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1. Introduction 
There have been a number of generalizations of metric space. One such generalization is 
Menger space initiated  by Menger [7]. It is a probabilistic generalization in which we 
assign to any two points x and y, a distribution function Fx,y.  Schweizer and Sklar [9] 

studied this concept and  gave some fundamental results on this space.  Sehgal and 
Bharucha-Reid [10] extended the notion of contraction mapping to the setting of the 
Menger space. They obtained a generalization of the classical Banach contraction 
principle on complete Menger spaces.   
 The notion of compatible mapping in a Menger space has been introduced by 
Mishra [8].  Singh and Sharma [12] have proved a common fixed point theorem for four 
compatible maps in Menger space by taking a new inequality. Using the concept of 
compatible mappings of type (A) and weak compatible mappings, Jain et al. [2, 3, 4] 
proved some interesting fixed point theorems in Menger space. Cho, Sharma and Sahu 
[1] introduced the concept of semi-compatibility in a d-complete topological space.  In 
Menger space, Singh et al. [11] defined the concept of semi-compatibility of pair of self-
maps.   Using the concept of occasionally weakly compatible mappings, Jha et. al. [5] 
proved fixed point theorems in semi-metric space. Afterwards, Jha et al. [6] proved a 
common fixed point theorem for reciprocal continuous compatible mappings in metric 
space.  In the sequel,  Srinivas et al. [13] gave Djoudi’s common fixed point theorem on 
compatible mappings of type (P). 
 In this paper, we generalize the result of Singh and Sharma [12] by introducing 
the notion of semi-compatible self maps.  
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2. Preliminaries 

Definition 2.1. [8]  A mapping FFFF  : R → R+ is called a distribution if it is non-decreasing 
left continuous with inf {FFFF (t) | t ∈ R } = 0  and  sup {FFFF (t) | t ∈  R} = 1. 
 We shall denote by L the set of all distribution functions while H will always 
denote the specific distribution function defined by  

  
 
Definition 2.2. [8] A mapping t :[0, 1] × [0, 1] → [0, 1] is called a  t-norm  if  it  satisfies 
the following conditions : 
(t-1)   t(a, 1) = a,   t(0, 0) = 0 ; 
(t-2)   t(a, b) =  t(b, a) ; 
(t-3)   t(c, d) ≥  t(a, b) ;  for c ≥ a, d ≥ b, 
(t-4)   t(t(a, b), c) =  t(a, t(b, c)). 
 
Definition 2.3. [8] A probabilistic metric space (PM-space)  is an ordered pair (X, FFFF) 
consisting of a non empty set X and a function FFFF : X × X → L, where L is the collection 
of all distribution functions and the value of FFFF at (u, v) ∈ X × X is represented by  Fu, v. 

The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4) If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, 

       for all u, v, w ∈ X and x, y > 0.  
 A Menger space is a triplet (X, FFFF, t) where (X, FFFF) is a PM-space and t is a t-norm 
such that the inequality 
(PM-5) Fu,w (x + y) ≥ t {Fu, v (x), Fv, w(y) }, for all u, v, w ∈  X, x, y ≥ 0. 

 
Definition 2.4. [8] A sequence {xn} in a Menger space (X, FFFF, t) is said to be convergent 

and converges to a point x in X if and only if for each ε  > 0 and λ > 0, there is an integer 
M(ε, λ) such that   
   Fxn, x (ε) > 1 - λ  for all n ≥ M(ε, λ).   

 Further, the sequence {xn} is said to be Cauchy sequence if for ε > 0 and   

λ > 0, there is an integer M(ε, λ) such that  
   Fxn, xm(ε) > 1- λ  for all m, n ≥ M(ε, λ).  

 A Menger PM-space (X, FFFF , t) is said to be complete if every Cauchy sequence in 
X converges to a point in X. 
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Definition 2.5. [8] Self maps S and T of a Menger space (X, FFFF , t) are said to be 
compatible if  FSTxn, TSxn

(x) → 1 for all x > 0, whenever {xn} is a sequence in X such 

that Sxn, Txn → u for some u in X, as n → ∞. 

 
Definition 2.6. [11] Self maps S and T of a Menger space (X, FFFF , t) are said to be semi-
compatible if FSTxn, Tu(x) → 1 for all x > 0,  whenever {xn} is a sequence in X such 

that Sxn, Txn → u for some u in X, as n → ∞. 

 It follows that if the pair (S, T) is semi-compatible and Sy = Ty then  
STy = TSy. 
Proposition 2.1. [11] If  (S, T) is a semi-compatible pair of self maps in a Menger PM-
space (X, FFFF , t) and T is continuous then (S, T) is compatible.  
 
Proposition 2.2. [11] If (X, d) is a metric space, then the metric d induces a mapping  
F : X × X → L, defined by  
  Fp,q(x) = H(x - d(p, q)), p, q ∈ X and x ∈ R.  

Further, if t : [0, 1] × [0, 1] → [0, 1] is defined by t(a, b) = min{a, b},  then (X, FFFF , t) is a 
Menger space. It is complete if (X, d) is complete. The space (X, FFFF, t) is called an 
induced Menger space. 
 
Remark 2.1. [11] The concept of semi-compatibility of pair of self maps is more general 
than that of compatibility. 
 
Proposition 2.3. [8] If  S and T are compatible self maps of a Menger space (X, FFFF , t) 
where t is continuous and t(x, x) ≥ x for all x ∈ [0, 1] and Sxn, Txn → u for some u in X. 

Then TSxn → Su provided S is  continuous.  

 
Proposition 2.4. [4] Let S and T be compatible self maps of Menger space (X, FFFF, t) and 
Su = Tu for some u in X then  STu = TSu = SSu = TTu. 
 
Lemma 2.1. [4] Let {pn} be a sequence in a Menger space (X, FFFF, t)  with continuous t-

norm and t(x, x) ≥  x.  Suppose, for all x ∈ [0, 1], there exists k ∈ (0, 1) such that for  all 
x > 0 and n ∈ N, 
  Fpn, pn+1

(kx)  ≥  Fpn-1, pn
(x) 

or  Fpn, pn+1
(x)  ≥ Fpn-1, pn

 (k-1x).  

 Then {pn} is a Cauchy sequence in X. 

 
3. Main results 
Theorem 3.1. Let A, B, S, T, L and M be self mappings of a complete Menger space (X, 
FFFF, t) with  t(a, a) ≥ a,  for some  a ∈ [0, 1], satisfying : 
(3.1.1)  L(X) ⊆ ST(X),  M(X) ⊆ AB(X);  
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(3.1.2)  AB = BA,   ST = TS,  LB = BL,  MT = TM; 
(3.1.3)   either AB or L is continuous;  
(3.1.4)  (L, AB) is  compatible and (M, ST) is semi-compatible; 
(3.1.5)  for all p, q ∈ X, x > 0  and 0 < α < 1,   
        [FLp, Mq(x) + FABp, Lp(x)][FLp, Mq(x) + FSTq, Mq(x)]  

    ≥   4[FABp, Lp(x/α)][FMq, STq(x)]. 

 Then A, B, S, T, L and M have a unique common fixed point in X.  
Proof:  Let x0 ∈ X.  From condition (3.1.5)  ∃  x1, x2 ∈  X  such that   

  Lx0 = STx1 = y0     and     Mx1 = ABx2 = y1.   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

 Lx2n = STx2n+1 = y2n   and      Mx2n+1 = ABx2n+2 = y2n+1     

for n = 0, 1, 2, ... .  
 
Step 1.  Putting  p = x2n ,  q = x2n+1  for x > 0  in (3.1.5), we get 

[FLx2n,Mx2n+1
(x)+FABx2n,Lx2n

(x)][FLx2n, Mx2n+1
(x) + FSTx2n+1, Mx2n+1

(x)]   

    ≥  4[FABx2n, Lx2n
(x/a)][FMx2n+1, STx2n+1

(x)] 

 [Fy2n, y2n+1
(x) + Fy2n-1, y2n

(x)][Fy2n, y2n+1
(x) + Fy2n, y2n+1

(x)]   

    ≥   4[Fy2n-1, y2n
(x/a)][Fy2n+1, y2n

(x)] 

or, 2 Fy2n, y2n+1
(x) [Fy2n, y2n+1

(x) + Fy2n-1, y2n
(x)]   

    ≥   4[Fy2n-1, y2n
(x/a)][Fy2n+1, y2n

(x)] 

or, Fy2n, y2n+1
(x) [Fy2n, y2n+1

(x) + Fy2n-1, y2n
(x)]     

    ≥   2[Fy2n-1,y2n
(x/a)][Fy2n, y2n+1

(x)] 

or, [Fy2n, y2n+1
(x) + Fy2n-1, y2n

(x)]    ≥    2[Fy2n-1, y2n
(x/a)] 

or,            Fy2n, y2n+1
(x)    ≥    Fy2n-1, y2n

(x/a).               (3.1.6) 

Similarly, 

      Fy2n-1, y2n
(x/a)     ≥    Fy2n-2, y2n-1

(x/a2).             (3.1.7) 

From (3.1.6)  and  (3.1.7), it follows that  

 Fy2n, y2n+1
(x)    ≥    Fy2n-1, y2n

(x/a)    ≥    Fy2n-2, y2n-1
(x/a2). 

By repeated application of above inequality, we get   

 Fy2n, y2n+1
(x)    ≥    Fy2n-1, y2n

(x/a)    ≥    Fy2n-2, y2n-1
(x/a2)   

      ≥    ...  ≥  F y0, y1
(x/an). 
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 Therefore, by lemma 2.1, {yn} is a Cauchy sequence in X, which is complete.  

 Hence {yn} → z ∈ X.   

 Also its subsequences converges as follows : 
 {Mx 2n+1} →  z  and {STx2n+1}   →  z,                                   (3.1.8) 

 {Lx 2n}  →  z    and    {ABx2n}  →  z.                       (3.1.9) 

 
Case I.   AB is continuous. 
 As AB is continuous,  

  (AB)2x2n  →  ABz    and    (AB)Lx2n  → ABz. 

 As (L, AB) is compatible,  so by proposition (2.3), we have  
  L(AB)x2n  → ABz. 

 
Step 2.  Putting  p = ABx2n  and  q = x2n+1  for x > 0  in (3.1.5), we get 

[FLABx2n,Mx2n+1
(x)+FABABx2n,LABx2n

(x)][FLABx2n,Mx2n+1
(x) 

+ FSTx2n+1, Mx2n+1
(x)]  ≥   4[FABABx2n, LABx2n

(x/a)][FMx2n+1, STx2n+1
(x)]. 

Letting n → ∞, we get  
[FABz, z(x) + FABz, ABz(x)][FABz, z(x) + Fz, z(x)]  ≥ 4[FABz, ABz(x/a)][Fz, z(x)], 

i.e.      FABz, z  (x) ≥ 1,   yields ABz = z.                         (3.1.10) 

 
Step 3.  Putting  p = z   and   q = x2n+1  for x > 0  in (3.1.5), we get 

[FLz, Mx2n+1
(x) + FABz, Lz(x)][FLz, Mx2n+1

(x) + FSTx2n+1, Mx2n+1
(x)]   

    ≥   4[FABz,Lz(x/a)][FMx2n+1, STx2n+1
(x)]. 

Letting n → ∞, we get  
[FLz, z(x) + Fz, Lz(x)][FLz, z(x) + Fz, z(x)]   ≥   4[Fz, Lz(x/a)][Fz, z(x)], 

i.e.      FLz, z(x) ≥ 1,  yields Lz = z. 

Therefore,  ABz = Lz = z. 
 
Step 4.  Putting  p = Bz   and  q = x2n+1  for x > 0  in (3.1.5), we get 

  [FLBz, Mx2n+1
(x)+FABBz, Bz (x)][FLBz, Mx2n+1

(x) + FSTx2n+1,Mx2n+1
 (x)]  

    ≥  4[FABBz,LBz(x/a)][FMx2n+1, STx2n+1
 (x)]. 

 As BL = LB,  AB = BA,  so we have   
 L(Bz) = B(Lz) = Bz  and   AB(Bz) = B(ABz) = Bz. 
Letting n → ∞, we get  
 [FBz, z(x) + FBz, Bz(x)][FBz, z(x) + Fz, z(x)]   ≥   4[FBz, Bz(x/a)][Fz, z(x)], 

i.e.      FBz, z  (x) ≥ 1,  yields Bz = z  and ABz = z   implies  Az = z. 

Therefore,    Az = Bz = Lz = z.                               (3.1.11) 
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Step 5.   As L(X)  ⊆  ST(X),  there exists v  ∈ X such that  
   z = Lz = STv.     
 Putting p = x2n    and  q = v   for x > 0  in (3.1.5),  we get 

 [FLx2n, Mv(x) + FABx2n, Lx2n
 (x)][FLx2n, Mv(x) + FSTv, Mv(x)]  

     ≥ 4[FABx2n,Lx2n
 (x/a)][FMv, STv(x)]. 

Letting n → ∞  and using equation (3.1.9),  we get  
 [Fz, Mv(x) + Fz, z(x)][Fz, Mv(x) + Fz, Mv(x)]  ≥  4[Fz, z (x/a)][FMv, z(x)], 

i.e. Fz, Mv (x) ≥ 1,  yields Mv = z.   

Hence,  STv = z = Mv.     
As (M, ST) semi-compatible, we have 
  STMv = MSTv.         
Thus,  STz = Mz. 
 
Step 6.    Putting p = x2n, q = z   for x > 0  in (3.1.5),  we get 

 [FLx2n, Mz(x) + FABx2n, Lx2n (x)][FLx2n, Mz(x) + FSTz, Mz(x)]  

     ≥  4[FABx2n, Lx2n (x/a)][FMz, STz(x)]. 

Letting n → ∞ and using equation (3.1.8) and Step 5,  we get  
[Fz, Mz(x) + Fz, z(x)][Fz, Mz(x) + FMz, Mz(x)]  ≥  4[Fz, z (x/a)][FMz, Mz(x)], 

i.e. Fz, Mz  (x) ≥ 1,  yields  z = Mz.   

 
Step 7.    Putting p = x2n   and  q = Tz    for x > 0  in (3.1.5),  we get 

 [FLx2n, MTz(x) + FABx2n, Lx2n (x)][FLx2n, MTz(x) + FSTTz, MTz(x)]  

    ≥  4[FABx2n, Lx2n (x/a)][FMTz, STTz(x)]. 

 As MT = TM   and ST = TS, we have MTz = TMz = Tz   and ST(Tz) = T(STz) = Tz. 
Letting n → ∞,  we get 
  [Fz,Tz(x) + Fz,z(x)][Fz,Tz(x) + FTz,Tz(x)]   ≥   4[Fz,z (x/a)][FTz,Tz(x)], 

i.e.    Fz, Tz  (x) ≥ 1,    yields  Tz = z.   

Now     STz = Tz = z  implies  Sz = z.   
Hence   Sz = Tz = Mz = z.                   (3.1.12) 
Combining (3.1.11)  and (3.1.12), we get  
  Az = Bz = Lz = Mz = Tz = Sz  =  z. 
 Hence, the six self maps have a common fixed point in this case.  
 
Case II. L is continuous 

 As L is continuous, L2x2n  →  Lz    and    L(AB)x2n  → Lz. 

 As (L, AB) is compatible, so by proposition (2.3),   
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  (AB)Lx2n  → Lz. 

 
Step 8.  Putting  p = Lx2n   and   q = x2n+1  for x > 0  in (3.1.5), we get 

[FLLx2n, Mx2n+1
(x) + FABLx2n, LLx2n

(x)][FLLx2n, Mx2n+1
(x)  

 + FSTx2n+1, Mx2n+1
(x)]   

   ≥   4[FABLx2n, LLx2n
(x/a)][FMx2n+1, STx2n+1

(x)]. 

Letting n → ∞, we get  
 [FLz, z(x) + FLz, Lz(x)][FLz, z(x) + Fz, z(x)]   ≥   4[FLz, Lz(x/a)][Fz, z(x)], 

i.e.      FLz,z  (x) ≥ 1,  yields Lz = z.                    

 Now, using steps 5-7, we get   Mz = STz = Sz = Tz  =  z. 
 
Step 9.   As  M(X) ⊆ AB(X),  there exists w  ∈ X such that   
   z =  Mz = ABw.     
 Putting  p = w   and   q = x2n+1  for x > 0  in (3.1.5), we get 

[FLw, Mx2n+1
(x) + FABw,Lw (x)][FLw,Mx2n+1

(x) + FSTx2n+1
,Mx2n+1

(x)]  

   ≥   4[FABw, Lw(x/a)][FMx2n+1, STx2n+1
(x)].  

Letting n → ∞, we get  
  [FLw, z(x) + Fz, Lw(x)][FLw, z(x) + Fz, z(x)]   ≥   4[Fz, Lw(x/a)][Fz, z(x)], 

i.e.      FLw, z  (x) ≥ 1,  yields Lw  =  z = ABw. 

 Since (L,AB) is compatible and so by proposition (2.4),  we have 
  LABw = ABLw. 
Hence,  
      Lz =  ABz.        
 Also,   Bz = z  follows from step 4. 
 Thus, Az = Bz = Lz =  z   and we obtain that z is the common fixed point of the 
six maps in this case also. 
 
Step 10. (Uniqueness)  Let u be another common fixed point  of A, B, S, T, L and M;  
then    Au =  Bu = Su = Tu = Lu = Mu = u. 
 Putting p = z   and    q = u    for x > 0  in   (3.1.5), we get 
[FLz, Mu(x) + FABz, Lz(x)][FLz, Mu(x) + FSTu, Mu(x)]  

   ≥ 4[FABz, Lz(x/a)][FMu, STu(x)]. 

Letting n → ∞,  we get 
 [Fz, u(x) + Fz, z(x)][Fz, u(x) + Fu, u(x)] ≥  4[Fz, z(x/a)][Fu, u(x)], 

i.e. Fz,u  (x) ≥ 1,  yields z  =  u.  

 Therefore, z is a unique common fixed point of A, B, S, T, L and M. 
 This completes the proof.             
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Remark 3.1.  If we take B = T = I, the identity map on X in theorem 3.1, then the 
condition  (3.1.2) is satisfied trivially and we get 
 
Corollary 3.1.  Let A, S,  L and M be self mappings of a complete Menger space  
(X, FFFF, t) satisfying :  
(3.1.13)  L(X) ⊆  S(X),    M(X) ⊆  A(X);   
(3.1.14)  Either A or L is continuous; 
(3.1.15)  (L, A) is compatible and (M, S) is semi-compatible;  
(3.1.16)   for all p, q ∈ X, x > 0  and 0 < α < 1,   
     [FLp, Mq(x) + FAp, Lp(x)][FLp, Mq(x) + FSq, Mq(x)]  

    ≥  4[FAp, Lp(x/ α)][FMq, Sq(x)]. 

 Then A, S,  L and M have a unique common fixed point in X.  
 Next we utilize our Theorem 3.1 to prove another common fixed point theorem 
in a complete metric space. 
 
Theorem 3.2.  Let A, B, S, T, L and M  be self mappings of a complete metric sapce            
(X, d) satisfying (3.1.1), (3.1.2), (3.1.3), (3.1.4) and  

(3.1.17)    [d(Lp,Mq)]1/2{[d(ABp,Lp)] 1/2 +[d(STq,Mq)]1/2}  
    ≤ α{d(ABp,Lp)+ d(Mq, STq)}, 
       for all p, q ∈ X  where 0 < α < 1. 
 Then A, B, S, T, L and M have a unique common fixed point in X. 
Proof.  The proof follows from theorem 3.1  and by considering the induced Menger 
space (X, FFFF, t),  where t(a,b) = min {a, b} and Fp, q(x) = H(x - d(p,q)),  H being the 

distribution function as given in the definition 2.1. 
 
4. Conclusion  
In view of remark 3.1, corollary 3.1 is a generalization of the result of Singh and Sharma 
[12]  in the sense that the condition of compatibility of the pairs of self maps has been 
reduced to compatible and semi-compatible self maps and only  one of the compatible 
maps is needed to be  continuous.   
 
Acknowledgement. Authors are thankful to the referee for his valuable comments. 
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