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Abstract. Fuzzy matrices have been proposed to represeny ftedations in finite
universes. Different algebraic operations are im@dlin the study of fuzzy matrices. In
this paper, we defined bounded difference of fumagrices and by using bounded sum and
bounded product. we proved some new inequalities@cted with fuzzy matrices. Also,
some results on existing operators along with tlaeseresented.
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1. Introduction

The fuzzy matrices are successfully used when furzgrtainty occurs in a problem. In
1977, Thomason [27] initiated the study on convecgeof powers of fuzzy matrix. Kim
and Roush [4] gave a systematic development toyfaratrix theory. Among the basic
operations which can be performed on fuzzy matex(d, L1, complement, algebraic sum,

algebraic product, bounded sum, bounded productmia composition and so on. Ragab
and Emam [17] studied some properties of the mir-omanposition of fuzzy matrices.
Shyamal and Pal [19,20] introduced two binary fubperatorsl] and © for fuzzy
matrices and proved several propertiesfonand . Also they extended these binary
operators for Intuitionistic fuzzy matrix. SriramciBoobalan [25] studied the algebraic
properties of these binary operators and proveces@sults on existing operators along
with these operators. Bounded sum and bounded grroflfuzzy matrices are introduced
by Zhang and Zheng [28] and presented several giep®n these operations.

In this paper, we defined bounded diffeeeiné fuzzy matrices and by using
bounded sum, bounded product. we proved some reguatities connected with fuzzy
matrices. Also, some results on existing operaitinsg with these are presented.

The paper is organized in three sectionsettion 2, the definitions and operations
on fuzzy matrices are given. In section 3, resdtgrding of fuzzy matrices are proved
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using the operations in the preceding section.éetien 4, some results on bounded
difference of fuzzy matrices.

2. Preliminaries
In this section, we define some operators on furajrices whose elements are in the
closed interval F =[0,1] . For all x,yOF the following operators are defined.

(i) xUy=max,y),

@i)xOy=min(x,y),

(i) x° =1-x,

(iv)xOy=(x+y) 01,

Vxeoy=(x+y-1)00.

The matrix |, is the nxn Identity matrix and the matrix]J is the matrix whose

elements are all.
Next, we define some operations on fuzzy matrices.A= (a;) and B=(b;) be two

fuzzy matrices of ordemxn.
Then (i)ADOB = (g, Ob)),
(iAOB = (a; Ohb).
The Bounded sum oA and B is defined by ALl B=((g; +h;) 01).
The Bounded product oA and B is defined by A® B = ((a; +b, -1)00).

The complement of the fuzzy matrih is given by A" =[1-a,].
A<B ifandonlyif g, <b; forall i, j.

Theorem 2.1. [12] (i) If a,b,c are real numbers witla >0 then the following holds:
amaxp.c) = maxéb ac)

a.min(b,c) = min@b,ac).

(ii) For real numbersa,b,c with a=0 then addition distributes over the maximum
operation and also over the minimum operation:

atmaxp,c) = max@+tba+c)

a+min(b,c) = min@+b,a+c).

(iii) For real numbers, the maximum operation is distiie over the minimum
operation and vice versa:

max@,minpc)) = min(maxd b ),maxdc, )

min(a,maxp c)) = max(ming b ),mirg ¢ ))

Lemmaz2.2. [12] Let X,y and z be real numbers. Then the following equalitiesihol
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(()x-min(y,z) = max-y x-z),

(ii)x—max(y,z) =mink-y x-z),
@iiiymin(x,y)—z=min(x-z,y-2),
(ivymax(x,y)—-z =maxk-z y-z)

3. Some results on oper ator s of fuzzy matrix
In [28], Zhang and Zheng introducdd and ® of fuzzy matrices. In this section, we
proved some new inequalities connected with fuzayrices and it's algebraic properties

Theorem 3.1. For any fuzzy matricesA and B of same size,
(I)AO(A®B)= A
(A (AOB)<A
Proof:
(i) AD(A®B)=(a)0 (max(0a; +b; - 1))
= (min(1,a; + max(0g; +h; - 1)))
= (min(1, maxg; ,2; +b; — 1)))(by Theorem2.
Case 1. Suppose(min(1, maxg; ,&; +b;, — 1F :
Then AO(AGB)=J=A forall i,j.
Therefore AU (A®B) 2 A.
Case 2. Suppose(min(1, maxg, ,&; +h, — 1) =max, & +h, -
Subcase 2.1. Supposemax(@; , 2 +b, — 1)= @; )= @, ) forall i, ]
Therefore AOD(A®B)= A
Subcase 2.2. Supposemax @, , 2, +b, — 1) =(2; +b, - 1 §;
Therefore AL (A® B) = A.
(i) Ao (AU B) = (g;)© (min(1a; +1h;)),
= (max(0g; + min(ly, +h; )= 1)
= (max(0, ming; ,2; +b; — 1)))(byTheorem2.
Case 1. Suppose(max(0, ming; , 2, +b;, — 1) =(
Then A©O(AOB)=0O<A forall i, j.
Case 2. Supposgmax(0,ming; , &, +b, — 1 ming, ,4, +b - 1
Subcase 2.1. Supposemin(a;,2a; +b, —1)= @, )< @, ) forall i, .
Therefore A® (A B) < A.
Subcase 2.2. Supposemin(a” , 28, +hj -1)= (23” +hj -1)x (aﬂ )

515



|.Silambarasan and S.Sriram
Therefore, A® (AL B) < A.

Theorem 3.2. For any fuzzy matricesA and B of same size,
()AO (AOB)= A
(iAO(AOB)= A
Proof:
(i) AO(ADB) =(a;)0 (max@, b, )).
= (min(1,a; + maxg; b, )))(by Theorem2.1)
= (min(1, max(z; a; +b; )))
Case 1. Suppose(min(l, max (2, a; +b; ))) =:
Then AO(AOB)=J=A
Case 2. Suppose(min(1, max(z; a; +b; ))F max(@; g, +b,
Subcase 2.1. Supposemax(; a; +hb; )= (&, )= @ Yorall i, j.
Therefore ALl (AOB) = A
Subcase 2.2. Suppose(max(; &, +b;)) =@, +b; )= & )
Therefore AL (ALOB) = A
(i)) AO(ADB) = (a,)0 (min@, b)),
= (min(1,3; + minf@; b, )))(by Theorem2.1)
= (min(L,min(2, &, +b; )
Case 1. Suppose(min(1, min(Z; a; +b, ))) =1
Then AD(AOB)=J=A
Case 2. Suppose(min(l, min(Z; a; +b; )))= min(a; a; +b; |
Subcase 2.1. Supposemin(2a; ,a; +h; )= (23, )= @ Yorall i, j.
Therefore AL (AOB) = A
Subcase 2.2. Suppose(min(2a; ,a; +hb;)) =(@; +b; )= @;)
Therefore, AL (ALB) > A

Theorem 3.3. For any fuzzy matricesA and B of same size,
()AG(AOB) < A
(iAo (AOB)< A
Proof:
(i) A© (AOB)=(a;)® (maxg; b, )).
=(max(0a; + maxg; b; ) 1))
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= (max(0a; + maxg; — 1, - 1))) (by Lemma 2.

= (max(0,max(3; - 1a; +b, - 1)) (by Theorem 2,
Case 1. Supposemax(0, max(3, - 1a, +b, - 1)) =,
Then A (AOB)=0<A.
Case 2. Supposemax(0,max(2; - 1a +b, - 1)=(max(Z, - 14, +b; - 1)
Subcase 2.1. Supposemax(Za; - 1a; +b, — 1) = (28, -1)< (g, ) forall i, j .
Therefore A® (ALB) < A.
Subcase 2.2. Supposemax(&; — 1, +b, - 1)) =&, +b, — 1x &, )
Therefore A® (ALUB) < A.
(i) Ao (AOB) = (a;)© (min(a; b)),

= (max(0a; + ming; b ) 1))

= (max(0,min(3, - 1a, +b, — 1))) (by Theorem2.
Case 1. Supposemax (0, min(,; - 1g, +b, - 1)) =1,
Then A® (AOB)=0<A.
Case 2. Suppose max(0,min(, - 1a, +b, - 1) =(max(%, - 1, +b; - 1)
Subcase 2.1. Supposemax(&; - 1a;, +b, — 1) = (23, -1)< (g;) forall i, j .
Therefore A© (AUB) < A.
Subcase 2.2. Supposemin(2a; — 1, +b, - 1)) =@, +b, - 1)< &, )
Therefore A® (AOB) < A.

Theorem 3.4. For any fuzzy matricesA and B of same size,
(i)AO(AO B)= AU B,
(iAOAOB)=A
Proof:
(i) ADO(AO B) = (maxg@; ,min(1a; +b; )))
= (min(maxg; ,1), maxg; a; +b; )))(by Theorem2.
= (min(1,3, +h,)),
=AUB.
(i) AO(AD B) =(min(a; ,min(1a; +b; ))),
= (min(min(g; ,1),@; +b; ))) (by Theorem 2.
=(min(a; .a; +h;)),
=A,
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Theorem 3.5. For any fuzzy matricesA and B of same size,
(AO(A®B)=A,
(i)AO(A®B)=A®B.
Proof:
(i) AD(A® B) = (max@, ,max(0a, +b, - 1))
= (max(maxe, ,0), +b, — 1))
= (max@; a; +b; - 1)).
= (&),
=A,
(i) AO(A®B)=(min(; ,max(0g; +b, = 1)))
= (max(ming; ,0), ming; a; +hb;, — 1))),
= (max(0a; +b; - 1))
=AOB.

The U and LI operators are not distributive laws over the are proved by the
following theorems.

Theorem 3.6. For any fuzzy matricedA,B and C of same size,
AOBOC)=<(AOB)O(AOC),
Proof: AL(BUOC) = (max(@, ,min(lh; +c; )),
(AOB)O(ADC) = (min(1, maxg; b » maxd; ¢; )))
1 (), it (min(ly, +c; ),
(ADO(BOC) =1 (min(1, &, +¢;))).if @ )< (min(lh; +c; )).

J, < (max@; b ¥ maxg ))
(AOB) O (AOC) =< (max@; b, )+ max§; ¢; )),if &= (maxd; b 3 masf c

Case(a) AD(BOIC) = (3)),
Suppose(AOB) O (AOC)=J > A0(BOC),
Then AO(BOC) < (AOB)O(AOC),
Suppose(ALB) 0 (AOC) = (min(1, maxg; b » maxg; ¢; )))
Casel g <hb, and g, <c; foralli,j,
Therefore (AUB) O (AUC) = (b, +¢;) > (),
(ie) AOBUOC)<(AOB)OI(AOC).
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Case2 a; >h; and a; <c; foralli,j,
Therefore (AOB) O (AOC) = (a” +c”.) > (a,.j ),
(ie) AD(BOC)<(AOB)O(AOC).
Case3. a;<h; and a; >¢; forall i, j,
Therefore (AUB) U (AOC) = (b, +a;) > (g;),
(ie) AO(BOC)<(AOB)O(AOC).
Case4d. g, >hj and a; >¢;,
Therefore (AUB) O (AOC) = (g; +h;) > (),
(ie) A(BOC)=<(AOB)O(AOC),
Hence AJ(BOC) < (AOB)O(AOC).

Case(b) AD(BOC) = (min(1,b; +c;)),
Suppose(min(l,b; +¢;)) =1,

If (AOB)O(AOC)=J=(min(1,b, +c;)) forall i, j,
(ie) A(BOC)<(AOB)O(AOC),

If (ADB) O (ADC) = (max@; b, )+ max§; ¢; ))

Casel a;<c; and g, <b foralli,j,

(AOB)O(AOC) = (b, +¢;) = (min(1,h; +¢; )) forall i, j,
(ie) A(BOC)<(AOB)O(ALC).

Case2. g, <c; and g, =b, forall i, j,

(AOB)U(ALC) =(a; +¢;) 2 (b +¢;) =2 (min(1h; +¢;)),
Hence AJ(BOC) < (AOB)O(AOC).

Similarlly, the following theorem 3.7, we can pdte

Theorem 3.7. For any fuzzy matricesA, B and C of same size,
AOBOC)<(AOB)O(ALC)

In the following theorem we proved some identibesfuzzy matrices.

Theorem 3.8. For a fuzzy matrixA
Proof: Let A=(a;) be a fuzzy matrix.
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(HAOO=A
(iHAOJ =J.
(ii)A©O =0.
(iVVA©J=A
4. Results on bounded difference of fuzzy matrix

In the section, we defined bounded difference atyumatrices and proved it's algebraic
properties.

Definition 4.1. Let A=(g;) and B=(b;) be two fuzzy matrices of ordemxn, then
the bounded-difference oA and B is defined by Ao B = ((g; —b;) TJ0).
Theorem 4.2. For any fuzzy matricesA and B of same size,
(I)AO(Bo A) = AOB,
(iAO(AoB)2 A
(ili)Ao (Ao B) = AOB.
Proof:
(i) AU (Bo A) = (a;)0 (max(0h; —a; ))
=(min(1,a; + max(0b; —&; ))),
= (min(1,(maxg; a; +b; —a; ))))(byTheorem2..
= (min(1, maxg; b ))),
= (max(min(1g; ), min(1y, )))(byTheorem2.1)
= (max@; b)),
= AUB.
(i) A0 (A©B)=(a;)0 (max(0a; —h; ))
= (min(1,3; + (max(0g; —h; )))),
= (min(1, maxg; + 0g; +a; —h; )))(byTheorem2.
=(min(1!maxeﬁj 1311 _hj ),
Case 1. Suppose(min(1, max@, ,&, —hb; ))F - forall i, |,
Then AU (AGB)=J=A.
Case 2. Suppose(min(1, maxg,; , 2, —b, ))=max(@,, %, —b, )=@, ) forall i, j,
Subcase 2.1. Supposemax(@; , 2 —h; ) =@; )= @, ) forall i, j,
Therefore ALl (A© B) = A.
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Subcase 2.2. Supposemax(@; , 2z, —b; ) =&, —b, > @, ; forall i, |,
Therefore ALD(AOB) = A.
(i) Ao (Ao B)=(a;)o (max(0g; —b; ))
= (max(0a; — max(CGy; —b; ))),
= (max (0, (ming; &, — &; —b; ))))(byTheorem2.
= (max(0, ming; b ))),
= (min(max(0g; ), max(®, )))(byTheorem2.1)
= (min(a; b)),
= AUB.
Theorem 4.3. For any fuzzy matricesA and B of same size,
(IHHAO(AeB)=A,
(i)AO(AoB)=AcB
Proof:
(i) AD(A©B) = (a;)U(max(0a; —b; ))
= (max(; ,max(0g; —h; )))
= (max(maxg; ,0)a; —b; ))
= (max(aij ey _hj )
= (&),
=A
(i) AD(A©B) = (a; )0 (min(0a; -k, )),
= (min(a; , max(0a; - by )))
= (max(ming; ,0), ming; &; —b; )))
= (max(0a; —h; ),
=AOB.

In [28], Zhang and Zheng proved the De Morgan'slé&w the operators] and ©. In
the following theorem, we proved some of it's ferthesults.

Theorem 4.4. For any fuzzy matricesA and B of same size,
(i) (AOB)® = A° 0B, (i) (AoB)° =A° OB,

(ii)A©OB° =BO A, (iVJ/A®B® = AOB,
(WAOB®=A®B
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Proof: Let A=(a;) and B=(b;) be two fuzzy matrices of same order
() (AD B)°=(1- min(1.3; +b, ),
{max(0,1-a; - b, ); (4.1) (by Lemma 2.2)

A°©B=(1-a;)o (h)=(max(0,1-a; - b; ), 4.2)
From (4.1) and(4.2), (i) is true.
(i)) (A9 B)° = (1- max(0a, ~b; ) = (min(L,% & ~b; ))) (4.2
A°0OB= (1-a;,)0 () = (min(1,1-a; +b, )) (4.4

From (4.3) and (4.4), (i) is true. The proofs ofiii),(iv) and (v) are obvious.
In the following theorem we proved some identitiesfuzzy matrices,

Theorem 4.5. For a fuzzy matrixA
(A0 =A

(ilOoA=0,

(ili)AcJ =0,

(iv)JO A= A°.

5. Conclusions

In this article, bounded sum, bounded product amthbed difference of fuzzy matrices
are defined and some properties are proved. Tlusatinded sum, bounded product and
bounded difference of fuzzy matrices are very udefturther works.
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