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Abstract. In this paper, we consider modified Hermite interpolation on the nodes, which 
are obtained by projecting vertically the zeros of the �1 − ����������	��� onto the unit 
circle, where ����� stands for 
th Legendre polynomial. We obtain the explicit forms and 
establish a convergence theorem for that interpolatory polynomial. 
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1.Introduction  
In 1990, Tu [10] obtained the divergence and mean convergence of the Hermite 
interpolation operator. Further, in 1991, Wang and Tian [12] considered the zeros of �1 − �������	 ���, where, ����	 ��� is the derivative of �
 − 1�� Legendre polynomial 
and obtained the estimates for the same. In 1992, Min [8] obtained the mean convergence 

of the derivatives of Hermite interpolation operator	����, �� based on the zeros of the 
Chebyshev polynomial of the first kind. Also, Vertesi and Xu [11] considered the 

Hermite interpolating polynomial �����, �� be defined at the zeros of the Jacobi 

polynomial ����, �� , which are orthogonal on �−1,1� with weight function, ���� = �1 − ����1 − ���	, ��, � > −1�	. 
Later on, Goodman et al. [6] considered the behavior of Hermite interpolanton the roots 
of unity. In 1998, author1(with Mathur) [1] proved the convergence of Quasi-Hermite 
interpolation on the nodes obtained by projecting vertically the zeros of �1 − ���	����� 
onto the unit circle, where ����� stands for the 
th Legendre polynomial. In another paper 
author1 [3] considered the convergence of Hermite interpolation polynomial on the unit 
circle. Also, Berriochoa at al. [4] studied the convergence of the Hermite-Fejér and the 
Hermite interpolation on polynomials, which are constructed by taking equally spaced 
nodes on the unit circle. In 2014, author1 and (with Shukla) [2] considered Hermite- 
interpolation on the nodes, which are vertically projected on the zeros of �1 −
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�������,����� the onto the unit circle, where ����,����� stands for Jacobi polynomial, 
obtained the explicit forms and established a convergence theorem for the interpolatory 
polynomial. Further, Berriochoa at al. [5] studied generalise Hermite interpolation 
problems on the unit circle considering nodal points equally spaced and using the values 
for the first two derivatives. 

These have motivated us to consider different types of Hermite interpolation  on 
some set of nodes on the unit circle .In this paper, we consider the non- uniformly 
distributed zeros on the unit circle, which are obtained by  projecting vertically the zeros 
of �1 − ����������	��� onto the unit circle, where ����� stands for  nth Legendre 
polynomial . We obtain the explicit forms of the interpolatory polynomials and establish 
a convergence theorem for the same. In section 2, we give some preliminaries and in 
section 3, we describe the problem and its existence. In section 4, we give the explicit 
formulae of the interpolatory polynomials. In sections 5 and 6, estimation and 
convergence of interpolatory  polynomials are given, respectively. 
 
2. Preliminaries 
In this section, we shall give some well-known results, which we shall use. 
The differential equation satisfied by �����is : 
(2.1)  �1 − �����		��� − 2���	��� + 
�
 + 1������ = 0 

(2.2)  "���#� = 	∏ �# − #%���%&� = '��� (�)*+�* , #� 

(2.3)  "-����#� = 	∏ �# − #%�-���%&� = '�∗�� (�)*+�* ,��	 (�)*+�* , #���� 
(2.4)  "-��#� = �#� − 1�"-����#� 
We shall require the fundamental polynomial of Lagrange interpolation based on the 
zeros of"-��#� and  "���#�  are respectively given as: 

(2.5)			/%�#� = 	 012�*��*�*3�0124 �*3�   ,			5 = 0�1�4
 − 1 

(2.6)				7%�#� = 	 0+2�*��*�*3�0+24 �*3� 	,											5 = 1�1�2
 

We will also use the following results 
For,     5 = 1�1�
 

(2.7)  8 "��	 �#%� = 92� :#%	� − 1;#%�����	��%�"��	 �#�)%� = 92� :#�)%	� − 1;#�)%��<��		��%�= 
(2.8)  > "��		 �#%� = 	'�?�
 − 1�:#%	� − 1; − 1@#%��<��	��%�"��		 �#�)%� = 	'�?�
 − 1�:#�)%	� − 1; − 1@#�)%��<��	��%�= 
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ABB
CB
BD

																																																"-�	 �#%� = '�∗2 :#%	� − 1;�E��	��%�F�	#%���<																											,				5 = 1�1�2

"-�	 �#%� = 	'�∗2 :#%	� − 1;�����%���		��%�	#%���<,			5 = 2
 + 1,… . ,4
 − 2	= 

(2.9)

 
ABC
BD 5 = 1�1�2
"-�	 �#%� = 92∗� :#%� − 1;�E��	��%�F�#%���<5 = 2
 + 1,……………… . ,4
 − 2"-�	 �#%� = 92∗� :#%� − 1;�����%���		��%�#%���<

= 

(2.10)  

ABC
BD For, k = 1�1�2n																																																																																															"-�		 �#%� = 		'�∗:#%	� − 1;?�2
 − 1�:#%	� − 1; − 2@E��	��%�F�#%���-	,For	,					5 = 2
 + 1,… . . ,4
 − 2"-�		 �#�)%� = 	'�∗:#%	� − 1;?�2
 − 1�:#%	� − 1; − 2@����%���		��%�#%���-,

= 
 
We will also use the following well known inequalities 

(2.11)  �1 − ���|��	���|~
� �O ,											− 1 < � < 1 
For,     −1 < �% < 1 

(2.12)  :1 − �%�;��~(%�,�� 
(2.13)  |����%�|~	5�� �O  

(2.14)  |��	��%�|~	5�< �O 		
� 
(2.15)  |��		��%�|~	5	�Q �O 	
- 
For more details one can see [9] . 
 
3. The problem and regularity 
Let R� = E#%:	5 = 0�1�4
 − 1	Fsatisfying 
 

(3.1) 			R� = > #T = 1,				#-��� = −1,#% = UVWX% + Y	WY
X% , #�)% = #%ZZZ	,		5 = 1�1�2
 − 1= 
where, E�% = UVWX% 	 ∶ 5 = 1�1�2
 − 1F are the zeros of	�������	���	where ����� stands 
for	
�Legendre polynomial. Here we are interested in determine the interpolatory 
polynomial \]����#�  of degree at most 6
 − 1 satisfying the following conditions: 

(3.2)		_\]����#%� 								= 								�%			,															5 = 0�1�4
 − 1,�\]����#��*&*3	 			= 					�%			,																							5 = 1�1�2
,= 
where	�% and �% are arbitrary complex constants .We establish a convergence theorem 
for the same. 
 
Theorem 3.1.	\]����#� is regular on R� . 
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Proof: Let \]����#� = "-����#�`�#� 
where,	`�#� is polynomial of degree 	≤ 2
 + 1. 
Obviously,				\]����#%� = 	0, for,  k= 1�1�4
 − 2 
By,�\]����#��*&*3	 = 0,  for k= 1�1�2
 

we get, `�#%� = 0, 
therefore, we have 
(3.3)		`�#� = �b	# + c�"���#� 
 
Now for	# = 	1		&	 − 1, we get     b = 	c = 0. 
Hence the theorem follows. 
 
4. Explicit representation of interpolatory polynomials 
We shall write \��#� satisfying (3.2) as: 

�4.1�				\]����#� = e �%f%�#�-���
%&T 				+e�%g%�#���

%&�  

where,f%�#�and g%�#� are unique polynomial , each of degree at most 6
 − 1 satisfying 
the conditions : 
 

(4.2)  >f%:#h; 						= 					 ih% ,																										5 = 0�1�4
 − 1�f%�#��*&*j	 					= 	0,																															5 = 1�1�2
 = 
 

(4.3)  > g%:#h; 																				= 			0		,							5 = 0�1�4
 − 1�g%�#��*&*j	 								= 			 ih%		,																	5 = 1�1�2
= 
 
Theorem 4.1. Let 	f%�#� satisfying the condition defined by 

(4.4)  fT�#� = ��)*�� 012k+�*�0+2�*�012k+���0+2��� 
 

(4.5) 		f-����#� = ���*�� 012k+�*�0+2�*�012k+����0+2���� 
 

(4.6)			f%�#� = l m%�#�7%�#�/%�#�		,																																				5 = 1�1�2

/%�#� 0+2�*�0+2�*3� 		,																							5 = 2
 + 1,…… . . ,4
 − 2= 

where, 
(4.7) m%�#� = �1 − �# − #%�E7%	 �#%� + /%	 �#%�F� 
Proof: For,	5 = 1�1�2
, let 
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				f%�#� = m%�#�7%�#�/%�#�, 
where, m%�#�	is a linear polynomial such that, 
(4.8)  m%�#� = b% + c%�# − #%� 
Obviously, f%:#h; = 0, for n ≠ 5, 
and for n = 5, we must have 
(4.9)	m%�#%� = 1 

Obviously, f%	 :#h; = 0, for n ≠ 5, 
and for n = 5, we  get 
(4.10) m%	 �#%� = −E7%	 �#%� + /%	 �#%�F 
using (4.9) and (4.10) in (4.8), we get (4.7). 
 
For,		5 = 2
 + 1,… ,4
 − 2,let 			f%�#� = /%�#� "���#�"���#%�,														 
Then obviously,				f%:#h; = ih%, 

Similarly,one can find (4.4) and (4.5). 
Hence the theorem follows. 
 
Theorem 4.2: For  5 = 1�1�2
 , we have 
(4.11)					g%�#� = �# − #%�7%�#�/%�#� 
Proof: One can obtained		g%�#�, owing to conditions (4.3). 
 
5. Estimation of fundamental polynomials 
Lemma 5.1. Let 7%�#� be given by (2.4). Then �5.1�				qb�|*|&�		∑ |7%�#�| ≤ U
� �O log 
��%&�  , 

where, U is a constant and independent of 
 and 	#. 
Proof: Let # = � + Yu	and |#| = 1, 

e|7%�#�| ≤ e v "���#��# − #%�"��	 �#%�v
��
%&�

��
%&�  

																										≤ 	e |�����|�1 − ��%�w+2√2|��	��%�|�� − �%�
��
%&�  

using (2.12) and (2.14) we get the result. 
 
Lemma 5.2.  For # = yz{	, �0	 ≤ X < 2|�, we have 

(5.2)        ∑ |f%�#�|-���%&T ≤ U 
< �O log 
 , 
where, 	f%�#� is given in theorem 4.1 and U is a constant independent of 
 and #. 
Proof: Using the conditions from (2.11) to (2.15), we get the result. 
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Lemma 5.3. Let g%�#�  be defined in theorem 4.2. Then, we have 

(5.3)∑ |g%�#�|��%&� ≤ U
� �O log 
 ,  |#| ≤ 1 
where,	U is a constant  independent of 
 and #. 
Proof: Using  (5.1) and (2.11) – (2.15) in theorem 4.2, we get the result. 
 
6. Convergence 
In this section, we prove the following: 
Theorem 6.1. Let ��#� be continuous for	|#| ≤ 1 and analytic for 	|#| < 1. Let the 
arbitrary �%	′W be such that 

(6.1)  |�%| = ~ �
� �O ����, 
���� 
Then E\]����#�F defined by 

�6.2�			\]����#� = e ��#%�f%�#�-���
%&T 	+e�%g%�#���

%&�  

satisfies the relation, 

(6.3)	|	\]����#� − ��#�| = ~ (
< �O ����, 
��� log 
,, 
where  ����, 
��� be the second modulus of continuity of	��#�. 
 
Remark 6.1. Let  ��#� be continuous for |#| ≤ 1 and analytic for |#| < 1, and �	 ∈/Y��, � > �� + �,	then the sequence E\]����#�F converges uniformly to ��#� in |#| ≤ 1, 

which follows from (6.3) as 

(6.4)	����, 
��� = ~ (
��+��,, � > 0. 

To prove the theorem (6.1), we shall need the followings: 
Let  ��#� be continuous for |#| ≤ 1 and analytic for |#| < 1. Then there exist a 
polynomial ���#� of degree	≤ 6
 − 1, satisfying, Jackson’s inequality. 
(6.5)			|��#� − ���#�| ≤ U����, 
���,		# = yz{�0 ≤ X < 2|� 
And also an inequality due to [7]. 

(6.6) �������#�� ≤ U
�����, 
���	,			q��). 
Proof: Since \]����#� be is uniquely determined polynomial of degree	≤ 6
 − 1 and 
the polynomial ���#� satisfying (6.5) and (6.6) can be expressed as : 

�]����#� = e 		���#%�f%�#�-���
%&T +e��	�#%�g%�#���

%&�  

Then, |\]����#� − ��#�| 	≤ 			 |\]����#� − ���#�| + |�]����#� − ��#�| 
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≤ e |��#%� − 		���#%�|-���

%&T |f%�#�| 	+eE|�%| + |��	�#%�|F��
%&� |g%�#�|

+ |���#� − ��#�| 
using (6.1),(6.2), (6.4), (6.5), Lemma 5.2 and Lemma 5.4, we get (6.3). 
 
7. Conclusion  
In this paper, we have defined the modified-Hermite interpolation on some set of nodes 
on the unit circle and established the convergence theorem for that interpolatory 
polynomial. 
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