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Abstract. Chemical graph theory is a branch of graph theory whose focus of interest is to 
finding topological indices of chemical graphs which correlate well with chemical 
properties of the chemical molecules. In this paper, we define the edge version of F-
index, the edge version of the general sum connectivity index of a graph and compute 
exact formulas for some families of nanotubes. 
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1. Introduction 
A molecular graph is a simple graph related to the structure of a chemical compound. 
Each vertex of this graph represents an atom of the molecule and its edges to the bonds 
between atoms. A topological index is a numerical parameter mathematically derived 
from the graph structure. Numerous topological indices have been considered in 
Theoretical Chemistry and have some applications, especially in QSPR/QSAR research 
[1, 2]. 

The degree dG(v) of a vertex v is the number of vertices adjacent to v. The degree 
of an edge e=uv in G is defined by dG(e) = dG(u) + dG(v) – 2. The line graph L(G) of a 
graph G is the graph whose vertex set correponds to the edges of G such that two vertices 
of L(G) are adjacent if the corresponding edges of G are adjacent. We refer to [3] for 
undefined term and notation. 
 The F-index of a graph G is defined as  

 ( ) ( )
( )
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This index was introduced in [4]. In [5], Furtula and Gutman studied this index and called 
it forgotten topological index 
 In [6], Shirdel et al. introduced the hyper-Zagreb index of a graph G. It is defined 
as 
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In [7], Zhou and Trinajstić introduced the sum connectivity index of a graph G 
and it is defined as 

                              ( )
( ) ( )( )
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 The general sum connectivity index was introduced by Zhou and Trinajstić in 
[8]. This index is defined as 
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where a is a real number. 
The above mentioned indices were also studied in [9,10]. Recently many other 

topological indices were studied, for example, in [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24, 25]. 

We define the edge version of F-index, edge version of sum connectivity index, 
edge version of hyper-Zagreb index, edge version of general sum connectivity index of a 
molecular graph G as follows: 

The edge version of the F-index of a graph G is defined as 
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The edge version of sum connectivity index of a graph G is defined as 
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The edge version of hyper-Zagreb index of a graph G is defined as 

( ) ( ) ( ) ( ) ( )
( )( )

2

.e L G L G
ef E L G

HM G d e d f
∈

 = + ∑   

The edge version of theses indices were studied, for example, in [26, 27]. 
In this paper, we compute the edge version of F-index, edge version of sum 

connectivity index, hyper Zagreb index and edge version of general sum connectivity 
index of TUC4C6C8[p, q] nanotubes, TUSC4C8(S)[p, q] nanotubes. For more information 
about these nanotubes see [28]. 
 
2. Results for TUC4C6C8[p, q] nanotube 
We consider the graph of 2-dimensional lattice of TUC4C6C8[p, q] nanotube with p 
columns and q rows. The graph of 2-dimensional lattice of TUC4C6C8[1,1] nanotube is 
shown in Figure 1 (a). The line graph of TUC4C6C8[1,1] nanotube is shown in Figure 
1(b). Also the graph of TUC4C6C8[4,5] is shown in Figure 1 (c). 



Edge Version of F-index, General Sum Connectivity Index of Certain Nanotubes 

451 

 

 
 (a) (b) (c) 

 
Figure 1: 

 
 Let G be the graph of 2-dimensional lattice of TUC4C6C8[p,q] nanotube. By 
calculation, we obtain that the line graph of TUC4C6C8[p, q] has 18pq – 4p edges. In 
L(TUC4C6C8[p, q]), there are three types of edges based on the degree of the vertices of 
each edge. Thus by calculation, we obtain edge partitions of L(TUC4C6C8[p, q]) based on 
the sum of degrees of the end vertices of each edge as given in Table 1. 
 

dL(G)(e), d L(G)(f)\ef ∈ ∈ ∈ ∈E(L(G)) (3, 3) (3, 4) (4,4) 
Number of edges 2p 8p 18pq – 14p  

Table 1: Edge partition of L(G) 
 

In the following theorem, we compute the exact value of Fe(TUC4C6C8[p,q]). 
 
Theorem 1. Let G be the graph of TUC4C6C8[p, q] nanotube. Then  

[ ]( )4 6 8 , 576 212 .eF TUC C C p q pq p= −  

Proof: We have ( ) ( ) ( ) ( ) ( )
( )( )

2 2
.e L G L G

ef E L G

F G d e d f
∈

 = +
 ∑  

By using Table 1, we have 

 ( ) ( ) ( ) ( )( )2 2 2 2 2 23 3 2 3 4 8 4 4 18 14eF G p p pq p= + + + + + −  

 576 212 .pq p= −  
In the next theorem, we compute the exact value of the edge version of the 

general sum connectivity index of TUC4C6C8[p,q] nanotube. 
 
Theorem 2. Let G be the graph of TUC4C6C8[p, q] nanotube. Then  

[ ]( ) ( )1 4 6 8 , 18 8 2 6 8 7 14 8 .a a a a a
eM TUC C C p q pq p= × + × + × − ×                           (1) 

Proof: We have ( ) ( ) ( ) ( ) ( )
( )( )

1 .
a
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By using Table 1, we have 

 ( ) ( ) ( ) ( ) ( )1 3 3 2 3 4 8 4 4 18 14
a a aa

eM G p p pq p= + + + + + −  



V.R.Kulli 

452 

 

 ( )18 8 2 6 8 7 14 8 .a a a apq p= × + × + × − ×  

 
We obtain the following results by using Theorem 2. 

 
Corollary 2.1. The edge version of the sum connectivity index of TUC4C6C8[p, q] 
nanotube is given by 

[ ]( )1 4 6 8

9 2 8 7
, .

2 6 7 2
a
eM TUC C C p q pq p

 = + + − 
 

 

Proof: Put 
1

2
a = −  in equation (1), we get the desired result. 

 
Corollary 2.2. The edge version of the hyper-Zagreb index of TUC4C6C8[p, q] nanotube 
is given by 

[ ]( )4 6 8 , 1152 432 .eHM TUC C C p q pq p= −  

Proof: Put 2a =  in equation (1), we get the desired result. 
 

3. Results for TUSC4C8(S)[p, q] nanotube 
We consider the graph of 2-dimensional lattice of TUSC4C8(S)[p, q] nanotube with p 
columns and q rows. The graph of 2-dimensional lattice of TUSC4C8(S)[1,1] nanotube is 
shown in Figure 2(a). The line graph of TUSC4C8(S)[1,1] nanotube is shown in Figure 
2(b). Also the graph of TUSC4C8(S)[p, q] is shown in Figure 2 (c). 

 
 (a) (b) (c) 

Figure 2: 
 

 Let G be the graph of 2-dimensional lattice of TUSC4C8(S)[p,q] nanotube. By 
calculation, we obtain that the line graph of TUSC4C8(S)[p, q] has 24pq + 4p edges. In 
L(TUSC4C8(S)[p, q]), there are three types of edges based on the degree of the vertices of 
each edge. Thus by calculation, we obtain that edge partitions of L(TUSC4C8(S)[p, q]) 
based on the sum of degrees of the end vertices of each edge as given in Table 2. 
 

dL(G)(e), d L(G)(f)\ef ∈ ∈ ∈ ∈E(L(G)) (2, 3) (3, 4) (4,4) 
Number of edges 4p 8p 24pq – 8p  

Table 2: Edge partition of L(G) 
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In the following theorem, we compute the exact value of the edge version of F-
index of TUSC4C8(S)[p,q] nanotube. 
 
Theorem 3. Let G be the graph of TUSC4C8(S)[p, q] nanotube. Then  

[ ]( )4 8( ) , 768 4 .eF TUSC C S p q pq p= −  

Proof: We have ( ) ( ) ( ) ( ) ( )
( )( )

2 2
.e L G L G

ef E L G

F G d e d f
∈

 = +
 ∑  

By using Table 2, we have 
 

( )[ ]( ) ( ) ( ) ( )( )2 2 2 2 2 2
4 8 , 2 3 4 3 4 8 4 4 24 8eF TUSC C S p q p p pq p= + + + + + −  

  768 4 .pq p= −  
In the next theorem, we compute the exact value of the edge version of the 

general sum connectivity index of TUSC4C8(S)[p,q] nanotube. 
 
Theorem 4. Let G be the graph of TUSC4C8(S)[p, q] nanotube. Then  

( )[ ]( ) ( )1 4 8 , 24 8 4 5 8 7 8 8 .a a a a a
eM TUSC C S p q pq p= × + × + × − ×                        (2) 

Proof: We have ( ) ( ) ( ) ( ) ( )
( )( )

1 .
a

a
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ef E L G
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∈

 = + ∑  

By using Table 2, we have 

 ( )[ ]( ) ( ) ( ) ( ) ( )1 4 8 , 2 3 4 3 4 8 4 4 24 8
a a aa

eM TUSC C S p q p p pq p= + + + + + −  

  ( )24 8 4 5 8 7 8 8 .a a a apq p= × + × + × − ×  

 
We obtain the following results by using Theorem 4. 

 
Corollary 4.1. The edge version of the sum connectivity index of TUSC4C8(S)[p,q] 
nanotube is given by 

( )[ ]( )4 8

4 8
, 3 8 8 .

5 7
eX TUSC C S p q pq p

 = + + − 
 

 

Proof: Put 
1

2
a = −  in equation (2), we get the desired result. 

Corollary 4.2. The edge version of the hyper-Zagreb index of TUSC4C8(S)[p, q] 
nanotube is given by 

( )[ ]( )4 8 , 1536 20 .eHM TUSC C S p q pq p= −  

Proof: Put 2a =  in equation (2), we get the desired result. 
 
5. Conclusion 
Chemical Graph Theory is an important tool for studying molecular structures. At 
present, the study of topological indices is one of the active research fields in chemical 
graph theory. In this paper, we have obtained some theoretical results on “Edge version 
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of F-index, general sum connectivity index of certain nanotubes”. These formulas make it 
possible to correlate chemical structure of nanotubes with an information about their 
physical features. 
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