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1. Introduction 
The concept of ideals in topological spaces are treated in the standard text by Kuratowski 
[8] and Vaidyanathaswamy [16]. In ‘general topology’ Hamlett and Jankovic [2, 3, 4, 17, 
18] introduced the application of topological ideal as defined below : An ideal ℐ on a 
topological space ( X, � ) is a non empty collection of subsets of X having the following 
properties : (i) A ∈ ℐ and B ⊆ A implies B ∈ ℐ. (ii) A ∈ ℐ and B ∈ ℐ implies A ∪ B ∈ ℐ. 
An ideal topological space is a toplogical space ( X, � ) with an ideal ℐ on X and is 
denoted by (X, �, ℐ). In addition K. Kuratowski[8] defined the local function for A ⊆ X 
with respect to ℐ and � as below : 
∗(ℐ, �) or 
∗(ℐ) = { x ∈ X : A ∩ U ∉ ℐ for any U ∈
�(x) } where �(x) = { U ∈ � : x ∈ U }. We simply write 
∗ instead of 
∗(ℐ). Arenas,  
Dontchev and Puertas [5] introduced some weak separation axioms under the concept of 
ideal. Swidi and Sada[10] introduced a new type of ideal for a single point � denoted as 
ℐ� and is defined as below : ℐ� = { U ⊆ X : x ∈ �� }, where U is a non-empty subset of 
X. Swidi and Nafee [9] introduced a new set in topological space namely “Gem-set” 
depending on the ℐ� and defined a new separation axioms by using the idea of the “Gem-
set” namely �∗-��-spaces and �∗∗-��-spaces for i = 0, 1 and 2. They also defined two 
mappings namely “�∗-map” and “�∗∗-map” to carry properties of the “Gem-set” from one 
space to another space and give more properties for new separation axioms. Swidi and 
Ethary [12] introduced a new class of maps namely “A-map”, “AO-map” and “Am-map” 
under the idea of the Gem-set and studied some of its basic properties and relations as 
well as the properties of the separation axioms of �∗-��-spaces and �∗∗-��-spaces for i = 0, 
1 and 2 with the functions and their effect upon them are also establised.  
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Aim of this article is to introduce the separation axioms to define Gem-regular 
space (G-��), Gem-normal space(G-��), Gem-compleletely normal space(G-��), Gem-
perfectly normal space(G-��) and �∗-��-spaces for i = 3, 4, 5 and 6 and study some of its 
basic properties. Also we study the relations as well as the properties of G-��-spaces and 
�∗-��-spaces for i = 3, 4, 5 and 6 in connection with the functions “�∗-map”, “�∗∗-map” 
“A-map” and “AO-map” and the effect upon them.  

Throughout this paper, spaces means topological spaces on which no separation 
axioms are assumed unless otherwise mentioned.  
 
2. Preliminaries 
Definition 2.1. Let ( X, � ) be a topological space, for A ⊆ X and x ∈ X we define 
∗� 
with respect to ( X, � ) as follows :   

∗� = { y ∈ X : G ∩ A ∉ ℐ�, for every G ∈ �(y) }, where �(y) = { G ∈ � : y ∈ G }. The set 

∗� is called “Gem-set”.  
  
Definition 2.2. Consider the mapping f : ( X, � ) → ( Y, � ), then f is called  
• �∗-map if and only if, for every subset A of X, x ∈ X, �(
∗�) = (�(
))∗�(�).  
• �∗∗-map if and only if, for every subset A of Y, y ∈ Y, 
���(
∗�) = (���(
))∗�

 !(�).  
 
Definition 2.3.Consider the mapping f : ( X, � ) → ( Y, � ), then f is an  
• A-map at x ∈ X, if and only if ∀ B ⊆ Y, ∃ A ⊆ X ∍: �(
∗�) ⊆ %∗�(�).  
• A-map on X if and only if it is an A-map at each point on X.  

• AO-map if and only if ∀ A ⊆ X, ∃ B ⊆ Y ∍: %∗� ⊆ �(
∗�
 !(&)

).  
 
3. Gem-separation axioms 
In this section we define Gem-regular space, Gem-normal space, Gem-completely normal 
space, Gem-perfectly normal space and �∗-��-spaces for i = 3, 4, 5 and 6 and derive some 
of its basic properties.  
 
Definition 3.1. A topological space ( X, � ) is a  
• Gem-regular space or G-��-space if and only if for each disjoint pair consisting a 
point x and a set C in X, there exists subsets A, B of X such that x ∉ %∗� and C ⊈ 
∗�.  
• Gem-normal space or G-��-space if and only if for each pair C and D of disjoint 
sets in X, there exists subsets A, B of X such that C ⊈ %∗� and D ⊈ 
∗�.  
• Gem-completely normal space or G-��-space if and only if for each pair of 
separated sets C and D in X, there exists subsets A, B of X such that C ⊈ %∗� and D 
⊈ 
∗�.  
• Gem-perfectly normal space or G-��-space if and only if for each pair C and D of 
disjoint sets in X, there exists a continuous map f : X → [0, 1] such that '∗� ≠ ���({1}) 
and ,∗� ≠ ���({0}).  
• �∗-��-space if and only if for each disjoint pair consisting a point x and a set C in 
X, there exists subset A of X such that x ∉ 
∗� and C ⊈ 
∗�.  
• �∗-��-space if and only if for each pair C and D of disjoint sets in X, there exists 
subset A of X such that C ⊈ 
∗� and D ⊈ 
∗�.  
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• �∗-��-space if and only if for each pair of separated sets C and D in X, there 
exists subset A of X such that C ⊈ 
∗� and D ⊈ 
∗�.  
• �∗-��-space if and only if for each pair C and D of disjoint sets in X, there exists 
a continuous map f : X → [0, 1] such that '∗� ≠ ���({1}) and ,∗� = ���({1})or'∗� = 
���({0}) and ,∗� ≠ ���({0}) 
 
Theorem 3.2. For a topological space ( X, � ) the following properties hold good :  

1. Every ��-space is a G-��-space.  
2. Every ��-space is a G-��-space.  
3. Every ��-space is a G-��-space.  
4. Every ��-space is a G-��-space.  
5. Every ��-space is a �∗-��-space.  
6. Every ��-space is a �∗-��-space.  
7. Every ��-space is a �∗-��-space.  
8. Every ��-space is a �∗-��-space.  

Proof: 1. Let x ∈ X and C be a closed set in X with x ∉ C. Since ( X, � ) is a ��-space. 
Then there exists disjoint open sets U, V such that x ∈ U and C ⊆ V. Then �∗� ∩ .∗� =
/. Let A = U, B = V. It follows that there exists subsets A, B of X such that x ∉ %∗� and 
C ⊈ 
∗�. Hence ( X, � ) is a G-��-space.  
2. Let C and D be the disjoint closed sets in X and ( X, � ) is a ��-space. Then there exists 
disjoint open sets U, V such that C ⊆ U and D ⊆ V. Then �∗� ∩ .∗� = /. Let A = U, B 
= V. It follows that there exists subsets A, B of X such that C ⊈ %∗� and D ⊈ 
∗�. Hence 
( X, � ) is a G-��-space.  
3. Let C and D be the separated sets in X ( i.e '0 ∩ D = C ∩ ,0  = / ) and ( X, � ) is a ��-
space. Then there exists disjoint open sets U, V such that C ⊆ U and D ⊆ V. Then 
�∗� ∩ .∗� = ℎ2. Let A = U, B = V. It follows that there exists subsets A, B of X such 
that C ⊈ %∗� and D ⊈ 
∗�. Hence ( X, � ) is a G-��-space. 
4. Let C and D be the disjoint closed sets in X and ( X, � ) is a ��-space. Then there exists 
a continuous map f : X → [0, 1] such that, C = ���({0}) and D = ���({1}). Then 
'∗� ∩ ,∗� = /. It follows that there exists a continuous map f : X → [0, 1] such that 
'∗� ≠ ���({1}) and ,∗� ≠ ���({0}). Hence ( X, � ) is a G-��-space.  
5. Let x ∈ X and C be a closed set in X with x ∉ C. Since ( X, � ) is a ��-space. Then 
there exists disjoint open sets U, V such that x ∈ U and C ⊆ V. Then �∗� ∩ .∗� = /. Let 
U = V = A. It follows that there exists a subset A of X such that x ∉ 
∗� and C ∉ 
∗�. 
Hence ( X, � ) is a �∗-��-space.  
6. Let C and D be the disjoint closed sets in X and ( X, � ) is a ��-space. Then there exists 
disjoint open sets U, V such that C ⊆ U and D ⊆ V. Then �∗� ∩ .∗� = /. Let U = V = 
A. It follows that there existssubsets A, B of X such that C ⊈ 
∗� and D ⊈ 
∗�. Hence ( 
X, � ) is a �∗-��-space.  
7. Let C and D be the separated sets in X and ( X, � ) is a ��-space. Then there exists 
disjoint open sets U, V such that C ⊆ U and D ⊆ V. Then �∗� ∩ .∗� = /. Let U = A = 
V. It follows that there exists subsetA of X such that C ⊈ 
∗� and D ⊈ 
∗�. Hence ( X, � 
) is a �∗-��-space.  
8. Let C and D be the disjoint closed sets in X and ( X, � ) is a ��-space. Then there exists 
a continuous map f : X → [0, 1] such that, C = ���({0}) and D = ���({1}). Then 
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'∗� ∩ ,∗� = /. It follows that there exists a continuous map f : X → [0, 1] such that 
'∗� ≠ ���({1}) and ,∗� = ���({1}) or '∗� = ���({0}) and ,∗� ≠ ���({0}) Hence ( X, 
� ) is a �∗-��-space. 
 
Remark : The converse of the above theorem need not be true.  
 
3.1. G-34-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for G-��-space. 
 
Theorem 3.1.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a G-��-space X onto a 
space Y, then Y is a G-��-space.   
Proof: Let 5� and '6 be a disjoint pair of Y. Since f is one-one and onto, there exists 
disjoint pair �� and '� of X such that �(��) = 5� and f('�) = '6. Since ( X, � ) is G-��-
space, there exists subsets A and B of X such that �� ∉ %

∗�7 and '� ⊈ 

∗�!, so that 

�(��) ∉ �(%
∗�7) = (�(%))∗�(�7) and �('�) ⊈ �(


∗�!) = (�(
))∗�(�!). Thus 
5� ∉ (�(%))

∗�(�7)8�7 and '69̸:;<;=(�(
))
∗�(�!)8�!. Thus Y is a G-��-space.  

 
Theorem 3.1.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto G-��-space 
Y, then X is a G-��-space.   
Proof: Let �� and '� be a disjoint pairs of X. Since f is one-one and onto, there exists 
disjoint pairs 5� and '6 of Y such that �(��) = 5� and �('�) = '6. Since ( Y, � ) is G-��-
space, there exists subsets A, B of Y such that 5� ∉ %

∗�7 and '6 ⊈ 

∗�!, so that 

���(5�) ∉ �
��(%∗�7) = (���(%))∗�

 !((�7)) and ���('6) ⊈ �
��(
∗�!) = 

(���(
))∗�
 !(�!). This implies �� ∉ (�

��(%))∗�7 and '� ⊈ (�
��(
))∗�!. Thus X is a G-

��-space.  
 
Theorem 3.1.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of a G-��-space X onto a 
space Y, then Y is a G-��-space. 
Proof: Let 5� and '6 be a disjoint pair of Y. Since f is one-one and onto, there exists a 
disjoint pair �� and '� of X such that �(��) = 5� and �('�) = '6. Since ( X, � ) is G-��-
space, there exists subsets 
�, 
6 of X such that �� ∉ 
6

∗�7 and '� ⊈ 
�
∗�!, so that 

�(��) ∉ �(
6
∗�7) ⊆ %6

∗�(�7) and �('�) ⊈ �(
�
∗�!) ⊆ %�

∗�(�!). This implies 5� ∉ %6
∗�7 and 

'6 ⊈ %�
∗�!. Thus Y is a G-��-space.  

 
Theorem 3.1.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto G-��-
space Y, then X is a G-��-space.   
Proof: Let �� and '� be a disjoint pair of X. Since f is one-one and onto, there exists a 
disjoint pair 5� and '6 of Y such that �(��) = 5� and �('�) = '6. Since ( Y, � ) is G-��-

space, there exists subsets %�, %6 of Y such that 5� ∉ %6
∗�7 ⊆ �(
6

∗� !(�7)) and 

'6 ⊈ %�
∗�! ⊆ �(
�

∗� !(�!)), so that ���(5�) ∉ �
��(�(
6

∗� !(�7))) and 

���('6)≠�
��(�(
�

∗� !(�!))). This implies �� ∉ 
6
∗�7 and '� ⊈ 
�

∗�!. Thus X is a G-��-
space.  
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3.2. G-3>-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for G-��-space.  
 
Theorem 3.2.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a G-��-space X onto a 
space Y, then Y is a G-��-space.   
Proof: Let '6 and ,6 be two disjoint sets in Y. Since f is one-one and onto, there exists 
disjoint sets '� and ,� of X such that �('�) = '6 and f(,�) = ,6. Since ( X, � ) is G-��-
space, there exists subsets A and B of X such that '� ⊈ %

∗�7 and ,� ⊈ 

∗�!, so that 

�('�) ⊈ �(%
∗�7) = (�(%))∗�(�7) and �(,�) ⊈ �(


∗�!) = (�(
))∗�(�!).  
Thus '6 ⊈ (�(%))

∗�(�7)8�7 and ,6 ⊈ (�(
))
∗�(�!)8�!. Thus Y is a G-��-space.  

 
Theorem 3.2.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto G-��-space 
Y, then X is a G-��-space.   
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is G-��-
space, there exists subsets A, B of Y such that '6 ⊈ %

∗�7 and ,6 ⊈ 

∗�!, so that 

���('6) ⊈ �
��(%∗�7) = (���(%))∗�

 !((�7)) and ���(,6) ⊈ �
��(
∗�!) = 

(���(
))∗�
 !(�!). This implies '� ⊈ (�

��(%))∗�7 and ,� ⊈ (�
��(
))∗�!. Thus X is a G-

��-space.  
 
Theorem 3.2.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of a �∗- ��-space X onto a 
space Y, then Y is a G-��-space.   
Proof: Let '6 and ,6 be two disjoint sets in Y. Since f is one-one and onto, there exists a 
disjoint sets '� and ,� of X such that �('�) = '6 and �(,�) = ,6. Since ( X, � ) is G-��-
space, there exists subsets 
�, 
6 of X such that '� ⊈ 
6

∗�7 and ,� ⊈ 
�
∗�!, so that 

�('�) ⊈ �(
6
∗�7) ⊆ %6

∗�(�7) and �(,�) ⊈ �(
�
∗�!) ⊆ %�

∗�(�!). This implies '6 ⊈ %6
∗�7 and 

,6 ⊈ %�
∗�!. Thus Y is a G-��-space.  

 
Theorem 3.2.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto G-��-
space Y, then X is a G-��-space.   
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists a 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is G-��-

space, there exists subsets %�, %6 of Y such that '6 ⊈ %6
∗�7 ⊆ �(
6

∗� !(�7)) and 

,6 ⊈ %�
∗�! ⊆ �(
�

∗� !(�!)), so that ���('6) ⊈ �
��(�(
6

∗� !(�7))) and 

���(,6) ⊈ �
��(�(
�

∗� !(�!))). This implies '� ⊈ 
6
∗�7 and ,� ⊈ 
�

∗�!. Thus X is a G-��-
space. 
 
3.3. G-3?-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for G-��-space.  
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Theorem 3.3.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a G-��-space X onto a 
space Y, then Y is a G-��-space.   
Proof: Let '6 and ,6 be separated sets in Y. Since f is one-one and onto, there exists 
separated sets '� and ,� of X such that �('�) = '6 and f(,�) = ,6. Since ( X, � ) is G-��-
space, there exists subsets A and B of X such that '� ⊈ %

∗�7 and ,� ⊈ 

∗�!, so that 

�('�) ⊈ �(%
∗�7) = (�(%))∗�(�7) and �(,�) ⊈ �(


∗�!) = (�(
))∗�(�!). Thus 
'6 ⊈ (�(%))

∗�(�7)8�7 and ,6 ⊈ (�(
))
∗�(�!)8�!. Thus Y is a G-��-space.  

 
Theorem 3.3.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto G-��-space 
Y, then X is a G-��-space.   
Proof: Let '� and ,� be separated sets in X. Since f is one-one and onto, there exists 
separated sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is G-
��-space, there exists subsets A, B of Y such that '6 ⊈ %

∗�7 and ,6 ⊈ 

∗�!, so that 

���('6) ⊈ �
��(%∗�7) = (���(%))∗�

 !((�7)) and ���(,6) ⊈ �
��(
∗�!) = 

(���(
))∗�
 !(�!). This implies '� ⊈ (�

��(%))∗�7 and ,� ⊈ (�
��(
))∗�!. Thus X is a G-

��-space. 
 
Theorem 3.3.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of an G-��-space X onto a 
space Y, then Y is a G-��-space.   
Proof: Let '6 and ,6 be separated sets in Y. Since f is one-one and onto, there exists 
separated sets '� and ,� of X such that �('�) = '6 and �(,�) = ,6. Since ( X, � ) is G-
��-space, there exists subsets 
�, 
6 of X such that '� ⊈ 
6

∗�7 and ,� ⊈ 
�
∗�!, so that 

�('�) ⊈ �(
6
∗�7) ⊆ %6

∗�(�7) and �(,�) ⊈ �(
�
∗�!) ⊆ %�

∗�(�!). This implies '6 ⊈ %6
∗�7 and 

,6 ⊈ %�
∗�!. Thus Y is a G-��-space.  

 
Theorem 3.3.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto G-��-
space Y, then X is a G-��-space.  
Proof: Let '� and ,� be separated sets in X. Since f is one-one and onto, there exists 
separated sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is G-

��-space, there exists subsets %�, %6 of Y such that '6 ⊈ %6
∗�7 ⊆ �(
6

∗� !(�7)) and 

,6 ⊈ %�
∗�! ⊆ �(
�

∗� !(�!)), so that ���('6) ⊈ �
��(�(
6

∗� !(�7))) and ���(,6)@< ⊆

���(�(
�
∗� !(�!))). This implies '� ⊈ 
6

∗�7 and ,� ⊈ 
�
∗�!. Thus X is a G-��-space. 

 
3.4. G-3A-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for G-��-space.  
 
Theorem 3.4.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a space X onto G-��-space 
Y, then X is a G-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since f is an �∗-map, 
so that f('�

∗�!) = (�('�))
∗�(�!) = '6

∗�! and f(,�
∗�7) = (�(,�))

∗�(�7) = ,6
∗�7 Since (Y, �) is 

G-��-space, there exists a continuous map g : Y → [0, 1] such that '6
∗�! ≠ B��({1}) and 
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,6
∗�7 ≠ B��({0}). This implies f('�

∗�!) ≠ B��({1}) and f(,�
∗�7) ≠ B��({0}). Now 

g(f('�
∗�!)) ≠ ({1}) and g(f(,�

∗�7)) ≠ ({0}). This implies h('�
∗�!) ≠ ({1}) and h(,�

∗�7) ≠ 
({0}). Thus'�

∗�! ≠ ℎ��({1}) and ,�
∗�7 ≠ ℎ��({0}) where h = g∘ � : X → [0, 1] is a 

continuous map. Hence by definition we have ( X, � ) is a G-��-space.  
 
Theorem 3.4.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto G-��-space 
Y, then X is a G-��-space. 
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since (Y, �) is G-��-
space, there exists a continuous map g : Y → [0, 1] such that '6

∗�! ≠ B��({1}) and 
,6
∗�7 ≠ B��({0}). So that ���( '6

∗�! ) ≠ ���( B��({1}) ) and ��� (,6
∗�7) ≠

���(B��({0})). This implies ���( '6
∗�! ) ≠ ℎ��({1}) and ��� (,6

∗�7) ≠ ℎ��({0}). Since 

f is an �∗∗-map, we have (���('6))
∗� !(�!) ≠ ℎ��({1}) and (���(,6))

∗� !(�7) ≠

ℎ��({0}). Thus'�
∗�! ≠ ℎ��({1}) and ,�

∗�7 ≠ ℎ��({0}) where h = g∘ � : X → [0, 1] is a 
continuous map. Hence by definition we have (X, �) is a G-��-space.  
 
Theorem 3.4.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of a space X onto G-��-space 
Y, then X is a G-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since f is an A-map, 

so that f('�
∗�!) ⊆ '6

∗�(�!) = '6
∗�! and f(,�

∗�7) ⊆ ,6
∗�(�7) = ,6

∗�7 Since (Y, �) is G-��-
space, there exists a continuous map g : Y → [0, 1] such that '6

∗�! ≠ B��({1}) and 
,6
∗�7 ≠ B��({0}).This implies f('�

∗�!) ⊆ '6
∗�! ≠ B��({1}) and f(,�

∗�7) ⊆ ,6
∗�7 ≠

B��({0}). This implies f('�
∗�!) ≠ B��({1}) and f(,�

∗�7) ≠ B��({0}). Now g(f('�
∗�!)) ≠ 

({1}) and g(f(,�
∗�7)) ≠ ({0}). This implies h('�

∗�!) ≠ ({1}) and h(,�
∗�7) ≠ ({0}). Thus 

'�
∗�! ≠ ℎ��({1}) and ,�

∗�7 ≠ ℎ��({0}) where h = B ∘ � :X → [0, 1] is a continuous map. 
Hence by definition we have ( X, � ) is a G-��-space.  
 
Theorem 3.4.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto G-��-
space Y, then X is a G-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since (Y, �) is G-��-
space, there exists a continuous map g : Y → [0, 1] such that '6

∗�! ≠ B��({1}) and 

,6
∗�7 ≠ B��({0}). Since f is an AO-map, so that '6

∗�! ⊆ �('�
∗� !(�!)) ≠ B��({1}) and 

,6
∗�7 ⊆ �(,�

∗� !(�7)) ≠ B��({0}). This implies f('�
∗�!) ≠ B��({1}) and f(,�

∗�7) ≠
B��({0}). Now g(f('�

∗�!)) ≠ ({1}) and g(f(,�
∗�7)) ≠ ({0}). This implies h('�

∗�!) ≠ ({1}) 
and h(,�

∗�7) ≠ ({0}). Thus '�
∗�! ≠ ℎ��({1}) and ,�

∗�7 ≠ ℎ��({0}) where h = g ∘ � : X → 
[0, 1] is a continuous map. Hence by definition we have ( X, � ) is a G-��-space.  
 
3.5. D∗-34-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for �∗-��-space.  
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Theorem 3.5.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a �∗-��-space X onto a 
space Y, then Y is a �∗-��-space.   
Proof: Let 5� and '6 be a disjoint pair of Y. Since f is one-one and onto, there exists 
disjoint pair �� and '� of X such that �(��) = 5� and f('�) = '6. Since ( X, � ) is �∗-��-
space, there exists subset A of X such that �� ∉ 


∗�7 and '� ⊈ 

∗�!, so that 

�(��) ∉ �(

∗�7) = (�(
))∗�(�7) and �('�) ⊈ �(


∗�!) = (�(
))∗�(�!). Thus 
5� ∉ (�(
))

∗�(�7)8�7 and '6 ⊈ (�(
))
∗�(�!)8�!. Thus Y is a �∗-��-space. 

 
Theorem 3.5.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.  
Proof: Let �� and '� be a disjoint pairs of X. Since f is one-one and onto, there exists 
disjoint pairs 5� and '6 of Y such that �(��) = 5� and �('�) = '6. Since ( Y, � ) is �∗-
��-space, there exists subset A of Y such that 5� ∉ 


∗�7 and '6 ⊈ 

∗�!, so that 

���(5�) ∉ �
��(
∗�7) = (���(
))∗�

 !((�7)) and ���('6) ⊈ �
��(
∗�!) = 

(���(
))∗�
 !(�!). This impies �� ∉ (�

��(
))∗�7  and '� ⊈ (�
��(
))∗�!. Thus X is a �∗-

��-space.  
 
Theorem 3.5.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of an �∗-��-space X onto a 
space Y, then Y is a �∗-��-space.  
Proof: Let 5� and '6 be a disjoint pair of Y. Since f is one-one and onto, there exists a 
disjoint pair �� and '� of X such that �(��) = 5� and �('�) = '6. Since ( X, � ) is �∗-��-
space, there exists subsets A of X such that �� ∉ 


∗�7 and '� ⊈ 

∗�!, so that 

�(��) ∉ �(

∗�7) ⊆ %∗�(�7) and �('�) ⊈ �(


∗�!) ⊆ %∗�(�!). This implies 5� ∉ %
∗�7 and 

'6 ⊈ %
∗�!. Thus Y is a �∗-��-space.  

 
Theorem 3.5.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.  
Proof: Let �� and '� be a disjoint pair of X. Since f is one-one and onto, there exists a 
disjoint pair 5� and '6 of Y such that �(��) = 5� and �('�) = '6. Since ( Y, � ) is �∗-��-
space, there exists subset B of Y such that 5� ∉ %

∗�7 ⊆ �(
∗�
 !(�7)) and '6 ⊈ %

∗�! ⊆

�(
∗�
 !(�!)), so that ���(5�) ∉ �

��(�(
∗�
 !(�7))) and ���('6) ⊈ �

��(�(
∗�
 !(�!))). 

This implies �� ∉ 

∗�7 and '� ⊈ 


∗�!. Thus X is a �∗-��-space.  

3.6. D∗-3>-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for �∗-��-space.  
 
Theorem 3.6.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a �∗-��-space X onto a 
space Y, then Y is a �∗-��-space.   
Proof: Let '6 and ,6 be two disjoint sets in Y. Since f is one-one and onto, there exists 
disjoint sets '� and ,� of X such that �('�) = '6 and f(,�) = ,6. Since ( X, � ) is �∗-��-
space, there exists a subset A of X such that'� ⊈ 


∗�7 and ,� ⊈ 

∗�!, so that 

�('�) ⊈ �(

∗�7) = (�(
))∗�(�7) and �(,�) ⊈ �(


∗�!) = (�(
))∗�(�!). Thus 
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'6 ⊈ (�(
))
∗�(�7)8�7and ,6 ⊈ (�(
))

∗�(�!)8�!. Thus Y is a �∗-��-space.  
 
Theorem 3.6.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is �∗-
��-space, there exists a subset A of Y such that '6 ⊈ 


∗�7 and ,6 ⊈ 

∗�!, so that 

���('6) ⊈ �
��(
∗�7) = (���(
))∗�

 !((�7)) and ���(,6) ⊈ �
��(
∗�!) = 

(���(
))∗�
 !(�!). This implies '� ⊈ (�

��(
))∗�7 and ,� ⊈ (�
��(
))∗�!. Thus X is a 

�∗-��-space.  
 
Theorem 3.6.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of a �∗-��-space X onto a 
space Y, then Y is a �∗-��-space.  
Proof: Let '6 and ,6 be two disjoint sets in Y. Since f is one-one and onto, there exists a 
disjoint sets '� and ,� of X such that �('�) = '6 and �(,�) = ,6. Since ( X, � ) is �∗-��-
space, there exists a subset A of X such that '� ⊈ 


∗�7 and ,� ⊈ 

∗�!, so that 

�('�) ⊈ �(

∗�7) ⊆ %∗�(�7) and �(,�) ⊈ �(


∗�!) ⊆ %∗�(�!). This implies '6 ⊈ %
∗�7 

and ,6 ⊈ %
∗�!. Thus Y is a �∗-��-space.  

 
Theorem 3.6.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.   
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists a 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is �∗-
��-space, there exists subsets B of Y such that '6 ⊈ %

∗�7 ⊆ �(
∗�
 !(�7)) and 

,6 ⊈ %
∗�! ⊆ �(
∗�

 !(�!)), so that ���('6) ⊈ �
��(�(
∗�

 !(�7))) and 
���(,6) ⊈ �

��(�(
∗�
 !(�!))). This implies '� ⊈ 


∗�7 and ,� ⊈ 

∗�!. Thus X is a �∗-

��-space.  

3.7. D∗-3?-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for �∗-��-space.  
 
Theorem 3.7.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a �∗-��-space X onto a 
space Y, then Y is a �∗-��-space.   
Proof: Let '6 and ,6 be separated sets in Y. Since f is one-one and onto, there exists 
separated sets '� and ,� of X such that �('�) = '6 and f(,�) = ,6. Since ( X, � ) is �∗-
��-space, there exists subset A of X such that '� ⊈ 


∗�7 and ,� ⊈ 

∗�!, so that 

�('�) ⊈ �(

∗�7) = (�(
))∗�(�7) and �(,�) ⊈ �(


∗�!) = (�(
))∗�(�!). Thus 
'6 ⊈ (�(
))

∗�(�7)8�7 and,6 ⊈ (�(
))
∗�(�!)8�!. Thus Y is a �∗-��-space.  

Theorem 3.7.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.   
Proof: Let '� and ,� be separated sets in X. Since f is one-one and onto, there exists 
separated sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is �∗-
��-space, there exists subset A of Y such that '6 ⊈ 


∗�7 and ,6 ⊈ 

∗�!, so that 
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���('6) ⊈ �
��(
∗�7) = (���(
))∗�

 !((�7)) and ���(,6) ⊈ �
��(
∗�!) = 

(���(
))∗�
 !(�!). This implies '� ⊈ (�

��(
))∗�7 and ,� ⊈ (�
��(
))∗�!. Thus X is a 

�∗-��-space.  
 
Theorem 3.7.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of an �∗-��-space X onto a 
space Y, then Y is a �∗-��-space.  
Proof: Let '6 and ,6 be separated sets in Y. Since f is one-one and onto, there exists 
separated sets '� and ,� of X such that �('�) = '6 and �(,�) = ,6. Since ( X, � ) is �∗-
��-space, there exists subset A of X such that '� ⊈ 


∗�7 and ,� ⊈ 

∗�!, so that 

�('�) ⊈ �(

∗�7) ⊆ %∗�(�7) and �(,�) ⊈ �(


∗�!) ⊆ %∗�(�!). This implies '6 ⊈ %
∗�7 

and ,6 ⊈ %
∗�!. Thus Y is a �∗-��-space.  

 
Theorem 3.7.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.   
Proof: Let '� and ,� be separated sets in X. Since f is one-one and onto, there exists 
separated sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since ( Y, � ) is �∗-
��-space, there exists subset B of Y such that '6 ⊈ %

∗�7 ⊆ �(
∗�
 !(�7)) and 

,6 ⊈ %
∗�! ⊆ �(
∗�

 !(�!)), so that ���('6) ⊈ �
��(�(
∗�

 !(�7))) and  
���(,6) ⊈ �

��(�(
∗�
 !(�!))). This implies '� ⊈ 


∗�7 and ,� ⊈ 

∗�!. Thus X is a �∗-

��-space.  

3.8. D∗-3A-space 
In this section we proved some theorems in connection with �∗-map, �∗∗-map, A-map and 
AO-map for �∗-��-space.  
 
Theorem 3.8.1. If f : ( X, � ) → ( Y, � ) is one-one �∗-map of a space X onto �∗-��-space 
Y, then X is a �∗-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since f is an �∗-map, 
so that f('�

∗�!) = (�('�))
∗�(�!) = '6

∗�! and f(,�
∗�7) = (�(,�))

∗�(�7) = ,6
∗�7 Since (Y, �) is 

�∗-��-space, there exists a continuous map g : Y → [0, 1] such that '6
∗�! ≠ B��({1}) and 

,6
∗�7 = B��({1}). This implies f('�

∗�!) ≠ B��({1}) and f(,�
∗�7) = B��({1}). Now 

g(f('�
∗�!)) ≠ ({1}) and g(f(,�

∗�7)) = ({1}). This implies h('�
∗�!) ≠ ({1}) and h(,�

∗�7) = 
({1}). Thus '�

∗�! ≠ ℎ��({1}) and ,�
∗�7 = ℎ��({1}) where h = g ∘ � : X → [0, 1] is a 

continuous map. Hence by definition we have ( X, � ) is a �∗-��-space. 
 
Theorem 3.8.2. If f : ( X, � ) → ( Y, � ) is one-one �∗∗-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since (Y, �) is �∗-��-
space, there exists a continuous map g : Y → [0, 1] such that '6

∗�! ≠ B��({1}) and ,6
∗�7 

= B��({1}). So that ���('6
∗�!) ≠ ���( B��({1}) ) and ��� (,6

∗�7) = ���( B��({1}) ). 
This implies ���('6

∗�! ) ≠ ℎ��({1}) and ���(,6
∗�7) = ℎ��({1}). Since f is an �∗∗-map, 

we have (���('6))
∗� !(�!) ≠ ℎ��({1}) and (���(,6))

∗� !(�7) = ℎ��({1}). This implies 
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'�
∗�! ≠ ℎ��({1}) and ,�

∗�7 = ℎ��({1}) where h = g ∘ � : X → [0, 1] is a continuous map. 
Thus by definition we have ( X, �) is a �∗-��-space.  
 
Theorem 3.8.3. If f : ( X, � ) → ( Y, � ) is one-one A-map of a space X onto �∗-��-space 
Y, then X is a �∗-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since f is an A-map, 

so that f('�
∗�!) ⊆ '6

∗�(�!) = '6
∗�! and f(,�

∗�7) ⊆ ,6
∗�(�7) = ,6

∗�7 Since (Y, �) is �∗-��-
space, there exists a continuous map g : Y → [0, 1] such that '6

∗�! ≠ B��({1}) and ,6
∗�7 

= B��({1}). This implies f('�
∗�!) ⊆ '6

∗�! ≠ B��({1}) and f(,�
∗�7) ⊆ ,6

∗�7 = B��({1}). 
This implies f('�

∗�!) ≠ B��({1}) and f(,�
∗�7) = B��({1}). Now g(f('�

∗�!)) ≠ ({1}) and 
g(f(,�

∗�7)) = ({1}). This implies h('�
∗�!) ≠ ({1}) and h(,�

∗�7) = ({1}). Thus 
'�
∗�! ⊈ ℎ��({1}) and ,�

∗�7 ⊆ ℎ��({1}) where h = g ∘ � : X → [0, 1] is a continuous map. 
Hence by definition we have ( X, � ) is a �∗-��-space.  
 
Theorem 3.8.4. If f : ( X, � ) → ( Y, � ) is one-one AO-map of a space X onto �∗-��-
space Y, then X is a �∗-��-space.  
Proof: Let '� and ,� be two disjoint sets in X. Since f is one-one and onto, there exists 
disjoint sets '6 and ,6 of Y such that �('�) = '6 and �(,�) = ,6. Since (Y, �) is �∗-��-
space, there exists a continuous map g : Y → [0, 1] such that '6

∗�! ≠ B��({1}) and ,6
∗�7 

= B��({1}). Since f is an AO-map, so that '6
∗�! ⊆ �('�

∗� !(�!)) ≠ B��({1}) and ,6
∗�7 ⊆

�(,�
∗� !(�7)) = B��({1}). This implies f('�

∗�!) ≠ B��({1}) and f(,�
∗�7) = B��({1}). Now 

g(f('�
∗�!)) ≠ ({1}) and g(f(,�

∗�7)) = ({1}). This implies h('�
∗�!) ≠ ({1}) and h(,�

∗�7) = 
({1}). Thus '�

∗�! ≠ ℎ��({1}) and ,�
∗�7 = ℎ��({1}) where h = g∘ � : X → [0, 1] is a 

continuous map. Hence by definition we have ( X, � ) is a �∗-��-space.  
 
4. Conclusion 
In this article, we studied some basic concepts and relations involving Gem-separation 
axioms. We also rename �∗-�E-space, �∗-��-space, �∗-�6-space by Gem-Kolmogorov 
space(G-�E-space), Gem-accessible space or Gem-Frechlet space(G-��-space) and Gem-
Hausdorff space(G-�6-space) and �∗∗-��-spaces by �∗-��-spaces. In future the concepts 
used in nano-topology can be adopted to prove that Gem-set in nano topological space. 
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