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 Abstract. A non-empty subset A of  positive integers {1,2,…,n} is said to be relatively 

prime if ( )gcd 1A = . Let r be a positive integer 1.≥  A nonempty subset 

{ }1,2,...,A n⊆ is  r-relatively prime if greatest thr  power common divisor of elements 

of A  is 1. In this case we write ( )gcd 1.r A =   Note that ( )gcd 1A =  implies 

( )gcd 1r A =  but the converse need not be true. Let  ( ) ( )rf n  denotes the number of r-

relatively prime subsets of { }1,  2,  ...,  n  and ( ) ( )r
kf n denotes the number of r-relatively 

prime subsets of { }1,  2,  ...,  n  of Cardinality k. ( )nΦ  denotes the number of non empty 

subsets A  of { }1,  2,  ...,  n  such that ( )gcd A  is relatively prime to n. ( )k nΦ  denotes 

the number of non-empty subsets  A of Cardinality k of {1,2,…,n} such that ( )gcd A  is 

relatively prime to n. We define ( ) ( )r nΦ  to be the number of non-empty subsets A of 

{ }1,  2,  ...,  n  such that greatest thr  power common divisor of elements of A and n is 1. 

( ) ( )r
k nΦ  is defined as the number of subsets A of { }1,  2,  ...,  n  such that ( )Card A k=  

and ( )gcdr A  is r-relatively to n. ( ) ( )r nΦ  and ( ) ( )r
k nΦ  are r-generalizations of ( )nΦ  

and ( )k nΦ  defined by Nathanson [2]. Exact formulas and asymptotic estimates are 

obtained for these functions.  These results are extensions of results of Nathanson [2]. 
Some of our proofs use the r-Generalization of Mobius inversion formula. 

Keywords:  r-relatively prime sets, r-generalization of Euler Phi function. 
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1. Introduction 
For a nonempty subset A of {1,2,…,n } let ( )gcd A denote the gcdof the elements of 

A .  Nathanson [2]  defined a non empty subset A of {1,2,…,n} is relatively prime if 

( )gcd A =1.Let ( )f n  denote  the number of  relatively prime subsets of {1,2,…,n} and 

for  1k ≥ , ( )kf n  denote the number of relatively prime subsets of {1,2,…,n} of 

cardinality k . Let ( )nΦ  denote  the  number of  non empty subsets A of {1,2,…,n} such 

that ( )gcd A  is  relatively prime to n and  for integer 1k ≥ , ( )k nΦ  denote the number 

of  non empty subsets A of {1,2,…,n} such that ( )gcd A  is  relatively prime to n and 

card (A )= k . Nathanson[2]  obtained the exact formulas and Asymptotic estimates for 

these four fuctions. In this paper ,we define the functions ( ) ( ) ( ) ( ),   ,r r
kf n f n ( ) ( )r nΦ  

and ( ) ( )r
k nΦ  and obtain exact formulas and Asympotic estimates for these four 

functions. We  derive  Mobius Inversion Formula r- Generalized Version to obtain Exact 
formulas. 
 
Definition 1. 
Mobius function r -analogue 

( ) ( ) 1 2 1 2

1           if  1

1    if  ...   where  ,  ,  ...,    are distinct primes 

0          otherwise.

s r r r
r s s

n

n n p p p p p pµ

=
= − =



 

Theorem 1. For all positive integers 2rn ≥ , 

                                            ( ) ( ) 22 2 .

n
rr nf n

 
 
 ≤ −                         (1) 

For positive integers 2rn ≥  and k, 

                                        ( ) ( ) 2  .

  

r
k

n
r n

f n
k

k

  
    ≤ −        

 

                                                   (2)    

Proof: The set { }1,  2,  3,...,  2 ,  ...,  r n  contains the set { }2
2 ,  2 2 ,  ...,  2

r
r r rn ×

  
which 

has no subset that is r -relatively prime. Therefore among the 2 1n −  non-empty subsets 

of { }1,  2,  ..,  n  those which contain any one of  the [ / 2 ]2 1
rn −  non-empty subsets of 

{ }2
2 ,  2 2 ,  ...,  2

r
r r rn ×

  
are not r -relatively prime. Hence  
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( ) ( ) ( ) 2 2  2 1 2 1   2 2

n n
r rr n nf n

   
   
   

 
 

≤ − − − = − 
 
 

 which proves (1). Similarly, 

( ) ( ) 2  .

  

r
k

n
r n

f n
k

k

  
    ≤ −        

   

We now find a lower bound for ( ) ( )rf n  and 
( ) ( ).k
r

f n
 

If { }1 ,  1,  2,  ..,  A A n∈ ⊆   then A is r -relatively prime. There are 12n−  sets 

{ }1,  2,  ..,  A n⊆  with 1 .A∈ Hence ( ) ( ) 1  2 .r nf n −≥                                      (3)    

Let 3 .rn ≥   If 1 ,  2 ,  3r rA A A∉ ∈ ∈  then A is r -relatively prime and hence 

             ( ) ( ) 1 3  2 2 .r n nf n − −≥ +           (4)               

Let 5 .rn ≥   If 1 ,  3 ,  but  2 ,  5r r rA A A A∉ ∈ ∈ ∈  then A is r -relatively prime and 

there are 42n−  such subsets. Again 1 ,  2 ,  but  3 ,  5r r rA A A A∉ ∈ ∈ ∈  then A  is r -

relatively prime and there are 42n−  such subsets.  Hence 

         ( ) ( ) 1 3 4 1 2  2 2 2 2   2 2 .r n n n n nf n − − − − −≥ + + × = +                       (5) 

Similarly 

                      
( ) ( ) 1 3 4

  2 .
1 2 2k

r n n n
f n

k k k

− − −     ≤ + +     − − −     
                                          (6) 

 
Exact formulas and asymptotic estimates 
Let [ ]x  denotes the greatest integer less than or equals to x.  If 1x ≥  and [ ]n x=  then 

[ ]xx n

d d d

    = =        
 for all positive integers  d. 

 
2. Mobius inversion formula r- generalized version  

Theorem 2.  Let ( ) ( )rF x  be a function defined for 1x ≥  and define the function 

( ) ( )rG x  for 1x ≥  as  ( ) ( ) ( )
1

rr

r r x

dd x

G x F
≤ ≤

 = ∑  
 

 where the summation is over all 

positive integers d where rd x≤   

and ( ) ( ) ( ) ( )0r rF x G x= =  if ( )0,  1 .x ∈   Then for all inters d where ,rd x≤  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

  
r rr r

r r r rrx x
r

d dd x d x

G x F F x d Gµ
≤ ≤ ≤ ≤

   = ⇔ =∑ ∑   
   

             (6a)                     
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Proof: Assume ( ) ( ) ( )
1

.
rr

r r x

dd x

G x F
≤ ≤

 = ∑  
 

 

Consider  

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

 

r
x

d

r r rr r r

r r rr rx x
r r

d t dd x d x t

G x d G d Fµ µ
≤ ≤ ≤ ≤ ≤ ≤

 
    = =∑ ∑ ∑    

    
 

 

                ( ) ( )
1

rr r r

r rx
r

uu x d u

F dµ
≤ ≤

 
   = ∑ ∑ 
   

 

 ( ) ( ).rF x=  

Conversely, Assume ( ) ( ) ( ) ( )
1

.
rr

r rr x
r

dd x

F x d Gµ
≤ ≤

 = ∑  
 

 

Consider   ( ) ( ) ( ) ( )
1 1 1

 

r
x

d

r r rr r r

r rr rx x
r r

d t dd x d x t

F d d Gµ µ
≤ ≤ ≤ ≤ ≤ ≤

 
    =∑ ∑ ∑    

    
 

 

                                                   ( ) ( )
1

rr r r

r rx
r

uu x t u

G tµ
≤ ≤

 
   = ∑ ∑ 
   

 

 

                                                   ( ) ( ).rG x=  

Theorem 3.  For all positive integers 2rn ≥  , 

             (i)       ( )
1

2 1
rr

r nn

dd n

f
≤ ≤

   = −∑     
                        (7)                                       

           and       (ii)       ( ) ( ) ( )
1

2 1 .

n
rd

r

r r
r

d n

f n dµ
 
 
 

≤ ≤

 
 

= −∑  
 
 

                  (8)  

For all positive integers 2rn ≥ , k and 1r ≥ , 

                        (i)       ( )r

1

 
rr

x
k

dd n

n
f

k≤ ≤

    =∑        
                                                (9) 

             and     (ii) ( ) ( ) ( )
1    

r

r

n
r r

drk
d n

f n d

k

µ
≤ ≤

  
  = ∑   
 
 

                                                 (10) 
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 Proof: Let A be  a non-empty subset of { }1,  2,  ..,  n  and greatest thr  power common 

divisor of A is .rd Then 1 1
*

rr
a

A A a A
dd

 = = ∈ 
 

 is r -relatively prime subset of 

{ }1,  2,  ..,  .
r

n

d

 
    

Conversely, if 1A  is  r -relatively prime subset of{ }1,  2,  ..,  r
n

d

 
  

 ,  

then 1*rA d A= = { }1rd a a A⋅ ∈ is a non-empty subset of { }1,  2,  ..,  n  with greatest 

thr  power common divisor of A equals to .rd Therefore it follows that there are exactly 

( )
r

r n

d
f   

    
 subsets  of { }1,  2,  ..,  n  with greatest thr  power common divisor rd  and   

hence ( )
1

2 1
rr

r nn

dd n

f
≤ ≤

   = −∑     
 which proves (7). We apply Theorem (2) to the  

function ( ) ( ) ( ) [ ]( )r rF x f x= for all 1x ≥ we define ( ) ( ) ( )
1

rr

r r x

dd x

G x F
≤ ≤

 = ∑  
 

   

( )
1

rr

r x

dd x

f
≤ ≤

  = ∑     
 [ ]2 1.x= −      

By Theorem (2)   ( ) [ ]( ) ( ) ( ) ( ) ( )
1

rr

r r rr x
r

dd x

f x F x d Gµ
≤ ≤

  = = ∑     
 

                                                                  ( )
1

2 1

x
rd

r

r
r

d x

dµ
 
 
 

≤ ≤

 
 

= −∑  
 
 

 

                                             ( ) ( ) ( )
1

  2 1

n
rd

r

r r
r

d n

f n n dµ
 
 
 

≤ ≤

 
 

= −∑  
 
 

 which proves (8). 

We now prove (9) and (10). 

Note that ( ) ( ) { } ( ){ }# 1,  2,  ...,  : Card ,  gcd 1 .k
r

rf n A n A k A= ⊆ = =  

Let A ⊆ { }1,  2,  ...,  n with Card A =  k and greatest thr  power common divisor of A is 

equals to .rd  Let A1
1

*
r

A
d

= = { }.
r

a

d
a A∈  Then 1 1,  2,  ...,  

r
n

d
A

  ⊆     
, 
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Card 1 Card A A k= = and ( )1gcd 1.r A = Conversely ,if 1 1,  2,  ...,  
r

n

d
A

  ⊆     
 and 

( )1 1Card ,gcd 1rA k A= = then 1*rA d A= is such thatCard A k= and  

( )gcd .r
r A d=

 
There is 1 1−  correspondence between r -relatively prime subsets  

1 1,  2,  ...,  
r

n

d
A

  ⊆     
 of Cardinality k  and the non-empty subsets A of { }1,  2,  ...,  n  

with ( )gcd r
r A d=  and Card .A k=  Hence ( )r

1

 
rr

n
k

dd n

n
f

k≤ ≤

    =∑        
 which 

proves (9). 

By Theorem (1) we have 
( ) ( ) ( )

1    

r

r

n
r r

drk
d n

f n d

k

µ
≤ ≤

  
  = ∑    
 

 which proves (10). 

Theorem 4.  For all positive integers  2rn ≥  , r   we have 

                    ( ) ( )32 22 2 2     2 2 .

nn n
rr rrn nn f n

    
    

     − − ⋅ ≤ ≤ −                     (11) 

Proof: For 2rn ≥  we have by equation (7)  ( )
1

2 1    
rr

rn n

dd n

f
≤ ≤

  − = ∑     
 

 This implies   ( ) [ ]( ) ( ) ( )
2 3

2     1
r rr

r r rn n n

dd n

f n f f
≤ ≤

     = + + +∑           
 

                                ( ) ( ) 32  2 2

nn
rrrf n n

  
  

   ≤ + + ⋅  

combining this with equality (1), ( ) ( )32 22 2 2    2 2

nn n
rr rrn nn f n

    
    

     − − ⋅ ≤ ≤ − . 

Theorem 5. For all positive integers 2rn ≥ , k  and  r  

                   
( ) ( )2 3 2    .

      

r r r
k

n n n
rn n

n f n
k k

k kk

        
           − − ≤ ≤ −                  

    

                    (12) 

Proof:  By equation (9)  ( )
1

rr

r n
k

dd n

n
f

k≤ ≤

    =∑        
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Therefore ( ) [ ]( ) ( ) ( )
2 3

 
r rr r

r r rn n
k k k

dd n

n
f n f f

k ≤ ≤

       = + + ∑              
 

                                          
( ) ( ) 2 3 .

      

r r
n n

r
kf n n

k k

     
     ≤ + +        

   

 

Therefore 
( ) ( )2 3 2      

        

r r r
k

n n n
rn n

n f n
k k

k kk

        
           − − ≤ ≤ −                  

    

  by equation  (2). 

 
3. A Phi function for sets and its r-generalization  
Nathanson [2] defined Phi function for sets, denoted by ( )nΦ  to be  the number of non-

empty subsets A of { }1,  2,  3,  ...,  n  such that ( )gcd A  is relatively prime to n.  For 

example for distinct primes p and q  we have  

           
( ) ( ) ( )

222 2,    2 2 ,    2 2 2 2.p p p pq p qp p pqΦ = − Φ = − Φ = − − +
  

Note that ( ) ( )1 n nϕΦ =  for all 1.n ≥ We define, for a positive integer 1,r ≥ ( ) ( )r nΦ  

to be the number of non-empty subsets A of { }1,  2,  ...,  n  such that greatest  thr  power 

common divisor of A and n  is 1. For example for distinct primes p and q,   

                                   ( ) ( ) 2 2
rr r ppΦ = −  

                                    ( ) ( ) 22 2 2
r rr r p ppΦ = −  

          ( ) ( ) 2 2 2 2.
r r r rr r r p q q pp qΦ = − − +

 
 

Corollary 6. If ( ) ( )rF n  and ( ) ( )rG n  are arithmetic functions, then 

( ) ( ) ( ) ( ) ( ) ( ) ( )
  .

r rr r

rr r r rn n
r

d dd n d n

G n F F n d Gµ   = ⇔ =∑ ∑   
   

 

Proof: Assume   ( ) ( ) ( ) .
rr

r r n

dd n

G n F  = ∑  
 

 

Consider ( ) ( )
r r rr r r n

rd

rrn n
r r

d t dd n d n t

d Fµ µ

 
    =∑ ∑ ∑    

     
 
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                ( ) ( ) ( ) ( ).rr r r

r rrn
r

uu n d u

F d F nµ = =∑ ∑ 
 

 

Conversely, assume    ( ) ( ) ( ) ( ) .
rr

r rr n
r

dd n

F n d Gµ  = ∑  
 

 

Consider   ( ) ( ) ( ) 
r r rr r r n

rd

r rrn n
r

d t dd n d n t

F t Gµ

 
    =∑ ∑ ∑    

     
 

 

           ( ) ( ) ( ) ( ).rr r r

r rrn
r

uu n t u

G t G nµ
 

  = =∑ ∑ 
  
 

 

 
Theorem 7. For  all positive integers n ,  1r ≥ , 

                               ( ) 2 1.
rr

r nn

dd n

 Φ = −∑  
 

                                   (13) 

Also ( ) ( )1 1rΦ =  and for 2rn ≥ , ( ) ( ) ( ) 2 1 .
n
rd

r

r r
r

d n

n dµ
 
 Φ = −∑
 
 

       (14)               

Proof: For every thr  power divisor 
rd  of n we define the function ( ) ( ),  r n dψ  to be 

the number of non-empty subsets A of { }1,  2,  ...,  n  such that greatest thr  power 

common divisor of A and n is dr, i.e. 
( ) ( ) { } { }( ){ } ,  # 1,  2,  ...,   :  ,  and gcd .r r

rn d A n A A n dψ φ= ⊆ ≠ ∪ =  

Then ( ) ( ) ( ),  r r
r

n
n d

d
ψ  = Φ  

 
and hence ( ) ( ) ( )2 1 ,  .

rr r

r rn n

dd n d n

n dψ  − = = Φ∑ ∑  
 

 

which proves (13).  This implies ( ) ( ) ( ) 2 1
n
rd

r

r r
r

d n

n dµ
 
 Φ = −∑
 
 

 (by using corollary 

(6)) which proves (14). 
 

Theorem 8.  For positive integers 2rn ≥ , k and r 

                                               ( )
k rr

r n

dd n

n

k

  Φ =∑    
   

                      (15) 
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                  and               
( ) ( ) ( ) .r
k

r

n
r r dr

d n

n d
k

µ
 
 Φ = ∑
 
 

                                  (16) 

Proof: For every thr  power divisor 
rd  of n we define 

( ) ( ),  
r

k n dψ  to be number of 

subsets A of { }1,  2,  ...,  n   of Cardinality k  such that greatest thr  power common 

divisor of A and n is .rd  
That is 

     ( ) ( ) { } ( ) { }( ){ },  # 1,  2,  ...,   :  #  and gcd .
r r

rk r
n d A n A k A n dψ = ⊆ = ∪ =  

     Note that ( ) ( ) ( ),  
r r

k k r
n

n d
d

ψ  = Φ  
 

 

( ) ( ) ( ),  
rr r

r r n
k k

dd n d n

n
n d

k
ψ    = = Φ∑ ∑   

  
  which proves (15). 

Using Corollary (6), we get   ( ) ( ) ( ) r
k

r

n
r r dr

d n

n d
k

µ
 
 Φ = ∑
 
 

  which proves (16). 

Theorem 9. Let 2rn ≥ . If n is odd then ( ) ( ) 32 .2 .

n
rr nn n

 
 
 

 
 

Φ = + Ο 
 
 

        (17)                                                 

If 2r n  ,      ( ) ( ) 322 2 .2 .

nn
rrr nn n

 
 
 

 
 

Φ = − + Ο 
 
 

                                   (18) 

Proof: We have  ( ) ( ) { } ( ){ }
( )

         1

gcd , 1.

# 1, 2, ..., , gcd
r

r
r

nr r
r

d

d n

n A n A A dφ
=

=

Φ = ⊆ ≠ =∑  where 

the summation is over thr  power of integer d which satisfy the condition1 rd n≤ ≤  

          

( )

( )
         1

gcd , 1.

rr

r
r

n r n

dd

d n

f
=

=

  = ∑     
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If n is odd, then    ( ) ( ) ( ) ( ) ( ) ( )

( )
2    3

gcd , 1

r rr r

r
r

nr r r rn n

dd n

d n

n f n f f
≤ ≤

=

     Φ = + + ∑           
 

                                   

3 32 2 42 2 .2 2 2 .2

n nn n n
r rr r rn n n

        
        

         

    
    

= − + Ο + + Ο + Ο    
    

    

  

32 .2

n
rn n

 
 
 

 
 

= + Ο 
 
 

  (Using equation (11))    which proves (17). 

If  2r n , then   ( ) ( ) ( ) ( ) ( ) ( )

( )
2    3

gcd , 1

r rr r

r
r

nr r r rn n

dd n

d n

n f n f f
≤ ≤

=

   Φ = + + ∑        
 

                                        3 322 2 .2 .2

n nn
r rrn n n

   
   
   

    
    

= − + Ο + Ο    
    

    

 

                                        322 2 .2

nn
rrn n

 
 
 

 
 

= − + Ο 
 
 

which proves (18) 

Theorem 10.  If   2r  n and n is sufficiently large then     

                      
( )

3( ) .

  

r
k

n
r n

n n
k

k

   
     Φ = + Ο          

  

                                                         (19) 

If 2r n  then ( ) 2 3( ) .

  

r r
k

n n
r n

n n
k k k

          Φ = − + Ο                                                              

   (20)                                                          

Proof: We have       

( ) ( ) { } ( ){ }
( )

   1

gcd , 1

# 1,  2,  ...,  :  #  ,  gcd
r

r
r

r r
rk

d n

d n

n A n A k A d
≤ ≤

=

Φ = ⊆ = =∑  
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( )

( )
   1

gcd , 1

.
rr

r
r

r n
k dd n

d n

f
≤ ≤

=

  = ∑     
 

By theorem (4),   ( ) ( ) 2 3

  

r r
k

n n
r n

f n n
k

k k

      
        = − + Ο              

    

  

( ) ( ) 2 3Therefore 

  

r r
k

n n
r n

n n
k k k

          Φ = − + Ο               

 

                                                                                 

2 4 6 3 

      

r r r r
n n n n

n n
k k k k

             
             + − + Ο + Ο                                

 

                                        2 3   if  2 .

  

r r
n n

rn
n n

k k k

          = − + Ο               

 

    If 2r   n    ( ) ( ) 3 .

  

r
k

n
r n

n n
k

k

   
     Φ = + Ο          

    
4. Conclusion  
In conclusion we have obtained effective formulas  to get the exact  number of r-
relatively prime subsets of {1,2,…,n}  and  number of  non empty subsets A of  
{1,2,…,n}  such that A is r-relatively  prime to n by deriving Mobius  inversion formula 
r- generalised version. 
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