be homogeneous if it is either all-positive or all-
negative and heterogeneous, otherwise. A cycle in a signed graph S is said to be positive 
if the product of the signs of its edges is positive. Otherwise, it is called negative [6]. 
Similarly, a path in a signed graph is said to be positive, if the product of the signs of the 
edges is positive and is negative, otherwise. A vertex in a signed graph is considered as a 
homogeneous vertex if the entire edges incident to it has the same sign. Otherwise, it is a 
heterogeneous vertex. Further, in [4], every signed graph S = (G,�) can be associated 
with a signing of its vertices by the function, called the canonical marking of S, defined 
by the rule, 

	�
�� = � �
��
��	�	��

� 
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where Ex denote the set of all edges of S, which are incident on the vertex ‘x’. In literature 
signed graph in short called as ῾sigraph́ [10]. In this paper, canonical marking is used to 
sign the vertices. 

         The line graph [8] L(G), of a graph G has the edges of G as its vertices and two 
distinct edges of G are adjacent in L(G) if they are incident in G. The Gallai graph Γ(G), 
of a graph G has the edges of G as its vertices and two distinct edges of G are adjacent in 
Γ(G) if they are incident in G, but do not span a triangle in G [16]. Though, Γ(G) is a 
spanning subgraph of L(G), their behaviors are different. For example, L(G) has a 
forbidden subgraph characterization, whereas Gallai graphs do not have the vertex 
hereditary property and hence cannot be characterized using forbidden subgraphs [16]. 
But, in [3] it has been proved that there exists a finite family of forbidden subgraphs for 
the Gallai graphs and the anti-Gallai graphs to be H-free for any finite graph H. Also it 
has been proved in [1] that the recognition of anti-Gallai graphs is NP-complete. In [2], 
the forbidden subgraph characterizations of G for which Γ(G) and ∆(G) is a split graph 
and is a threshold graph are given. 
        Signed line graph L(S) of a given signed graph S = (G,�) as defined by Behzad and 
Chartrand [12] is the signed graph with standard line graph L(G) of G as its underlying 
graph and whose edges are assigned the signs according to the rule: for any eiej � E(L(S)), 
eiej � E─(L(S)) if and only if the edges ei and ej of S are both negative in S. For a signed 
graph S the set of all signed graphs S′ with L(S′) ≌ S is called signed line roots of S [11]. 
        There are two other notions of a signed line graph of a given signed graph S = (G,�) 
in [5] - product-line sigraph L(S) and dot-line sigraph L⦁(S). Both of them have L(G) as its 
underlying graph and only the rule to assign signs to the edges of L(G) are different. In 
L⨯, an edge ee′ has sign �(e)�(e′) and in L⦁(S), any edge ee′ has the sign of the vertex 
common to e and e′ [6]. For a signed graph S the set of all signed graphs S′ with L(S′) ≌ 
S is called LLLL⦁⦁⦁⦁––––rootsrootsrootsroots of S [5]. 
 
1.1. New terminology and definitions 
Motivated from the above concepts, we define Gallai signed graph Γ(S) of a given signed 
graph S = (G,�), as the signed graph with the Gallai graph Γ(G) as its underlying graph 
and whose edges are assigned the signs according to the rule: for any eiej in E(Γ(S)), eiej 
is negative if and only if the edges ei and ej are both negative in S and positive otherwise. 
Like the concept of signed line roots we introduce the concept of Gallai Signed roots as 
the set of all signed graphs S′ with Γ(S′) ≌ S is called Gallai Signed roots of S. In this 
paper there is no ambiguity to call Gallai Signed roots as roots. 
        Similarly, given signed graph S = (G,�), the product-Gallai signed graph Γ⨯(S) and 
the dot-Gallai signed graph Γ⦁(S), have Γ(G) as their underlying graph and the rule to 
assign signs to the edges are as follows. In an edge ee′ has sign �(e)� (e′) and in Γ⦁(S) any 
edge ee′ has the sign of the vertex common to e and e′. Like the concept of L⦁⦁⦁⦁––––roots we 
introduce the concept of Γ⦁⦁⦁⦁––––roots. For a signed graph S the set of all signed graphs S′ 
with Γ⦁(S′) ≌ S is called Γ⦁⦁⦁⦁––––roots of S and the set of signed graphs S′ with Γ⦁(S′) contains 
S as an induced subgraph is called Γ⦁⦁⦁⦁––––semi semi semi semi roots of S. Note that, Γ⦁⦁⦁⦁––––semi semi semi semi roots  consist 
of signed graphs which contains a Γ⦁⦁⦁⦁––––root  as an induced subgraph. 
        If a graph G has a property P implies that G cannot have an induced sub-graph 
isomorphic to H, and then H is called a forbidden subgraph for the property P [15]. 
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Though Gallai graphs do not admits forbidden subgraph characterization [16], Γ(S), Γ⨯(S) 
and Γ⦁(S) admit forbidden subgraphs. In this paper, we obtain forbidden subgraph 
characterization of Gallai signed graphs, product-Gallai signed graph and dot-Gallai 
signed graphs. 
        Given a graph G, Gc denotes the complement of G. The join of two graphs G and H 
is denoted by G˅H. All graph theoretic notations and terminology not mentioned here are 
from [15]. 
 
2.  Forbidden subgraph characterizations 
2.1. Gallai signed graph 
            In this section, we give the forbidden subgraph characterization of Gallai signed 
graph. 
Theorem 2.1.1.  The following graphs are the only vertex minimal forbidden subgraphs 
of the Gallai signed graphs. 
(1)  A triangle v1v2v3 with only one positive edge. 
(2)  A path P = v1v2v3v4 with signs �(v1v2) =  �(v3v4) =  ─  and  �(v2v3) = +. 
(3)  A path P as on (2) above together with some or all of the edges v1v3, v2v4 and v1v4; 
each of them assigned a + sign.  
Proof:  Let v1v2v3 be a triangle in the Gallai signed graph with only one positive edge. Let 
e1, e2, e3 be the edges corresponding to the vertices v1, v2 and v3. Since v1v2 and v2v3 are 
negative e1, e2 and e3 must be negative. But, then in Gallai signed graph, v1v3 must also be 
negative, which is a contradiction. 
      Let v1v2v3v4 be a path in Gallai signed graph with signs �(v1v2) = �(v3v4) = ─ and  
�(v2v3) = +.  Let e1, e2, e3 and e4 be the edges in the root corresponding to the vertices v1, 
v2, v3 and v4. The edges v1v2 and v3v4 are negative if and only if the corresponding edges 
e1, e2, e3 and e4 are all negative. But, then v2v3 must also be negative, which is a 
contradiction. 
      As evident from the proof, any super graph of the above path is also forbidden and it 
is vertex minimal forbidden if it does not contain a triangle with only one positive edge. 
Therefore, this path with some or all of the edges v1v3, v2v4 and v1v4; each of them 
assigned a + sign are also minimal forbidden. 
      Now, let S = (G,�) be a signed graph which do not contain the signed graphs 
mentioned in the theorem as subgraphs. Let v1, v2, …, vn be the vertices of the underlying 
graph G. Note that, if vivj is a positive edge in G, then either vi or vj do not have a negative 
edge incident on it. We can construct a graph S′ = (H,μ) such that  Γ(S′) contains S, as 
follows. 
      Let H = Gc 

˅ {v}. The sign function μ: E (H) →	��,-}	is defined as, 
 

 	
3� = 4−, 67	3 = 889 	:;<	89	ℎ:>	:	;3?:@683	3<?3	6;A6<3;@	B;	6@	6;	C
�, B@ℎ3DE6>3. G 

 
Clearly the vertices corresponding to {vv1, vv2, …, vvn} in S′ induce S in Γ(S′). 

 
2.2. Product-Gallai signed graph 
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In this section, we prove that the only forbidden subgraphs of product-Gallai sigraph are 
the cycles. 
  
Lemma 2.2.1. If S contains a negative cycle, then S contains an induced negative cycle. 
Proof: Consider a negative cycle C with vertices v1, v2, …, vn in which m edges are 
negative (note that, m is odd). If C has a chord vivj (i < j)  then we get two cycles C1 with 
vertex set v1, v2, …,  vi, vj, vj+1, …, vn and C2 with vertex set vi, vi+1, …,  vj-1, vj. Clearly, at 
least one among these cycles is negative, say C1. If C1 is an induced cycle then we are 
done. Otherwise, repeat the procedure with C1 until we get an induced negative cycle. 
 
Theorem 2.2.2. The only forbidden subgraphs for the product-Gallai sigraph are the 
negative cycles. 
Proof: Let S = (G,�) be a graph without negative cycles. We construct S′ = (H,μ) as 
follows. Without loss of generality we assume that G is a connected graph. If G is 
disconnected, repeat the same procedure for each connected component of G. Let V (G) = 
{v1, v2, …, vn}. Let H = Gc

˅{v} and �(vv1) = +.  Note that, for any two vertices vi and vj in 
G, every vivj path (if more than one exist) is either positive or negative, since otherwise 
we get a negative cycle in G which is a contradiction. Assign �(vvi) = +  or - according as 
a path joining v1 to vi in S is positive or negative. The remaining edges in H could be 
assigned any sign. In G, if vi is adjacent to vj, then in H, vvi and vvj are incident and do not 
span a triangle. Therefore in Γ⨯(S′), the vertices corresponding to the edges vvi and vvj are 
adjacent. If vivj is +, then both v1vi path and v1vj path are either positive or negative, so 
that vvi and vvj are both either + or - in S′.  In either cases, in Γ⨯(S′) the edge joining the 
vertices corresponding to vvi and vvj is +. Similarly, if vivj is -, then every v1vi path and 
v1vj path are of opposite signs so that vvi and vvj are of opposite sign. Therefore, in Γ⨯(S′) 
the, subgraph induced by the vertices corresponding to the edges vv1, vv2, …, vvn is 
isomorphic to S. 
     To prove the converse part, let S be a signed graph such that Γ⨯(S) contains a cycle 
v1v2…vn. Let e1, e2, …, en be the edges corresponding to the vertices v1,v2, …, vn. Note that 
vivi+1 is negative if and only if ei and ei+1 are of opposite signs. Since the number of 
change of signs for e1, e2, …, en, e1 is always even, the number of negative edges in the 
cycles v1v2…vn is also even. That is S cannot have negative cycles. Hence, the theorem is 
proved. 
 
2.3. Dot-Gallai sigraph 
In this section, we characterize dot-Gallai sigraph with respect to the forbidden 
subgraphs. For convenience we introduce the following terminology. A vertex is of type 
A if it belongs to a cycle in which the edges incident to it have the same sign and there is 
at least one edge of opposite sign incident to it outside the cycle. Otherwise, the vertex is 
of type B. We have the following observations regarding, type A and type B vertices. 
 
(1) If a cycle contained in a signed graph is not homogeneous then there exist   at least 
two type B vertices. 
 
(2) The edge corresponding to a type A vertex in a Γ⦁⦁⦁⦁––––semi semi semi semi root has one end vertex 
positive and the other negative. 
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(3) If ῾n´, type A vertices are adjacent in S then there is a homogeneous path of length n 
+ 2 in S. The path connecting any two type B vertices is homogeneous. Also the edges 
corresponding to the vertices in this path including the type B vertices have a common 
vertex in every Γ⦁⦁⦁⦁––––semi semi semi semi root of S. 
 
Lemma 2.3.1.  A complete graph which is not homogeneous is a forbidden subgraph for 
dot-Gallai sigraph. 
Proof: Let S = (G, �) be a signed graph which contains a subgraph (Kn, �). If there exists 
a signed graph S′ such that Γ⦁(S′) contains S, then the underlying graph of S′ contains K1,n. 
The nth-degree vertex of K1,n is either positive or negative. Therefore the corresponding 
Kn in the dot-Gallai sigraph is homogeneous.  
 
Lemma 2.3.2. The following signed graphs are not forbidden for dot-Gallai sigraph. 
(1) S1 = (Cn,�). 
(2)   S2 = (K1,n,�). 
(3)   Signed trees. 
(4)   Cycles Cn with at least 5 type B vertices. 
(5)   Homogeneous cycles with any number of type A vertices. 
Proof: (1) Let S1 = (Cn,�), where Cn is a cycle of length n with vertices {v1, v2, …, vn} and 
‘m’ negative edges. To construct a Γ⦁⦁⦁⦁––––semi semi semi semi root, S1′ = (H,μ), let e1, e2, …,  en be the edges 
corresponding to v1, v2, …, vn and let these edges induce a cycle in S1′. Let μ(ei) = + for 
every i and if �(vivi+1) = ─ , add a negative pendant edge incident on the common vertex 
of ei and ei+1. In this case, Γ⦁(S1′) contains S as an induced subgraph. 
  
(2) Let S2 = (K1,n,�), where K1,n is induced by the vertices v,v1, v2, …, vn where v is the 
central vertex. We can construct a Γ⦁⦁⦁⦁––––semi semi semi semi root S2′ = (H,μ) as follows. Let e = uu′ be the 
edge corresponding to the central vertex v and let ei be the edge corresponding to vi for i 
= 1, 2, …, n. Partition {e1, e2, …, en} to E1 and E2 such that ei H E1 if �(vvi) = +  in S and ei 
H E2 if �(vvi) = ─ in S. Make all edges of E1 incident to u and that of E2 to u′. Also, make 
the remaining end vertices of E1 (and E2) induce a complete graph. Let μ(e) = + and μ(ei) 
= +,  ∀ i. If E2 J K , then attach one negative edge to u′, where the edges of E2 are 
attached. Now the induced sign of u is positive and u′ is negative. Clearly, the vertices 
corresponding to the edges e, e1, e2, …, en induce K1,n in Γ⦁(S2′). 
 
(3) Let S3 = (T,�) be a signed graph, where T is a tree. Let v be any vertex of T. The 
vertex v together with its neighbors induce a signed K1,m in S. Obtain a Γ⦁⦁⦁⦁––––semi semi semi semi root for 
K1,m as described in (2) above. Let v1 be a neighbor of v in T and let e1 be the edge 
corresponding to v1 in H. 
        If vv1 is positive in S, then the common vertex of e and e1 is positive. Attach positive 
edges, corresponding to the vertices which have positive adjacency with v1 to this vertex 
in Γ⦁⦁⦁⦁––––semi semi semi semi root. Since there is no adjacency between neighbors of v1 and neighbors of v, 
triangulate the edges correspond to the neighbors of v1 with the edges corresponding to 
the neighbors of v, if they are incident in the Γ⦁⦁⦁⦁––––semi semi semi semi root. Similarly attach the edges 
corresponding to the vertices which have negative adjacency with v1 to the other end 
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vertex of e1 and assign positive sign. Also attach one additional negative edge to that 
vertex. Then the sign of that vertex is negative in Γ⦁⦁⦁⦁––––semi semi semi semi root. 
       If vv1 is negative in S then the common vertex of e and e1 is negative. Attach the 
edges corresponding to the vertices which have negative adjacency with v1 to the 
common vertex of e and e1 and triangulate the edges correspond to the neighbors of v1, 
with the edges correspond to the neighbors of v. Similarly attach the edges corresponding 
to the positive adjacent vertices to the other end vertex of e1. Then the sign of that vertex 
is positive. Repeat the same procedure to obtain a Γ⦁⦁⦁⦁––––semi semi semi semi root for S. 
 
(4) Let Cn contains exactly 5 type B vertices. To find a Γ⦁⦁⦁⦁––––semi semi semi semi root S′ = (H,μ), 
according to the order in the cycle let the type B vertices are v1, v2, …, v5. By observation 
3, since the path between any two successive vertices in the above list is homogeneous 
the edges corresponding to v1, v2 and the type A vertices between them should have one 
common end vertex. A similar argument holds for paths between the pairs (v2,v3), (v3,v4), 
(v4,v5) and (v5,v1). Let e1, e2,…, e5 be the positive edges corresponding to the vertices v1, 
v2,…, v5. Draw e1 and e2 with a common end vertex. If there exists, type A vertices 
between v1 and v2, corresponding to that vertices attach positive edges to the common 
vertex of e1 and e2. Triangulate all the edges if the corresponding vertices are non 
adjacent in S. Since e2, e3 have a common end vertex and v2 is not a type A vertex we can 
attach e3 and positive edges corresponding to the type A vertices between v2 and v3 to the 
other end vertex of e2. Then triangulate all the edges, if the corresponding vertices in S 
are non adjacent. If any of the homogeneous path connecting the pairs (v1,v2) and (v2,v3) 
is all-negative then add an additional negative edge to the common vertex of the edges 
corresponding to that pairs. Whatever be the sign of the homogeneous path between v3 
and v4 attach e4 and the edges corresponding to the type A vertices in the path connecting 
v3 and v4 to the other end vertex of e3. Triangulate all the edges if the corresponding 
vertices are not adjacent in S. If the homogeneous path is all-negative add one negative 
edge to the common vertex of e3 and e4. Attach positive edges, corresponding to the type 
A vertices in the path v4, v5 to the other end vertex of e4. Draw e5 starting from this vertex 
meeting at the end vertex of e1 which is not an incident vertex of e1 and e2. Triangulate all 
the edges if the vertices corresponding to those edges are nonadjacent in S but incident in 
S′. If the homogeneous path is all-negative attach an additional negative edge to the 
common vertex of e4 and e5 in S′. Then Γ⦁(S′) contains S. 
      If Cn contains more than 5 type B vertices v1,…v5,…,vn. Let e1,… e5,…,en be the 
positive edges corresponding to these type B vertices. For constructing S′ draw e1, e2,…, 
en in such a way that they form a Cn in S′. Attach the edges corresponding to the type A 
vertices between the vertices vi and vi+1 in the common vertex of ei and ei+1. If any of the 
homogeneous path between vi and vi+1 is all-negative add an additional negative edge to 
the common vertex of ei and ei+1. Triangulate all the edges if the edges are incident in S′ 
but the corresponding vertices are not adjacent in S. Clearly Γ⦁(S′) contains S. 
 
(5) Let v1, v2, …, vn denote the vertices of the cycle. To find a Γ⦁⦁⦁⦁––––semi semi semi semi root consider H = 
Cn

 c 
˅ {v}. Let e1, e2, …, en denote the edges corresponding to v1, v2, …, vn . In H take ei = 

vvi and assign positive sign to e1, e2, …, en. If the cycle is all-negative attach one edge 
with negative sign to the vertex v. Clearly this graph is a Γ⦁⦁⦁⦁––––semi semi semi semi root for the cycle. 
Consider an arbitrary vertex vi in the cycle if it is a type A vertex there exists vertices 
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outside the cycle adjacent to vi. By the definition of type A vertex at least one outside 
edge is of opposite sign. In this case attach positive edge corresponding to the end vertex 
of this edge to the vertex vi in H. If the edge is of negative sign attach one additional 
negative edge to the vertex vi in H. So the vertices v and vi receive opposite sign. So 
depending on the sign of edges incident to vi attach edges with positive sign to either v or 
vi. Repeat the same for other vertices.  
 
Theorem 2.3.3. In a Signed graph S if a heterogeneous cycle Cn contains exactly four 
type B vertices, the graph is forbidden for dot-Gallai sigraph if and only if, 
(1)  all the type B vertices induce a P4. 
(2) any three type B vertices induce a P3 and the fourth type B vertex is independent to it. 
(3) at most one pair of type B vertices are adjacent (forms an edge) and both the        
neighboring edges of this edge in the cycle has sign opposite to that of this edge. 
Proof: Let the type B vertices be u, v, w and z. By observation 3, the path connecting the 
pairs (u,v) is a homogeneous path. Similarly for the other continuous pairs (v,w), (w,z) 
and (z,u) the paths are homogeneous. Since the cycle is heterogeneous, any one of the 
path is of opposite sign. Let p, q, r, s denote the edges corresponding to u, v, w, z 
respectively. Let S′ = (H,μ) denote a Γ⦁⦁⦁⦁––––semi semi semi semi root of S. 
 
(1) Let u, v, w, z induce a P4 in S. Since the path connecting z and u is homogeneous and 
the vertices between them is of type A, by observation 3 the edges corresponding to these 
vertices and the edges p and s should have a common vertex in S′ . Since z and u are non 
adjacent the edges p and s belong to a K3. In S if the edge uv is of opposite sign, in S′ we 
can attach the edge q only to the other end vertex of p. But in this case we cannot draw 
the edge r such that w is adjacent to both v and x in S. So the only possibility is that the 
edge uv is of the same sign of the edges between the vertices u and z and we can attach 
the edge q to the common vertex of p and s. Since the vertex w is adjacent to both v and z 
here the only possibility is join edge r to the common vertex of p, q and s. Then all the 
edges of the cycle in S receive the same sign of the common vertex of p, q, r and s. Then 
the cycle becomes a homogeneous cycle. That is a contradiction. 
 
(2)  Let the vertices that induce p3 be u, v, w and z be not adjacent to all of them. As 
explained above the edges p and s should have a common vertex and belong to a K3. If 
the edge uv has opposite sign as that of, the sign of the edges in the path connecting u and 
z, in S′ we can join the edge q only to the other end vertex of p. Since w is adjacent to v in 
S and by observation 3 the edge r should have common vertex with the edges q and s in 
S′. But any way we draw r it affects the adjacency between the vertices in S. So, that is 
not possible. So the only possibility is the edge uv is of the same sign as that of the sign 
of, the edges in the path connecting u and z. Then we can join the edge q to the common 
vertex of p and s. Since w is adjacent to v and by observation 3, the edge r should have 
common vertex with the edges q and s. The only possibility is join r to the common 
vertex of p, q and s, contradicting the cycle is heterogeneous. 
 
(3) Let the adjacent pair is u and v. In this case uv is adjacent in S implies in S′, the edges 
p and q have a common vertex. Since the path connecting u and z is homogeneous 
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(observation 3) and is of opposite sign we can join the edge s only to the other end vertex 
of p. Since u and z are nonadjacent in S make the edges p and s belong to a K3. Since the 
edges in the homogeneous path connecting v and w also have the opposite sign as that of 
the edge uv we can join r only to the other end vertex of q which is not incident with p. 
Also by observation 3, r should have common vertex with s and both the edges belong to 
a K3 since w and z are nonadjacent in S. Anyway p and q form a K3 which contradicts the 
adjacency of u and v in S. 

To prove the converse, assume that the 4 type B vertices do not induce any one of the 
graphs given in the theorem. Then the following cases arise, 

(4)  at most one pair of type B vertices adjacent and at least one of the neighboring edge 
in the cycle has same sign to that of this edge.               
(4)  two disjoint pairs of type B vertices are adjacent. 
(5)  all the four type B vertices are nonadjacent. 
(6)  type B vertices form a cycle. 
 
In these cases edges means edges with positive sign. 

(4) As in the above case we assume the adjacent pair is u and v and the homogeneous 
path which has same sign as that of edge uv is the path connecting v and w. uv is an edge 
in S implies, in S′ the edges p and q have a common vertex. Also the path connecting u 
and z is homogeneous (observation 3) in S′. Whatever be the sign of the edges in the path 
we can join the edge s together with the edges corresponding to the type A vertices in the 
(u,z) path to other end vertex of the edge p. Triangulate the edges if the corresponding 
vertices are not adjacent in S. So the edges p and s belong to a K3. Since the edges in the 
homogeneous path connecting v and w have the same sign as that of the edge uv take r as 
the edge connecting the end vertices of p and s so that the edges p, r, s form a K3. Join the 
edges corresponding to the type A vertices in the homogeneous path connecting v and w 
to the common vertex of p,q and r in S′. Triangulate all the edges if the corresponding 
vertices are non adjacent in S. Also join the edges corresponding to the type A vertices in 
the homogeneous path connecting w and z to the common vertex of r and s in S′. 
Triangulate all the edges if the corresponding vertices are non adjacent in S. By 
observation 3 if any path consists of negative edges then add an additional negative edge 
to the common vertex of the edges corresponding to the type A vertices in the path. 
Clearly Γ⦁(S′)contains S as an induced subgraph. 

(5) Without loss of generality let (u,v) and (w,z) be the adjacent pairs. In S′ draw edges p 
and q with a common vertex. With respect to the type A vertices in the homogeneous path 
connecting u and z draw edges including s in the pendant vertex of p. Triangulate the 
edges if the corresponding vertices are non adjacent in S. Then p and s belongs to a K3. 
Corresponding to the type A vertices in the homogeneous path connecting v and w, add 
edges at the pendant vertex of q, where r is drawn in such a way that p, q, r and s form a 
C4. Triangulate the edges if the corresponding vertices are non adjacent in S. If any one of 
the homogeneous path joining the type B vertices are all-negative in S then in S′, add an 
additional negative edge to the common vertex of the edges corresponding to the vertices 
in the homogeneous path. Clearly Γ⦁(S′)contains S as an induced subgraph. 
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(6) The vertices u, v, w and z are non-adjacent. In S′ draw edges p, q, r and s in such a 
way that they form a C4. Since the path connecting every consecutive pairs of vertices are 
homogeneous, corresponding to the type A vertices inside each homogeneous path draw 
edges at the common vertex of, the edges corresponding to the end vertices of the 
homogeneous path in S′. Triangulate all the edges if the corresponding vertices are non 
adjacent in S but are incident in S′. Then u, v, w and z form the outer cycle of a K4. 
Clearly Γ⦁(S′) contains S as an induced subgraph. 

(7) As discussed in lemma 2.3.2(1) find a Γ⦁⦁⦁⦁––––semisemisemisemi root for the cycle. Consider an 
arbitrary vertex in the cycle. For convenience we consider the vertex u. If the edges in the 
cycle incident to u are of opposite sign, in Γ⦁⦁⦁⦁––––semisemisemisemi root one end vertex of p is positive 
and the other is negative. If there exist edges not in the cycle incident to u, if an edge is 
positive (or negative) attach one edge to the positive (or negative) end vertex of p. Since 
the vertex u is a type B vertex, if the edges incident to u in the cycle are of the same sign, 
then the edges incident to u outside the cycle are also of the same sign. So, in Γ⦁⦁⦁⦁––––semisemisemisemi 
root the end vertices of p receive the same sign. In this case we can attach the edges 
corresponding to the other adjacent vertices of u to any end vertex of p. Triangulate all 
the edges which are incident in S′ but the corresponding vertices are not adjacent in S. Do 
the same procedure for the remaining vertices. Thus we have a Γ⦁⦁⦁⦁––––semi semi semi semi rootrootrootroot  for S. 

Corollary 2.3.4. A heterogeneous C5 with one type A vertex is forbidden. 

Theorem 2.3.5. In a Signed graph if a heterogeneous cycle contains three type B vertices, 
the graph is forbidden for dot-Gallai sigraph if and only if at least two type B vertices are 
adjacent. 
Proof: Let the type B vertices be u, v and w. By observation 3, the paths connecting the 
pairs (u,v) is a homogeneous path. Similarly for the other continuous pairs (v,w) and 
(w,u). Since the cycle is heterogeneous any one of the path is of opposite sign. For 
convenience consider the path (w,u) is of opposite sign. Let p, q, r denote the edges 
corresponding to u, v, w respectively. Let S′ = (H,μ) denote a Γ⦁⦁⦁⦁––––semi semi semi semi root of S. By 
above discussion, the edges p and q should have a common vertex. Since the edge r has 
common vertex with both q and p and the path (w, u) is of opposite sign implies that the 
only way we can draw r is, the edges p, q and r form a K3. Then in Γ⦁(S′) the vertices u, v 
and w become non adjacent. So we can find a Γ⦁⦁⦁⦁––––semi semi semi semi root of the cycle given in the 
theorem only when all the type B vertices are not adjacent to each other. That is the given 
cycle is forbidden if and only if at least two type B vertices are adjacent. 

Corollary 2.3.6. A heterogeneous C4 with one type A vertex is forbidden. 

Theorem 2.3.7. In a Signed graph if a heterogeneous cycle contains only two type B 
vertices then the graph is forbidden for dot-Gallai sigraph. 
Proof: Let the type B vertices be u and v. By observation 3, the paths connecting the 
pairs (u,v) are homogeneous paths. Since, the cycle is heterogeneous out of two paths 
connecting u and v, one path consists of negative edges and other with positive edges. Let 
p, q denote the edges corresponding to u, v respectively. Let S′ = (H,μ) denote a Γ⦁⦁⦁⦁––––semi semi semi semi 
root of S. By observation 3, the edges p and q should have a common positive vertex. 
Also since the other path is negative the edges p and q should have a common negative 
vertex in S′, which is not possible. Hence the theorem is proved. 
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Note: For convenience we call the cycles which are not forbidden viz. lemma 2.3.2, 
theorems 2.3.3 and 2.3.5 as permissible cycles. Also in the constructions of Γ⦁⦁⦁⦁––––semi semi semi semi root 
for the permissible cycles discussed in the above theorems if a vertex is of type B having 
opposite adjacency in the cycle then the end vertices of the corresponding edge in the Γ⦁⦁⦁⦁––––
semi semi semi semi root receive opposite signs. And if a vertex is of type B having same adjacency in 
the cycle then the end vertices of the corresponding edge in the Γ⦁⦁⦁⦁––––semi semi semi semi root receive 
same signs in the constructions discussed in the above theorems except in case 4 of 
theorem 2.3.3. In this case also except the edge q all the other edges satisfy the conditions 
noted above. For edge q, one end vertex of q is a pendant vertex with positive sign. If the 
other end vertex of q is negative, there is no ambiguity to change the sign of pendant 
vertex as negative by adding an additional negative edge to the pendant vertex. Thus the 
edge q also satisfies the above condition. 

Theorem 2.3.8. If S consist of two permissible cycles whose intersection is a path then S 
= (G,�) is not forbidden for dot-Gallai sigraph. 
Proof: Let S consist of two permissible cycles whose intersection is a path Pn with 
vertices v1, v2, …, vn 

Case 1: All the vertices in the cycles are of type B. 
To find a Γ⦁⦁⦁⦁––––semi semi semi semi root for S, corresponding to the common vertices v1, v2, …, vn of the 
two cycles draw positive edges e1, e2, …,en. In S if the edge vivi+1 is a negative edge add 
an additional negative edge to the common vertex of ei and ei+1. Now by the method 
discussed in lemma 2.3.2(1) find a Γ⦁⦁⦁⦁––––semi semi semi semi root of the first cycle. Starting from the edge 
e1 again, extend this Γ⦁⦁⦁⦁––––semi semi semi semi root by adding edges as on lemma 2.3.2(1) to get a Γ⦁⦁⦁⦁––––semi semi semi semi 
root of S. 

Case 2: There exists type A vertices. 
Consider the first cycle identify the number of type B vertices. Depending upon the 
number of type B vertices since the cycle is a permissible cycle by using any one of the 
above methods viz. lemma 2.3.2, theorems 2.3.3 and 2.3.5 find a Γ⦁⦁⦁⦁––––semi semi semi semi root of the first 
cycle. Consider the edges e1, e2, …, en corresponding to the vertices v1, v2, …, vn in Γ⦁⦁⦁⦁––––
semi semi semi semi root of the first cycle. The vertices v2, v3, …, vn-1 have the same behavior in both 
cycles. That is same behavior means when we consider the cycles independently if vi, 1 < 
i < n is of type A (or type B) with respect to the first cycle then with respect to the second 
cycle also it is of type A (or type B). So the problem may arise only in the end vertices v1 
and vn of the path .The behavior of v1 and vn may be opposite. That is opposite behavior 
means when we consider the cycles independently if v1 (or vn) is of type A (or type B) 
with respect to the first cycle then with respect to the second cycle it is of type B (or type 
A). 
       Consider the case v1 and vn have same behavior in both the cycles. If v1 (or vn) is of 
type A then in the Γ⦁⦁⦁⦁––––semi semi semi semi root the end vertices of e1 (or en) already receive opposite sign. 
Then by considering the total number of type B vertices of the second cycle and by using 
any one of the above said methods we can extend the above Γ⦁⦁⦁⦁––––semi semi semi semi root to find S′ such 
that Γ⦁(S′) contains S as an induced subgraph. 
       If v1 (or vn) is of type B in both cycles then either the edges incident to it should have 
same sign in both cycles or if the edges of the first cycle incident to it is of opposite sign 



Forbidden Subgraph Characterizations of Extensions of Gallai Graph  
Operator to Signed Graph 

447 
 

then the edges of the second cycle incident to it also have opposite sign otherwise it will 
be of type A. By the above note, in the first case the end vertices of e1 (or en) in Γ⦁(S′) 
have same sign and in the second case, the end vertices of e1 (or en) in Γ⦁(S′) have 
opposite sign. Then by considering the total number of type B vertices of the second 
cycle and by using any one of the above said methods we can extend the above Γ⦁⦁⦁⦁––––semi semi semi semi 
root  to find S′ such that Γ⦁(S′) contains S as an induced subgraph. 
      Consider the case v1 (or vn) has opposite behavior in both the cycles. Let as assume v1 

(or vn) is of type B when we consider the first cycle only and is of type A when we 
consider the second cycle also. Then the edges of the first cycle incident to it have 
opposite sign, otherwise it will contradict our assumption. Since the edges incident to v1 
is of opposite sign, in Γ⦁⦁⦁⦁––––semi semi semi semi root of first cycle the end vertices of e1 already receive 
opposite signs. So by using any one of the above said methods, we can find a Γ⦁⦁⦁⦁––––semi semi semi semi 
root for S. If we assume v1 (or vn) is of type A when we consider the first cycle only and 
is of type B when we consider the second cycle also. Then the edges of the second cycle 
incident to it have opposite sign, otherwise it will contradict our assumption. Since the 
vertex v1 is of type A, in Γ⦁⦁⦁⦁––––semi semi semi semi root of first cycle the end vertices of e1 already receive 
opposite signs. So by using any one of the above said methods, we can find a Γ⦁⦁⦁⦁––––semi semi semi semi 
root for S. 

Corollary 2.3.9. If S consists of more than two permissible cycles with common 
intersections then S is not forbidden for dot-Gallai sigraph. 

Theorem 2.3.10. The only forbidden subgraphs of Dot-Gallai Sigraph are the signed 
graphs discussed in lemma 2.3.1, theorems 2.3.3, 2.3.5 and 2.3.7. 
Proof:  Consider an arbitrary signed graph S = (G,�). By using the fact that, any graph is 
the union of cycles and trees we find S′ with Γ⦁(S′) contains S as an induced subgraph. 
First of all consider all the signed cycles in S and by using corollary 2.3.9 find a signed 
graph whose dot-Gallai sigraph contains all the cycles in S as an induced subgraph. Now 
we can extend this signed graph such that its dot-Gallai contains the given signed graph. 
For that consider the vertices common to the cycles and trees. Let v be an arbitrary vertex 
common to a cycle and a tree. It may be a type A vertex or type B vertex. If it is a type A 
vertex corresponding to this vertex we have already a positive edge with one end vertex 
as positive and other as negative. (This is applicable if ‘v’  is a vertex common to more 
than one cycle, for one cycle it is of type A and for some other it is of type B). Then 
starting from this vertex v by using the construction in lemma 2.3.2(3), we can extend the 
signed graph such that its dot-Gallai also contains the tree. If v is a type B vertex and if 
the edges of the cycles incident to it is of opposite signs the end vertices of the edge 
corresponding to v in the Γ⦁⦁⦁⦁––––semi semi semi semi root already receive opposite signs. So starting from v 
by using the construction in lemma 2.3.2(3) we can find the extension. If v is a type B 
vertex and if the edges of the cycles incident to it is of same sign then the end vertices of 
the edge corresponding to ‘v’  receive the same sign. In this case by the definition of type 
B vertex, the edges incident to v not in the cycle also have the same sign. So starting from 
v by using the construction in lemma 2.3.2(3), we can find the extension. Considering the 
common vertices of cycles and trees and by using the construction in lemma 2.3.2(3) 
again we can find S′ with Γ⦁(S′) contains S. 
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3. Conclusion and open problems 
Gallai graphs do not admit forbidden subgraph characterization but in this paper we 
characterized Gallai signed graph, product Gallai signed graph and dot-Gallai signed 
graph using forbidden subgraphs. Though Krause-type characterization of dot-line 
sigraph is discussed in [1] characterization of dot-line sigraph using forbidden subgraphs 
still remain open. 
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