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Abstract. A dominating set D of a gragh = G(V,E) is called metro dominating set of
G. If for every pair of vertices u, v there existsrertex w in D such that(u, w) #
d(v,w), The k-metro domination number of a pggh (P,), is the order of a smallest k-

dominating set oPf, which resolves as a metric set. In this papercaleulate the k-
metro domination number of paths.
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1. Introduction
LetG(V,E) be a graph. A subset of vertidesc V is called a dominating set-(set) if
every vertex i/ — D adjacent to at least one vertex in D [4].

The minimum cardinality of a dominating set is edlthe domination number of
the graph G and is denoted p{G).[4].

The metric dimension of a graph G is denotedflf¥r) is defined as the
cardinality of a minimal subsef € V having the property that for each pair of vertices
u, v in G there exists a vertex w in S such that, w) # d(v,w)The coordinate of
each vertew of V (G) with respect of each landmatkbelong to S is defined as usual

with i™ component of v ad(u, v;) for each i and is of dimensigh(G)[2].
Metro domination number introduced by Sooryanarayand Raghunath [5].
Fink and Jacobson [6, 7] in 1985 introduced theceptof multiple domination. A subset

D of V (G) is k-dominating in G if every vertex &f — D has at least k neighbor’s in D.

The cardinality of minimum k- dominating set isledlk- domination number, (G).
A dominating set D of a graph G(V;E) is called madbminating set of G if for each pair

of vertices u; v there exists a vertex w in D stidtd (u, w) # d(v, w).

2. Our results
n
Theorem 2.1 Forn > 11, yp,(B,) = H
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Proof: Let vy, vy, V3, ... wee ... ..... U, bE the vertices of the paffy. Let D be the

minimum 2-dominating set af,. Let W =V —D , Now eachy; € W is either
adjacent to any of the vertex D or atmost at ditavo from atleast one of the vertex of

D. Any vertexv, € D, will dominates at most 5 vertices including ifsebince the
metric dimension of the PatB(P,) = 1, as in [5], D itself serve as a metric set.

Thus v, (P) = [ ()

To prove yp,(B,) < E]
We define a set D as follows

Casel: Forn=5l+6,1>1,
-2
D={V5k+3; OskslnT}UUn

Case2: Forn=51+7,1=>1,

n—3
D={V5k+3; OSkSlT}UUn

Case3: Forn=51+8,1>1,
n—4
D={V5k+3; OSkSlT}UUn

Case4: Forn=51+4+9, 1> 1,
D={Vsers 0<k< E]} U,

Case5: Forn=51+10, [ > 1,
n—1
D={V5k+3,0SkSl 5 J}Uvn

We note that D is a 2-dominating set By; and also D will serves as a metric sebpof
Thus v, (B < [2] (i

From (i) and (ii)

ve,(P) = [3].

Casel: Forn=51+6, [>1,
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Case2: Forn =51+ 7, l>1,
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Case3: For n = 51+ 8, l>1,
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Case4: Forn =51+ 9, l>1,
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Case5: For n = 51 + 10, [ >1,
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Theorem 2.2. For n = 8, y3,(P,) = H

Proof: Let vy,v,, V3, . v we ool . Uy be the vertices of the paffy. Let D be the
minimum 3-dominating set af,. Let W =V —D , Now eachv; € W is either
adjacent to any of the vertex D are atleast atdibnce three from atleast one of the

vertex of D. Any vertew, € D, will dominates at most 7 vertices including ifseD
also serves as a metric set.

Thus yp, (B) = H 0]

To prove yg,(B,) < H

We define a set D as follows
Cael:n=71+1,71+2,71+3, |>1
D={Vu-s 1<k<|H}un,

Case2:n=714+471+57l4+67l+7, =1

D ={Vys 1<k <=}

We note that D is a 3-dominating set By and also D will serves as a metric setRyf.
n ..

Thus yp, (B < H (i)

From (i) and (ii)

n
ve, (P = [].
Casel: n=71+1,71+2,7l+ 3, 1>1,

[SL TS §
o
—
S N

3(10)

I
D Te} mo o d o
R{RIYE B 9 & 3§ § © ©o R o ©

Vi Vo V3 Vu 5 5 V2 Ve Vo Vio Vi Vi Viz ViaVis
Vic @ (2P

Figure6: yﬁg(PlG):B
Case2: n=714+4,71+5,7l+ 6,71+ 7, l>1,
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Theorem 23. For n = 10, yg,(P,) = E]
Proof: Let vy,v,, V3, ... v wo. ... .. Uy, be the vertices of the patlP,. Let D be the

minimum 4-dominating set af,. Let W =V —D , Now eachy; € W is either
adjacent to any of the vertex D are atleast atdieance four from atleast one of the

vertex of D. Any vertew, € D, will dominates at most 9 vertices including ifséD
also serves as a metric set.

Thus yp, (B) = [g] 0]

To prove yg,(B,) < E]
We define a set D as follows
Casel:n=91+1,91+2,91+3,91+49.l+5, [(>1

D={Vorss 1<k <|2[}um,
Case2:n=914+691+791+809l+9, =1
D ={Voeuss 1<k <[22},
We note that D is a 4-dominating set Ryr and also D will serves as a metric seBpf
n i
Thus yg,(P,) < H (i)
From (i) and (ii)
n
e, (P = 3]
Casel: n=91+1,91+291+3,90+4,91l+5, l=1,
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Figure8: yﬁ4(P23):3

Case2: n=91+6,91+7,91+8,91+9, [>1,
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Theorem 2.4. Forn > 12, y5.(B,) = [1_”1 _

Proof: Let vq,v5, V3, we evr oo .e .. Uy, be the vertices of the palh. Let D be the
minimum 5-dominating set af,. Let W =V —D , Now eachv; € W is either
adjacent to any of the vertex D are atleast atdib@ance five from atleast one of the
vertex of D. Any vertew,, € D, will dominates at most 11 vertices including, D also
serves as a metric set®f .

Thus g, (By) = [~ i) (

To prove yp (B,) < Ln—l]
We define a set D as follows

Casel:
n=111+1,111+ 2,111+ 3,111 + 4,11l + 5,111+ 6,111+ 7, [ >1,
D = {Vllk—s; 1 < k < Ln—lj}UUn

Case2:n=111+8,1114+9,111+ 10,111+ 11, [>1
D ={Vipes 1<k <[22},
We note that D is a 5-dominating set By, and also D will serves as a metric seBpf
n -
Thus yp, (B < [H (if)
From (i) and (ii)
n
Vs (B) = [H :
Case l:
n=111+ 1,111+ 2,111+ 3,111 + 4,111 + 5,111 + 6,111 + 7, 1>1,
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N M I 0 W
2 2 8§ 8 8 3 3 ¥ o N A O
O—O0—C0—"0—1C0O@8—O0—0O0—0O0—0O0——0O—0
Vi Vo Vs w2 V5 V& V7 V8 Vo Vio Vi Vi
Figure 10: V5 (P,)=2

Cae2: n=111+8,111+9,111 + 10,11l + 11, [>1
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Figure 11: Vs, (P21) =2

Theorem 2.5. For n = 21 + 6, l>1,

v =[] k22, m=1

2m+3

Proof follows from generalization of theorem1, trezn2, theorem3 and theorem4.
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