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Abstract. Chemical graph theory is a branch of graph thedrgse focus of interest is to
finding topological indices of chemical graphs whicorrelate well with chemical
properties of the chemical molecules. In this paper define the edge version bf
index, the edge version of the general sum convigctndex of a graph and compute
exact formulas for some families of nanotubes.
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1. Introduction
A molecular graph is a simple graph related todtracture of a chemical compound.
Each vertex of this graph represents an atom ofrtblecule and its edges to the bonds
between atoms. A topological index is a numericlameter mathematically derived
from the graph structure. Numerous topological dedi have been considered in
Theoretical Chemistry and have some applicatiosged@ally inQSPR/QSAR research
[1, 2].

The degreels(Vv) of a vertexv is the number of vertices adjacenwtdhe degree
of an edgee=uv in G is defined bydg(€) = ds(u) + dg(v) — 2. The line graph(G) of a
graphG is the graph whose vertex set correponds to thesedffs such that two vertices
of L(G) are adjacent if the corresponding edge$ddre adjacent. We refer to [3] for
undefined term and notation.

TheF-index of a grapl® is defined as

F(G)= Y da(u)  or  F(G)= X [de(u)+ds(v)]

uv(G) uwiE(G)

This index was introduced in [4]. In [5], FurtulacaGutman studied this index and called
it forgotten topological index

In [6], Shirdel et al. introduced the hyper-Zagnetbex of a grapl®. It is defined

HM (G)= Y [dq(u)+ds (V)"

wCE(G)

as
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In [7], Zhou and Trinajsti introduced the sum connectivity index of a gr&h
and it is defined as
1
X(G)= 2

wE(G) JdG (u) + de (V) .

The general sum connectivity index was introdubgdZhou and Trinajsti in
[8]. This index is defined as

u2(6)= 3 [d: (o) +e. (o]

wherea is a real number.

The above mentioned indices were also studied ,itO[9Recently many other
topological indices were studied, for example, it,[12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25].

We define the edge version Bfindex, edge version of sum connectivity index,
edge version of hyper-Zagreb index, edge versiageaeral sum connectivity index of a
molecular grapl@ as follows:

The edge version of tHeindex of a graplt is defined as
3
F.(G)= dy (e (€)™
(L(e))

uviJE
or Fe (G) = Z |:dL(G) (e)Z + dL(G) ( f )2}
ef DE(L(G))

The edge version of sum connectivity index of bi@ is defined as

1
Xe (G) = Z '
of E(L(G)) \/dL(G) (e)+ d ) ()
The edge version of hyper-Zagreb index of a g@pé defined as
2
HMe(G) = z |:dL(G) (e) + dL(G) ( f )] ’
ef 0E(L(G))
The edge version of theses indices were studiedx@ample, in [26, 27].
In this paper, we compute the edge versiorFéfidex, edge version of sum
connectivity index, hyper Zagreb index and edgesioer of general sum connectivity

index of TUC,C¢Cg[p, g] nanotubesTUSC,Cg(S)[p, g hanotubes. For more information
about these nanotubes see [28].

2. Resultsfor TUC,CeCg[p, q] nanotube

We consider the graph of 2-dimensional latticeTQfC,CsCq[p, g] nanotube withp
columns andy rows. The graph of 2-dimensional lattice TWIC,CsCg[1,1] nanotube is
shown in Figure 1 (a). The line graph BYC,C:Cg[1,1] nanotube is shown in Figure
1(b). Also the graph ofUC,C¢Cg[4,5] is shown in Figure 1 (c).
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(a) (b)
Figure 1:

Let G be the graph of 2-dimensional lattice BYC,CsCg[p,q] nanotube. By
calculation, we obtain that the line graphT®C,CsCg[p, d] has 1®qg — 4o edges. In
L(TUCLCsCq[p, q]), there are three types of edges based on theelej the vertices of
each edge. Thus by calculation, we obtain edgétipag of L(TUC,CsCq[p, g]) based on
the sum of degrees of the end vertices of each asigeven in Table 1.

dic)(€), di(f)\ef OE(L(G)) @3 6.4 (4.4)
Number of edge 2p 8p 18pq - 14p
Table 1. Edge partition of(G)

In the following theorem, we compute the exact gadfiF(TUC,CsCq[ p,d]).

Theorem 1. Let G be the graph ofUC,CsCq[p, q] nanotube. Then

F.(TUC,C.Cq[ p.a]) =576pq - 212
Proof: We haveF,(G)= [dL(G) (e)° +dL(G)(f)2].

ef DE(L(G))

By using Table 1, we have

F(G)=(3+F)20+(3+ #) +( 4+ 4)( 18q- 1p)

=576pg- 2120

In the next theorem, we compute the exact valu¢hefedge version of the

general sum connectivity index ®8/C,CsCg[p,g] nanotube.

Theorem 2. Let G be the graph ofUC,CsCq[p, q] nanotube. Then
MZ(TUC,C.Cy[p.q])=18x & pg+( 2« 6+ 8 7- 14 §p (1)

Proof: We haveM_ (G)= >’ [dL(G)(e)+dL(G)(f)]a.

ef DE(L(G))
By using Table 1, we have

M (G)=(3+3) 2p+(3+ 4" &+( 4 4 ( 18a- 1p)
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:18xg‘pq+(2x 6+ & 7- 1« 8)p

We obtain the following results by using Theorem 2.

Corollary 2.1. The edge version of the sum connectivity indexTofC,CsCq[p, d]
nanotube is given by
9

M2 (TUC,C,Cq[ p.d]) =5 P +[%+% —772] p.

Proof: Puta= —% in equation (1), we get the desired result.

Corollary 2.2. The edge version of the hyper-Zagreb indeXd€,CsCg[p, q] nanotube
is given by

HM, (TUC,C,C,[ p.q]) =1152pq - 43D
Proof: Puta =2 in equation (1), we get the desired result.
3. Resultsfor TUSC,Cg(S)[p, g] nanotube
We consider the graph of 2-dimensional latticeTOISC,Cg(S)[p, ] nanotube withp
columns andj rows. The graph of 2-dimensional lattice T SC,Cs(S)[1,1] nanotube is

shown in Figure 2(a). The line graph BYSC,Cs(9[1,1] nanotube is shown in Figure
2(b). Also the graph ofUSC,Cs(9)[p, ] is shown in Figure 2 (c).

2%

(a) (b)

Figure2:

Let G be the graph of 2-dimensional lattice BISC,Cq(S)[p,g] nanotube. By
calculation, we obtain that the line graphTafSC,Cs(S)[p, q] has 24q + 4p edges. In
L(TUSC,Ce(9[p, q]), there are three types of edges based on theelef the vertices of
each edge. Thus by calculation, we obtain that gugétions ofL(TUSC,Cg(S)[p, d])
based on the sum of degrees of the end verticesabf edge as given in Table 2.

die(€), dig(f)\ef OE(L(G)) (2,3) (3.4 (4.4)
Number of edge ap 8p 24pg - 8p
Table 2: Edge partition of(G)
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In the following theorem, we compute the exact gadfi the edge version &%
index of TUSC,Cs(9)[p,q] nanotube.

Theorem 3. Let G be the graph ofUSC,Cg(9)[p, g] nanotube. Then
F.(TusC,C,(S)[ p.a]) = 768pa - 4p.
Proof: We haveF,(G)= [dL(G) (e)° +dy o ( f )2]
ef DE(L(G))
By using Table 2, we have

F(TUSC,C,(S)[p.a]) =(22 + 3) ap+(F + 4) +( 4+ 4)( 2pq- B)

=768pq-4p.
In the next theorem, we compute the exact valu¢hefedge version of the
general sum connectivity index 8 SC,Cs(9[p,q] nanotube.

Theorem 4. Let G be the graph ofUSC,Cg(9)[p, g] nanotube. Then
M2 (TUSC,C,(S)[p.a])=24x 8 pg+(4x 5 + & 7- & 8)p )
Proof: We haveM_ (G)= ] [dL(G) (e)+dL(G)(f)]a.
ef DE(L(G))
By using Table 2, we have
M3 (TUSC,C,(S)[p.a]) =(2+ 9" 4p+(3+ 4" &+( 4 ¥( 249- B)
=24x8pq+(4x 5+ 8 7- & 8)p

We obtain the following results by using Theorem 4.

Corollary 4.1. The edge version of the sum connectivity indexTofSC,Cs(9[p,q]
nanotube is given by

X, (TUSC,C,(S)[ p.0]) = 3\/§pq+(% +%—«/§j p.

Proof: Puta= —% in equation (2), we get the desired result.

Corollary 4.2. The edge version of the hyper-Zagreb index TafSC,Cs(S)[p, ]
nanotube is given by

HM, (TUSC,C,(S)[ p.a]) =1536pq— 20
Proof: Puta =2 in equation (2), we get the desired result.

5. Conclusion

Chemical Graph Theory is an important tool for gtag molecular structures. At

present, the study of topological indices is onehef active research fields in chemical
graph theory. In this paper, we have obtained stiraeretical results on “Edge version
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of F-index, general sum connectivity index of cert@anotubes”. These formulas make it
possible to correlate chemical structure of nanegulvith an information about their
physical features.
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