Annals of Pure and Applied Mathematics Vol. 15, No. 1, 2017, 133-144 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v15n1a13

Annals of **Pure and Applied Mathematics**

Gem-Separation Axioms in Topological Space

R. Rathinam¹ and C. $Elango^2$

 ¹Theni Kammavar Sangam College of Arts and Science Theni, Tamilnadu, India 625 534
²Cardamom Planters' Association College, Bodinayakanur Tamilnadu, India 625 513
¹Corresponding author

Received 2 November 2017; accepted 4 December 2017

Abstract. In this article we introduce a new separation axioms to define Gem-regular space, Gem-normal space, Gem-completely normal space, Gem-perfectly normal space and G^*-T_i -spaces for i = 3, 4, 5 and 6 under the idea of "Gem-set" and study some of its basic properties and relations among them.

Keywords: Gem-set, Gem-regular space, Gem-normal space Gem-completely normal space and Gem-perfectly normal space, and G^* - T_i -spaces.

AMS Mathematics Subject Classification (2010): 46M20

1. Introduction

The concept of ideals in topological spaces are treated in the standard text by Kuratowski [8] and Vaidyanathaswamy [16]. In 'general topology' Hamlett and Jankovic [2, 3, 4, 17, 18] introduced the application of topological ideal as defined below : An ideal \mathcal{I} on a topological space (X, τ) is a non empty collection of subsets of X having the following properties : (i) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$. (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. An ideal topological space is a toplogical space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, J) . In addition K. Kuratowski[8] defined the local function for $A \subseteq X$ with respect to \mathcal{I} and τ as below : $A^*(\mathcal{I}, \tau)$ or $A^*(\mathcal{I}) = \{ x \in X : A \cap U \notin \mathcal{I} \text{ for any } U \in \mathcal{I} \}$ $\tau(x)$ where $\tau(x) = \{ U \in \tau : x \in U \}$. We simply write A^* instead of $A^*(\mathcal{I})$. Arenas, Dontchev and Puertas [5] introduced some weak separation axioms under the concept of ideal. Swidi and Sada[10] introduced a new type of ideal for a single point x denoted as \mathcal{I}_x and is defined as below : $\mathcal{I}_x = \{ U \subseteq X : x \in U^c \}$, where U is a non-empty subset of X. Swidi and Nafee [9] introduced a new set in topological space namely "Gem-set" depending on the \mathcal{I}_{x} and defined a new separation axioms by using the idea of the "Gemset" namely I^*-T_i -spaces and $I^{**}-T_i$ -spaces for i = 0, 1 and 2. They also defined two mappings namely " I^* -map" and " I^{**} -map" to carry properties of the "Gem-set" from one space to another space and give more properties for new separation axioms. Swidi and Ethary [12] introduced a new class of maps namely "A-map", "AO-map" and "Am-map" under the idea of the Gem-set and studied some of its basic properties and relations as well as the properties of the separation axioms of I^*-T_i -spaces and $I^{**}-T_i$ -spaces for i = 0, 1 and 2 with the functions and their effect upon them are also establised.

Aim of this article is to introduce the separation axioms to define Gem-regular space (G- T_3), Gem-normal space(G- T_4), Gem-completely normal space(G- T_5), Gem-perfectly normal space(G- T_6) and G^*-T_i -spaces for i = 3, 4, 5 and 6 and study some of its basic properties. Also we study the relations as well as the properties of G- T_i -spaces and G^*-T_i -spaces for i = 3, 4, 5 and 6 in connection with the functions " I^* -map", " I^{**} -map" "A-map" and "AO-map" and the effect upon them.

Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned.

2. Preliminaries

Definition 2.1. Let (X, τ) be a topological space, for $A \subseteq X$ and $x \in X$ we define A^{*x} with respect to (X, τ) as follows :

 $A^{*x} = \{ y \in X : G \cap A \notin \mathcal{I}_x, \text{ for every } G \in \tau(y) \}, \text{ where } \tau(y) = \{ G \in \tau : y \in G \}. \text{ The set } A^{*x} \text{ is called "Gem-set".} \}$

Definition 2.2. Consider the mapping $f: (X, \tau) \rightarrow (Y, \sigma)$, then f is called

• I^* -map if and only if, for every subset A of X, $x \in X$, $f(A^{*x}) = (f(A))^{*f(x)}$.

• I^{**} -map if and only if, for every subset A of Y, $y \in Y$, $f^{-1}(A^{*y}) = (f^{-1}(A))^{*f^{-1}(y)}$.

Definition 2.3.Consider the mapping $f : (X, \tau) \rightarrow (Y, \sigma)$, then f is an

- A-map at $x \in X$, if and only if $\forall B \subseteq Y$, $\exists A \subseteq X \ni$: $f(A^{*x}) \subseteq B^{*f(x)}$.
- A-map on X if and only if it is an A-map at each point on X.
- AO-map if and only if $\forall A \subseteq X, \exists B \subseteq Y \ni : B^{*y} \subseteq f(A^{*f^{-1}(y)})$.

3. Gem-separation axioms

In this section we define Gem-regular space, Gem-normal space, Gem-completely normal space, Gem-perfectly normal space and G^* - T_i -spaces for i = 3, 4, 5 and 6 and derive some of its basic properties.

Definition 3.1. A topological space (X, τ) is a

• Gem-regular space or $G-T_3$ -space if and only if for each disjoint pair consisting a point x and a set C in X, there exists subsets A, B of X such that $x \notin B^{*y}$ and $C \not\subseteq A^{*x}$.

• Gem-normal space or $G-T_4$ -space if and only if for each pair C and D of disjoint sets in X, there exists subsets A, B of X such that $C \not\subseteq B^{*y}$ and $D \not\subseteq A^{*x}$.

• Gem-completely normal space or $G-T_5$ -space if and only if for each pair of separated sets C and D in X, there exists subsets A, B of X such that $C \not\subseteq B^{*y}$ and D $\not\subseteq A^{*x}$.

• Gem-perfectly normal space or $G-T_6$ -space if and only if for each pair C and D of disjoint sets in X, there exists a continuous map $f: X \to [0, 1]$ such that $C^{*x} \neq f^{-1}(\{1\})$ and $D^{*y} \neq f^{-1}(\{0\})$.

• G^*-T_3 -space if and only if for each disjoint pair consisting a point x and a set C in X, there exists subset A of X such that $x \notin A^{*y}$ and $C \not\subseteq A^{*x}$.

• G^*-T_4 -space if and only if for each pair C and D of disjoint sets in X, there exists subset A of X such that $C \not\subseteq A^{*y}$ and $D \not\subseteq A^{*x}$.

• G^*-T_5 -space if and only if for each pair of separated sets C and D in X, there exists subset A of X such that $C \not\subseteq A^{*y}$ and $D \not\subseteq A^{*x}$.

• G^*-T_6 -space if and only if for each pair C and D of disjoint sets in X, there exists a continuous map $f: X \to [0, 1]$ such that $C^{*x} \neq f^{-1}(\{1\})$ and $D^{*y} = f^{-1}(\{1\})$ **or** $C^{*x} = f^{-1}(\{0\})$ and $D^{*y} \neq f^{-1}(\{0\})$

Theorem 3.2. For a topological space (X, τ) the following properties hold good :

- 1. Every T_3 -space is a G- T_3 -space.
- 2. Every T_4 -space is a G- T_4 -space.
- 3. Every T_5 -space is a G- T_5 -space.
- 4. Every T_6 -space is a G- T_6 -space.
- 5. Every T_3 -space is a G^* - T_3 -space.
- 6. Every T_4 -space is a G^* - T_4 -space.
- 7. Every T_5 -space is a G^* - T_5 -space.
- 8. Every T_6 -space is a G^* - T_6 -space.

Proof: 1. Let $x \in X$ and C be a closed set in X with $x \notin C$. Since (X, τ) is a T_3 -space. Then there exists disjoint open sets U, V such that $x \in U$ and $C \subseteq V$. Then $U^{*x} \cap V^{*y} = \phi$. Let A = U, B = V. It follows that there exists subsets A, B of X such that $x \notin B^{*y}$ and $C \not\subseteq A^{*x}$. Hence (X, τ) is a G- T_3 -space.

2. Let C and D be the disjoint closed sets in X and (X, τ) is a T_4 -space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{*x} \cap V^{*y} = \phi$. Let A = U, B = V. It follows that there exists subsets A, B of X such that $C \not\subseteq B^{*y}$ and $D \not\subseteq A^{*x}$. Hence (X, τ) is a G- T_4 -space.

3. Let C and D be the separated sets in X (i.e $\overline{C} \cap D = C \cap \overline{D} = \phi$) and (X, τ) is a T_5 -space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{*x} \cap V^{*y} = hi$. Let A = U, B = V. It follows that there exists subsets A, B of X such that $C \not\subseteq B^{*y}$ and $D \not\subseteq A^{*x}$. Hence (X, τ) is a G- T_5 -space.

4. Let C and D be the disjoint closed sets in X and (X, τ) is a T_6 -space. Then there exists a continuous map $f : X \to [0, 1]$ such that, $C = f^{-1}(\{0\})$ and $D = f^{-1}(\{1\})$. Then $C^{*x} \cap D^{*y} = \phi$. It follows that there exists a continuous map $f : X \to [0, 1]$ such that $C^{*x} \neq f^{-1}(\{1\})$ and $D^{*y} \neq f^{-1}(\{0\})$. Hence (X, τ) is a G- T_6 -space.

5. Let $x \in X$ and C be a closed set in X with $x \notin C$. Since (X, τ) is a T_3 -space. Then there exists disjoint open sets U, V such that $x \in U$ and $C \subseteq V$. Then $U^{*x} \cap V^{*y} = \phi$. Let U = V = A. It follows that there exists a subset A of X such that $x \notin A^{*y}$ and $C \notin A^{*x}$. Hence (X, τ) is a G^* - T_3 -space.

6. Let C and D be the disjoint closed sets in X and (X, τ) is a T_4 -space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{*x} \cap V^{*y} = \phi$. Let U = V = A. It follows that there exists ubsets A, B of X such that $C \not\subseteq A^{*y}$ and $D \not\subseteq A^{*x}$. Hence (X, τ) is a G^* - T_4 -space.

7. Let C and D be the separated sets in X and (X, τ) is a T_5 -space. Then there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$. Then $U^{*x} \cap V^{*y} = \phi$. Let U = A = V. It follows that there exists subsetA of X such that $C \not\subseteq A^{*y}$ and $D \not\subseteq A^{*x}$. Hence (X, τ) is a G^* - T_5 -space.

8. Let C and D be the disjoint closed sets in X and (X, τ) is a T_6 -space. Then there exists a continuous map $f : X \to [0, 1]$ such that, $C = f^{-1}(\{0\})$ and $D = f^{-1}(\{1\})$. Then

 $C^{*x} \cap D^{*y} = \phi$. It follows that there exists a continuous map $f : X \to [0, 1]$ such that $C^{*x} \neq f^{-1}(\{1\})$ and $D^{*y} = f^{-1}(\{1\})$ or $C^{*x} = f^{-1}(\{0\})$ and $D^{*y} \neq f^{-1}(\{0\})$ Hence (X, τ) is a G^* - T_6 -space.

Remark : The converse of the above theorem need not be true.

3.1. G-T₃-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for $G_{-}T_3$ -space.

Theorem 3.1.1. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is one-one I^* -map of a $G-T_3$ -space X onto a space Y, then Y is a $G-T_3$ -space.

Proof: Let y_1 and C_2 be a disjoint pair of Y. Since f is one-one and onto, there exists disjoint pair x_1 and C_1 of X such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (X, τ) is G-T₃-space, there exists subsets A and B of X such that $x_1 \notin B^{*x_2}$ and $C_1 \notin A^{*x_1}$, so that $f(x_1) \notin f(B^{*x_2}) = (f(B))^{*f(x_2)}$ and $f(C_1) \notin f(A^{*x_1}) = (f(A))^{*f(x_1)}$. Thus $y_1 \notin (f(B))^{*f(x_2)=y_2}$ and $C_2 bseteq(f(A))^{*f(x_1)=y_1}$. Thus Y is a G-T₃-space.

Theorem 3.1.2. If $f: (X, \tau) \to (Y, \sigma)$ is one-one I^{**} -map of a space X onto G- T_3 -space Y, then X is a G- T_3 -space.

Proof: Let x_1 and C_1 be a disjoint pairs of X. Since f is one-one and onto, there exists disjoint pairs y_1 and C_2 of Y such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (Y, σ) is G- T_3 -space, there exists subsets A, B of Y such that $y_1 \notin B^{*y_2}$ and $C_2 \not \subseteq A^{*y_1}$, so that $f^{-1}(y_1) \notin f^{-1}(B^{*y_2}) = (f^{-1}(B))^{*f^{-1}((y_2))}$ and $f^{-1}(C_2) \not \subseteq f^{-1}(A^{*y_1}) = (f^{-1}(A))^{*f^{-1}(y_1)}$. This implies $x_1 \notin (f^{-1}(B))^{*x_2}$ and $C_1 \not \subseteq (f^{-1}(A))^{*x_1}$. Thus X is a G- T_3 -space.

Theorem 3.1.3. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is one-one A-map of a G- T_3 -space X onto a space Y, then Y is a G- T_3 -space.

Proof: Let y_1 and C_2 be a disjoint pair of Y. Since f is one-one and onto, there exists a disjoint pair x_1 and C_1 of X such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (X, τ) is G- T_3 -space, there exists subsets A_1 , A_2 of X such that $x_1 \notin A_2^{*x_2}$ and $C_1 \notin A_1^{*x_1}$, so that $f(x_1) \notin f(A_2^{*x_2}) \subseteq B_2^{*f(x_2)}$ and $f(C_1) \notin f(A_1^{*x_1}) \subseteq B_1^{*f(x_1)}$. This implies $y_1 \notin B_2^{*y_2}$ and $C_2 \notin B_1^{*y_1}$. Thus Y is a G- T_3 -space.

Theorem 3.1.4. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one AO-map of a space X onto $G-T_3$ -space Y, then X is a $G-T_3$ -space.

Proof: Let x_1 and C_1 be a disjoint pair of X. Since f is one-one and onto, there exists a disjoint pair y_1 and C_2 of Y such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (Y, σ) is $G-T_3$ -space, there exists subsets B_1 , B_2 of Y such that $y_1 \notin B_2^{*y_2} \subseteq f(A_2^{*f^{-1}(y_2)})$ and $C_2 \notin B_1^{*y_1} \subseteq f(A_1^{*f^{-1}(y_1)})$, so that $f^{-1}(y_1) \notin f^{-1}(f(A_2^{*f^{-1}(y_2)}))$ and $f^{-1}(C_2) \notin f^{-1}(f(A_1^{*f^{-1}(y_1)}))$. This implies $x_1 \notin A_2^{*x_2}$ and $C_1 \notin A_1^{*x_1}$. Thus X is a $G-T_3$ -space.

3.2. G-*T*₄-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for G- T_4 -space.

Theorem 3.2.1. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one I^* -map of a G- T_4 -space X onto a space Y, then Y is a G- T_4 -space.

Proof: Let C_2 and D_2 be two disjoint sets in Y. Since f is one-one and onto, there exists disjoint sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G- T_4 -space, there exists subsets A and B of X such that $C_1 \leq B^{*x_2}$ and $D_1 \leq A^{*x_1}$, so that $f(C_1) \leq f(B^{*x_2}) = (f(B))^{*f(x_2)}$ and $f(D_1) \leq f(A^{*x_1}) = (f(A))^{*f(x_1)}$. Thus $C_2 \leq (f(B))^{*f(x_2)=y_2}$ and $D_2 \leq (f(A))^{*f(x_1)=y_1}$. Thus Y is a G- T_4 -space.

Theorem 3.2.2. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is one-one I^{**} -map of a space X onto G- T_4 -space Y, then X is a G- T_4 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G- T_4 -space, there exists subsets A, B of Y such that $C_2 \not\subseteq B^{*y_2}$ and $D_2 \not\subseteq A^{*y_1}$, so that $f^{-1}(C_2) \not\subseteq f^{-1}(B^{*y_2}) = (f^{-1}(B))^{*f^{-1}((y_2))}$ and $f^{-1}(D_2) \not\subseteq f^{-1}(A^{*y_1}) = (f^{-1}(A))^{*f^{-1}(y_1)}$. This implies $C_1 \not\subseteq (f^{-1}(B))^{*x_2}$ and $D_1 \not\subseteq (f^{-1}(A))^{*x_1}$. Thus X is a G- T_4 -space.

Theorem 3.2.3. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one A-map of a I^* - T_4 -space X onto a space Y, then Y is a G- T_4 -space.

Proof: Let C_2 and D_2 be two disjoint sets in Y. Since f is one-one and onto, there exists a disjoint sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G- T_4 -space, there exists subsets A_1 , A_2 of X such that $C_1 \not \leq A_2^{*x_2}$ and $D_1 \not \leq A_1^{*x_1}$, so that $f(C_1) \not \leq f(A_2^{*x_2}) \subseteq B_2^{*f(x_2)}$ and $f(D_1) \not \leq f(A_1^{*x_1}) \subseteq B_1^{*f(x_1)}$. This implies $C_2 \not \leq B_2^{*y_2}$ and $D_2 \not \leq B_1^{*y_1}$. Thus Y is a G- T_4 -space.

Theorem 3.2.4. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one AO-map of a space X onto $G-T_4$ -space Y, then X is a $G-T_4$ -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists a disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is $G-T_4$ -space, there exists subsets B_1 , B_2 of Y such that $C_2 \not \subseteq B_2^{*y_2} \subseteq f(A_2^{*f^{-1}(y_2)})$ and $D_2 \not \subseteq B_1^{*y_1} \subseteq f(A_1^{*f^{-1}(y_1)})$, so that $f^{-1}(C_2) \not \subseteq f^{-1}(f(A_2^{*f^{-1}(y_2)}))$ and $f^{-1}(D_2) \not \subseteq f^{-1}(f(A_1^{*f^{-1}(y_1)}))$. This implies $C_1 \not \subseteq A_2^{*x_2}$ and $D_1 \not \subseteq A_1^{*x_1}$. Thus X is a $G-T_4$ -space.

3.3. G-T₅-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for G- T_5 -space.

Theorem 3.3.1. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^* -map of a G- T_5 -space X onto a space Y, then Y is a G- T_5 -space.

Proof: Let C_2 and D_2 be separated sets in Y. Since f is one-one and onto, there exists separated sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is $G-T_5$ -space, there exists subsets A and B of X such that $C_1 \not\subseteq B^{*x_2}$ and $D_1 \not\subseteq A^{*x_1}$, so that $f(C_1) \not\subseteq f(B^{*x_2}) = (f(B))^{*f(x_2)}$ and $f(D_1) \not\subseteq f(A^{*x_1}) = (f(A))^{*f(x_1)}$. Thus $C_2 \not\subseteq (f(B))^{*f(x_2)=y_2}$ and $D_2 \not\subseteq (f(A))^{*f(x_1)=y_1}$. Thus Y is a G-T₅-space.

Theorem 3.3.2. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^{**} -map of a space X onto $G-T_5$ -space Y, then X is a $G-T_5$ -space.

Proof: Let C_1 and D_1 be separated sets in X. Since f is one-one and onto, there exists separated sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G- T_5 -space, there exists subsets A, B of Y such that $C_2 \not\subseteq B^{*y_2}$ and $D_2 \not\subseteq A^{*y_1}$, so that $f^{-1}(C_2) \not\subseteq f^{-1}(B^{*y_2}) = (f^{-1}(B))^{*f^{-1}((y_2))}$ and $f^{-1}(D_2) \not\subseteq f^{-1}(A^{*y_1}) = (f^{-1}(A))^{*f^{-1}(y_1)}$. This implies $C_1 \not\subseteq (f^{-1}(B))^{*x_2}$ and $D_1 \not\subseteq (f^{-1}(A))^{*x_1}$. Thus X is a G- T_5 -space.

Theorem 3.3.3. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one A-map of an G-*T*₅-space X onto a space Y, then Y is a G-*T*₅-space.

Proof: Let C_2 and D_2 be separated sets in Y. Since f is one-one and onto, there exists separated sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G- T_5 -space, there exists subsets A_1 , A_2 of X such that $C_1 \not\subseteq A_2^{*x_2}$ and $D_1 \not\subseteq A_1^{*x_1}$, so that $f(C_1) \not\subseteq f(A_2^{*x_2}) \subseteq B_2^{*f(x_2)}$ and $f(D_1) \not\subseteq f(A_1^{*x_1}) \subseteq B_1^{*f(x_1)}$. This implies $C_2 \not\subseteq B_2^{*y_2}$ and $D_2 \not\subseteq B_1^{*y_1}$. Thus Y is a G- T_5 -space.

Theorem 3.3.4. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one AO-map of a space X onto $G-T_5$ -space Y, then X is a $G-T_5$ -space.

Proof: Let C_1 and D_1 be separated sets in X. Since f is one-one and onto, there exists separated sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G- T_5 -space, there exists subsets B_1 , B_2 of Y such that $C_2 \not\subseteq B_2^{*y_2} \subseteq f(A_2^{*f^{-1}(y_2)})$ and $D_2 \not\subseteq B_1^{*y_1} \subseteq f(A_1^{*f^{-1}(y_1)})$, so that $f^{-1}(C_2) \not\subseteq f^{-1}(f(A_2^{*f^{-1}(y_2)}))$ and $f^{-1}(D_2)ot \subseteq f^{-1}(f(A_1^{*f^{-1}(y_1)}))$. This implies $C_1 \not\subseteq A_2^{*x_2}$ and $D_1 \not\subseteq A_1^{*x_1}$. Thus X is a G- T_5 -space.

3.4. G-*T*₆-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for G- T_6 -space.

Theorem 3.4.1. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is one-one l^* -map of a space X onto G- T_6 -space Y, then X is a G- T_6 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since f is an I^* -map, so that $f(C_1^{*x_1}) = (f(C_1))^{*f(x_1)} = C_2^{*y_1}$ and $f(D_1^{*x_2}) = (f(D_1))^{*f(x_2)} = D_2^{*y_2}$ Since (Y, σ) is G- T_6 -space, there exists a continuous map g : Y \rightarrow [0, 1] such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and

 $D_2^{*y_2} \neq g^{-1}(\{0\})$. This implies $f(C_1^{*x_1}) \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) \neq g^{-1}(\{0\})$. Now $g(f(C_1^{*x_1})) \neq (\{1\})$ and $g(f(D_1^{*x_2})) \neq (\{0\})$. This implies $h(C_1^{*x_1}) \neq (\{1\})$ and $h(D_1^{*x_2}) \neq (\{0\})$. Thus $C_1^{*x_1} \neq h^{-1}(\{1\})$ and $D_1^{*x_2} \neq h^{-1}(\{0\})$ where $h = g \circ f : X \to [0, 1]$ is a continuous map. Hence by definition we have (X, τ) is a G- T_6 -space.

Theorem 3.4.2. If $f: (X, \tau) \to (Y, \sigma)$ is one-one I^{**} -map of a space X onto G- T_6 -space Y, then X is a G- T_6 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is $G-T_6$ -space, there exists a continuous map $g : Y \to [0, 1]$ such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and $D_2^{*y_2} \neq g^{-1}(\{0\})$. So that $f^{-1}(C_2^{*y_1}) \neq f^{-1}(g^{-1}(\{1\}))$ and $f^{-1}(D_2^{*y_2}) \neq f^{-1}(g^{-1}(\{0\}))$. This implies $f^{-1}(C_2^{*y_1}) \neq h^{-1}(\{1\})$ and $f^{-1}(D_2^{*y_2}) \neq h^{-1}(\{0\})$. Since f is an I^{**} -map, we have $(f^{-1}(C_2))^{*f^{-1}(y_1)} \neq h^{-1}(\{1\})$ and $(f^{-1}(D_2))^{*f^{-1}(y_2)} \neq h^{-1}(\{0\})$. Thus $C_1^{*x_1} \neq h^{-1}(\{1\})$ and $D_1^{*x_2} \neq h^{-1}(\{0\})$ where $h = g \circ f : X \to [0, 1]$ is a continuous map. Hence by definition we have (X, τ) is a $G-T_6$ -space.

Theorem 3.4.3. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one A-map of a space X onto $G-T_6$ -space Y, then X is a $G-T_6$ -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since f is an A-map, so that $f(C_1^{*x_1}) \subseteq C_2^{*f(x_1)} = C_2^{*y_1}$ and $f(D_1^{*x_2}) \subseteq D_2^{*f(x_2)} = D_2^{*y_2}$ Since (Y, σ) is G- T_6 -space, there exists a continuous map g : $Y \rightarrow [0, 1]$ such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and $D_2^{*y_2} \neq g^{-1}(\{0\})$. This implies $f(C_1^{*x_1}) \subseteq C_2^{*y_1} \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) \subseteq D_2^{*y_2} \neq g^{-1}(\{0\})$. This implies $f(C_1^{*x_1}) \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) \neq g^{-1}(\{0\})$. Now $g(f(C_1^{*x_1})) \neq (\{1\})$ and $g(f(D_1^{*x_2})) \neq (\{0\})$. This implies $h(C_1^{*x_1}) \neq (\{1\})$ and $h(D_1^{*x_2}) \neq (\{0\})$. Thus $C_1^{*x_1} \neq h^{-1}(\{1\})$ and $D_1^{*x_2} \neq h^{-1}(\{0\})$ where $h = g \circ f : X \rightarrow [0, 1]$ is a continuous map. Hence by definition we have (X, τ) is a G- T_6 -space.

Theorem 3.4.4. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one AO-map of a space X onto $G-T_6$ -space Y, then X is a $G-T_6$ -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is $G-T_6$ -space, there exists a continuous map g : $Y \rightarrow [0, 1]$ such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and $D_2^{*y_2} \neq g^{-1}(\{0\})$. Since f is an AO-map, so that $C_2^{*y_1} \subseteq f(C_1^{*f^{-1}(y_1)}) \neq g^{-1}(\{1\})$ and $D_2^{*y_2} \subseteq f(D_1^{*f^{-1}(y_2)}) \neq g^{-1}(\{0\})$. This implies $f(C_1^{*x_1}) \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) \neq g^{-1}(\{0\})$. Now $g(f(C_1^{*x_1})) \neq (\{1\})$ and $g(f(D_1^{*x_2})) \neq (\{0\})$. This implies $h(C_1^{*x_1}) \neq (\{1\})$ and $h(D_1^{*x_2}) \neq (\{0\})$. Thus $C_1^{*x_1} \neq h^{-1}(\{1\})$ and $D_1^{*x_2} \neq h^{-1}(\{0\})$ where $h = g \circ f : X \rightarrow [0, 1]$ is a continuous map. Hence by definition we have (X, τ) is a $G-T_6$ -space.

3.5. *G**-*T*₃-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for G^* - T_3 -space.

Theorem 3.5.1. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^* -map of a G^* - T_3 -space X onto a space Y, then Y is a G^* - T_3 -space.

Proof: Let y_1 and C_2 be a disjoint pair of Y. Since f is one-one and onto, there exists disjoint pair x_1 and C_1 of X such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (X, τ) is G^*-T_3 -space, there exists subset A of X such that $x_1 \notin A^{*x_2}$ and $C_1 \not \subseteq A^{*x_1}$, so that $f(x_1) \notin f(A^{*x_2}) = (f(A))^{*f(x_2)}$ and $f(C_1) \not \subseteq f(A^{*x_1}) = (f(A))^{*f(x_1)}$. Thus $y_1 \notin (f(A))^{*f(x_2)=y_2}$ and $C_2 \not \subseteq (f(A))^{*f(x_1)=y_1}$. Thus Y is a G^*-T_3 -space.

Theorem 3.5.2. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is one-one I^{**} -map of a space X onto G^* - T_3 -space Y, then X is a G^* - T_3 -space.

Proof: Let x_1 and C_1 be a disjoint pairs of X. Since f is one-one and onto, there exists disjoint pairs y_1 and C_2 of Y such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (Y, σ) is G^* - T_3 -space, there exists subset A of Y such that $y_1 \notin A^{*y_2}$ and $C_2 \notin A^{*y_1}$, so that $f^{-1}(y_1) \notin f^{-1}(A^{*y_2}) = (f^{-1}(A))^{*f^{-1}((y_2))}$ and $f^{-1}(C_2) \notin f^{-1}(A^{*y_1}) = (f^{-1}(A))^{*f^{-1}(y_1)}$. This implies $x_1 \notin (f^{-1}(A))^{*x_2}$ and $C_1 \notin (f^{-1}(A))^{*x_1}$. Thus X is a G^* - T_3 -space.

Theorem 3.5.3. If $f : (X, \tau) \to (Y, \sigma)$ is one-one A-map of an G^* - T_3 -space X onto a space Y, then Y is a G^* - T_3 -space.

Proof: Let y_1 and C_2 be a disjoint pair of Y. Since f is one-one and onto, there exists a disjoint pair x_1 and C_1 of X such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (X, τ) is G^*-T_3 -space, there exists subsets A of X such that $x_1 \notin A^{*x_2}$ and $C_1 \notin A^{*x_1}$, so that $f(x_1) \notin f(A^{*x_2}) \subseteq B^{*f(x_2)}$ and $f(C_1) \notin f(A^{*x_1}) \subseteq B^{*f(x_1)}$. This implies $y_1 \notin B^{*y_2}$ and $C_2 \notin B^{*y_1}$. Thus Y is a G^*-T_3 -space.

Theorem 3.5.4. If $f : (X, \tau) \to (Y, \sigma)$ is one-one AO-map of a space X onto $G^* - T_3$ -space Y, then X is a $G^* - T_3$ -space.

Proof: Let x_1 and C_1 be a disjoint pair of X. Since f is one-one and onto, there exists a disjoint pair y_1 and C_2 of Y such that $f(x_1) = y_1$ and $f(C_1) = C_2$. Since (Y, σ) is $G^* - T_3$ -space, there exists subset B of Y such that $y_1 \notin B^{*y_2} \subseteq f(A^{*f^{-1}(y_2)})$ and $C_2 \notin B^{*y_1} \subseteq f(A^{*f^{-1}(y_1)})$, so that $f^{-1}(y_1) \notin f^{-1}(f(A^{*f^{-1}(y_2)}))$ and $f^{-1}(C_2) \notin f^{-1}(f(A^{*f^{-1}(y_1)}))$. This implies $x_1 \notin A^{*x_2}$ and $C_1 \notin A^{*x_1}$. Thus X is a $G^* - T_3$ -space.

3.6. *G**-*T*₄-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for G^* - T_4 -space.

Theorem 3.6.1. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^* -map of a G^* - T_4 -space X onto a space Y, then Y is a G^* - T_4 -space.

Proof: Let C_2 and D_2 be two disjoint sets in Y. Since f is one-one and onto, there exists disjoint sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is $G^* - T_4$ -space, there exists a subset A of X such that $C_1 \not\subseteq A^{*x_2}$ and $D_1 \not\subseteq A^{*x_1}$, so that $f(C_1) \not\subseteq f(A^{*x_2}) = (f(A))^{*f(x_2)}$ and $f(D_1) \not\subseteq f(A^{*x_1}) = (f(A))^{*f(x_1)}$. Thus

 $C_2 \not\subseteq (f(A))^{*f(x_2)=y_2}$ and $D_2 \not\subseteq (f(A))^{*f(x_1)=y_1}$. Thus Y is a G^* - T_4 -space.

Theorem 3.6.2. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is one-one I^{**} -map of a space X onto G^* - T_4 -space Y, then X is a G^* - T_4 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^* - T_4 -space, there exists a subset A of Y such that $C_2 \not\subseteq A^{*y_2}$ and $D_2 \not\subseteq A^{*y_1}$, so that $f^{-1}(C_2) \not\subseteq f^{-1}(A^{*y_2}) = (f^{-1}(A))^{*f^{-1}((y_2))}$ and $f^{-1}(D_2) \not\subseteq f^{-1}(A^{*y_1}) = (f^{-1}(A))^{*f^{-1}(y_1)}$. This implies $C_1 \not\subseteq (f^{-1}(A))^{*x_2}$ and $D_1 \not\subseteq (f^{-1}(A))^{*x_1}$. Thus X is a G^* - T_4 -space.

Theorem 3.6.3. If $f : (X, \tau) \to (Y, \sigma)$ is one-one A-map of a G^* - T_4 -space X onto a space Y, then Y is a G^* - T_4 -space.

Proof: Let C_2 and D_2 be two disjoint sets in Y. Since f is one-one and onto, there exists a disjoint sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G^*-T_4 -space, there exists a subset A of X such that $C_1 \not \subseteq A^{*x_2}$ and $D_1 \not \subseteq A^{*x_1}$, so that $f(C_1) \not \subseteq f(A^{*x_2}) \subseteq B^{*f(x_2)}$ and $f(D_1) \not \subseteq f(A^{*x_1}) \subseteq B^{*f(x_1)}$. This implies $C_2 \not \subseteq B^{*y_2}$ and $D_2 \not \subseteq B^{*y_1}$. Thus Y is a G^*-T_4 -space.

Theorem 3.6.4. If $f : (X, \tau) \to (Y, \sigma)$ is one-one AO-map of a space X onto G^*-T_4 -space Y, then X is a G^*-T_4 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists a disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^* - T_4 -space, there exists subsets B of Y such that $C_2 \not \subseteq B^{*y_2} \subseteq f(A^{*f^{-1}(y_2)})$ and $D_2 \not \subseteq B^{*y_1} \subseteq f(A^{*f^{-1}(y_1)})$, so that $f^{-1}(C_2) \not \subseteq f^{-1}(f(A^{*f^{-1}(y_2)}))$ and $f^{-1}(D_2) \not \subseteq f^{-1}(f(A^{*f^{-1}(y_1)}))$. This implies $C_1 \not \subseteq A^{*x_2}$ and $D_1 \not \subseteq A^{*x_1}$. Thus X is a G^* - T_4 -space.

3.7. *G**-*T*₅-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for G^* - T_5 -space.

Theorem 3.7.1. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^* -map of a G^* - T_5 -space X onto a space Y, then Y is a G^* - T_5 -space.

Proof: Let C_2 and D_2 be separated sets in Y. Since f is one-one and onto, there exists separated sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G^* - T_5 -space, there exists subset A of X such that $C_1 \not\subseteq A^{*x_2}$ and $D_1 \not\subseteq A^{*x_1}$, so that $f(C_1) \not\subseteq f(A^{*x_2}) = (f(A))^{*f(x_2)}$ and $f(D_1) \not\subseteq f(A^{*x_1}) = (f(A))^{*f(x_1)}$. Thus $C_2 \not\subseteq (f(A))^{*f(x_2)=y_2}$ and $D_2 \not\subseteq (f(A))^{*f(x_1)=y_1}$. Thus Y is a G^* - T_5 -space.

Theorem 3.7.2. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^{**} -map of a space X onto G^* - T_5 -space Y, then X is a G^* - T_5 -space.

Proof: Let C_1 and D_1 be separated sets in X. Since f is one-one and onto, there exists separated sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^* - T_5 -space, there exists subset A of Y such that $C_2 \not\subseteq A^{*y_2}$ and $D_2 \not\subseteq A^{*y_1}$, so that

 $f^{-1}(C_2) \leq f^{-1}(A^{*y_2}) = (f^{-1}(A))^{*f^{-1}((y_2))}$ and $f^{-1}(D_2) \leq f^{-1}(A^{*y_1}) = (f^{-1}(A))^{*f^{-1}(y_1)}$. This implies $C_1 \leq (f^{-1}(A))^{*x_2}$ and $D_1 \leq (f^{-1}(A))^{*x_1}$. Thus X is a G^* - T_5 -space.

Theorem 3.7.3. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is one-one A-map of an G^*-T_5 -space X onto a space Y, then Y is a G^*-T_5 -space.

Proof: Let C_2 and D_2 be separated sets in Y. Since f is one-one and onto, there exists separated sets C_1 and D_1 of X such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (X, τ) is G^* - T_5 -space, there exists subset A of X such that $C_1 \not\subseteq A^{*x_2}$ and $D_1 \not\subseteq A^{*x_1}$, so that $f(C_1) \not\subseteq f(A^{*x_2}) \subseteq B^{*f(x_2)}$ and $f(D_1) \not\subseteq f(A^{*x_1}) \subseteq B^{*f(x_1)}$. This implies $C_2 \not\subseteq B^{*y_2}$ and $D_2 \not\subseteq B^{*y_1}$. Thus Y is a G^* - T_5 -space.

Theorem 3.7.4. If $f : (X, \tau) \to (Y, \sigma)$ is one-one AO-map of a space X onto $G^* - T_5$ -space Y, then X is a $G^* - T_5$ -space.

Proof: Let C_1 and D_1 be separated sets in X. Since f is one-one and onto, there exists separated sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is G^* - T_5 -space, there exists subset B of Y such that $C_2 \not\subseteq B^{*y_2} \subseteq f(A^{*f^{-1}(y_2)})$ and $D_2 \not\subseteq B^{*y_1} \subseteq f(A^{*f^{-1}(y_1)})$, so that $f^{-1}(C_2) \not\subseteq f^{-1}(f(A^{*f^{-1}(y_2)}))$ and $f^{-1}(D_2) \not\subseteq f^{-1}(f(A^{*f^{-1}(y_1)}))$. This implies $C_1 \not\subseteq A^{*x_2}$ and $D_1 \not\subseteq A^{*x_1}$. Thus X is a G^* - T_5 -space.

3.8. *G**-*T*₆-space

In this section we proved some theorems in connection with I^* -map, I^{**} -map, A-map and AO-map for G^* - T_6 -space.

Theorem 3.8.1. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^* -map of a space X onto G^* - T_6 -space Y, then X is a G^* - T_6 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since f is an I^* -map, so that $f(C_1^{*x_1}) = (f(C_1))^{*f(x_1)} = C_2^{*y_1}$ and $f(D_1^{*x_2}) = (f(D_1))^{*f(x_2)} = D_2^{*y_2}$ Since (Y, σ) is $G^* - T_6$ -space, there exists a continuous map g : Y $\rightarrow [0, 1]$ such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and $D_2^{*y_2} = g^{-1}(\{1\})$. This implies $f(C_1^{*x_1}) \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) = g^{-1}(\{1\})$. Now $g(f(C_1^{*x_1})) \neq (\{1\})$ and $g(f(D_1^{*x_2})) = (\{1\})$. This implies $h(C_1^{*x_1}) \neq f(\{1\})$ and $h(D_1^{*x_2}) = (\{1\})$. Thus $C_1^{*x_1} \neq h^{-1}(\{1\})$ and $D_1^{*x_2} = h^{-1}(\{1\})$ where $h = g \circ f : X \rightarrow [0, 1]$ is a continuous map. Hence by definition we have (X, τ) is a $G^* - T_6$ -space.

Theorem 3.8.2. If $f : (X, \tau) \to (Y, \sigma)$ is one-one I^{**} -map of a space X onto G^* - T_6 -space Y, then X is a G^* - T_6 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is $G^* - T_6$ -space, there exists a continuous map $g : Y \to [0, 1]$ such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and $D_2^{*y_2} = g^{-1}(\{1\})$. So that $f^{-1}(C_2^{*y_1}) \neq f^{-1}(g^{-1}(\{1\}))$ and $f^{-1}(D_2^{*y_2}) = f^{-1}(g^{-1}(\{1\}))$. This implies $f^{-1}(C_2^{*y_1}) \neq h^{-1}(\{1\})$ and $f^{-1}(D_2^{*y_2}) = h^{-1}(\{1\})$. Since f is an I^{**} -map, we have $(f^{-1}(C_2))^{*f^{-1}(y_1)} \neq h^{-1}(\{1\})$ and $(f^{-1}(D_2))^{*f^{-1}(y_2)} = h^{-1}(\{1\})$. This implies

 $C_1^{*x_1} \neq h^{-1}(\{1\})$ and $D_1^{*x_2} = h^{-1}(\{1\})$ where $h = g \circ f : X \to [0, 1]$ is a continuous map. Thus by definition we have (X, τ) is a $G^* T_6$ -space.

Theorem 3.8.3. If $f: (X, \tau) \to (Y, \sigma)$ is one-one A-map of a space X onto G^* - T_6 -space Y, then X is a G^* - T_6 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since f is an A-map, so that $f(C_1^{*x_1}) \subseteq C_2^{*f(x_1)} = C_2^{*y_1}$ and $f(D_1^{*x_2}) \subseteq D_2^{*f(x_2)} = D_2^{*y_2}$ Since (Y, σ) is $G^* \cdot T_6$ -space, there exists a continuous map g : $Y \to [0, 1]$ such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and $D_2^{*y_2} = g^{-1}(\{1\})$. This implies $f(C_1^{*x_1}) \subseteq C_2^{*y_1} \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) \subseteq D_2^{*y_2} = g^{-1}(\{1\})$. This implies $f(C_1^{*x_1}) \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) = g^{-1}(\{1\})$. Now $g(f(C_1^{*x_1})) \neq (\{1\})$ and $g(f(D_1^{*x_2})) = (\{1\})$. This implies $h(C_1^{*x_1}) \neq (\{1\})$ and $h(D_1^{*x_2}) = (\{1\})$. Thus $C_1^{*x_1} \not\subseteq h^{-1}(\{1\})$ where $h = g \circ f : X \to [0, 1]$ is a continuous map. Hence by definition we have (X, τ) is a $G^* \cdot T_6$ -space.

Theorem 3.8.4. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is one-one AO-map of a space X onto G^*-T_6 -space Y, then X is a G^*-T_6 -space.

Proof: Let C_1 and D_1 be two disjoint sets in X. Since f is one-one and onto, there exists disjoint sets C_2 and D_2 of Y such that $f(C_1) = C_2$ and $f(D_1) = D_2$. Since (Y, σ) is $G^* - T_6$ -space, there exists a continuous map g : $Y \to [0, 1]$ such that $C_2^{*y_1} \neq g^{-1}(\{1\})$ and $D_2^{*y_2} = g^{-1}(\{1\})$. Since f is an AO-map, so that $C_2^{*y_1} \subseteq f(C_1^{*f^{-1}(y_1)}) \neq g^{-1}(\{1\})$ and $D_2^{*y_2} \subseteq f(D_1^{*f^{-1}(y_2)}) = g^{-1}(\{1\})$. This implies $f(C_1^{*x_1}) \neq g^{-1}(\{1\})$ and $f(D_1^{*x_2}) = g^{-1}(\{1\})$. Now $g(f(C_1^{*x_1})) \neq (\{1\})$ and $g(f(D_1^{*x_2})) = (\{1\})$. This implies $h(C_1^{*x_1}) \neq (\{1\})$ and $h(D_1^{*x_2}) = (\{1\})$. Thus $C_1^{*x_1} \neq h^{-1}(\{1\})$ and $D_1^{*x_2} = h^{-1}(\{1\})$ where $h = g \circ f : X \to [0, 1]$ is a continuous map. Hence by definition we have (X, τ) is a $G^* - T_6$ -space.

4. Conclusion

In this article, we studied some basic concepts and relations involving Gem-separation axioms. We also rename I^*-T_0 -space, I^*-T_1 -space, I^*-T_2 -space by Gem-Kolmogorov space(G- T_0 -space), Gem-accessible space or Gem-Frechlet space(G- T_1 -space) and Gem-Hausdorff space(G- T_2 -space) and $I^{**}-T_i$ -spaces by G^*-T_i -spaces. In future the concepts used in nano-topology can be adopted to prove that Gem-set in nano topological space.

REFERENCES

- 1. A.Gupta and R.Kaur, Compact spaces with respect to an Ideal, *Int. Journal of Pure and Applied Math.*, 3(92) (2014) 443-448.
- D.Jankovic and T.R.Hamlett, Compactible extensions of Ideals, Bollettino della U.M.I, 6 (7) (1992) 453-465.
- 3. D.Jankovic and T.R.Hamlett, Compactness with respect to an Ideal, *Bollettino della* U.M.I, 7 (1990) 849-861.
- 4. D.Jankovic and T.R.Hamlett, New topologies from old via ideals, *The Amer. Math. Monthly*, 97 (1990) 295-310.
- 5. F.G.Arenas and J.Dontchev and M.L.Puertas, Idealization of some weak separation axiom, *Acta Math. Hungarica*, 2 (89) (2000) 47-53.

- 6. John L.Kelley, General Topology, First Edition, (1955).
- 7. J.R.Munkres, Topology, Second Edition, (2000).
- 8. K.Kuratowski, Topologies I, Academic press, New York, (1966).
- 9. L.A.AL-Swidi and Ahmed B.AL.Nafee, New Separation Axioms Using the Idea of "Gem-Set" in topological space, *Mathematical Theory and Modeling*, 3 (3) (2013) 60-66.
- 10. L.A.AL-.Swidi and Dheargham A.AL-Sada, Turning point of proper ideal, JST Journal. Archive Des Science, 7 (65) (2012) 213-220.
- 11. L.A.AL-.Swidi and M.A.AL-Ethary, Compactness with gem-set, Int. Journal of Math. Analysis, 23 (8) (2014) 1105-1117.
- 12. L.A.AL-.Swidi and M.A.AL-Ethary, New Function with "Gem-Set" in Topological space, *Int. Journal of Engg. Research and Technology*, 2(3) (2014) 2324-2327.
- 13. L.A.AL-.Swidi and M.S.AL-Rubaye, New classes of separation axiom via special case of local function, *Int. Journal of Math. Analysis*, 23 (8) (2014) 1119-1131.
- 14. L.A.AL-.Swidi and M.S.AL-Rubaye, On separation axioms with respect to gem-set, *Int. Journal of Engg Research and Technology*, 2 (3) (2014) 2789-2792.
- 15. R.Manoharan and P.Thangavelu, Some New Sets and Topologies in Ideal Topological Spaces, Chinese Journal of Mathematics (2013).
- 16. R. Vaidyanathaseamy, Set Topology, Chelsea Publishing CO., New york (1960).
- 17. T.R.Hamlett and D.Jankovic, Ideals in topological spaces and the set operator, *Bollettino dell U.M.I.*, 7 (1990) 863-874.
- 18. T.R.Hamlett and D.Jankovic, Ideals in general topology, *General Topology and Applications*, (1988) 115-125.