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Abgtract. In this paper M/M/2/k loss and delay queueing madgh controllable arrival
rates, 2-server with identical service rates, resipg and feedback is considered. For this
model, the steady state solution, the system cteaistics are derived and the average
waiting time for the two types of customers (Eleetiand Emergency) either with
feedback or without feedback is obtained for vagyamrival rates when the arrival and
service processes are independent. The analyésalts are numerically illustrated and
the effect of the nodal parameters on the systesmacteristics are studied and relevant
conclusion is presented.
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1. Introduction
Queuing system presents a concrete framework feiguleand analysis of practical
applications. Queueing models provide the predistiof behaviour of systems such as
waiting times, the average number of waiting custiamand so forth. It is used in
academic programs of Industrial Engineering, Comptngineering etc., as well as in
programs of Telecommunication and Computer Sciefibese predictions help us to
anticipate situations to take appropriate meadorehorten the queues. Due to restriction
of no passing the customers are allowed to depamt the system in the chronological
order of their arrival either with feedback or vath feedback. In the loss and delay
gueueing system the customers are classified o dasses. They are (a) Elective
customers and (b) Emergency customers either wiblfack or without feedback. The
Elective customers have patience to form a queuwk wait while the Emergency
customers finding the server busy on their arriledye the system and are lost. But in
many real life situations, the arrival and serpedterns are interdependent.

Thiagarajan and Srinivasan [9] have analysed th&/Mk interdependent
gueueing model with controllable arrival rate. Ranid Srinivasan [5] have analysed
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M/M/c/k interdependent queueing model with conttble arrival rates and feedback.
Srinivasan and Thiagarajan [7] have discussedit& fimpacity multiserver Poisson input
gueue with interdependent inter-arrival serviceetiamd controllable arrival rates. Rani
and Srinivasan [6] have analysed M/M/c/k loss agldylinterdependent queueing model
with controllable arrival rates, no passing anddfeek. Kalyanaraman and Sumathy [3]
have studied a feedback queue with multiple seraads batch service. Thangaraj and
Shanthakumaran [8] studied a queue with a Markoféadback. This paper is organized
as follows: In section 2 a mathematical model fdf/&1/2/k loss and delay with 2-server
in the same service rate interdependent queueinigimath controllable arrival rates, no
passing and feedback is described. In section 8ilptss of the model are stated. In
section 4 the steady state equations of the madeframed. In section 5 the system
characteristics are considered and the averagenwaiimes for the two types of
customers (Elective and Emergency) either with feedd or without feedback are
obtained for varying arrival rates. And finally the section 6 the analytical results are
numerically illustrated, and the effect of the nodarameters on the system
characteristics are studied and relevant conclusipresented.

The diagrammatic representation of M/M/2/k loss and delay queueing system with
Bernoulli feedback

Feedback arrivals

2-Server finite capacity

Elective customerp
' Emergency l

customers

Departure

Feedback arrivals Inout
Regular arrivals P!

Parallel Servers

Figure 1:

* Due to restriction of no passing

» The elective customers have patience to form aeaed wait while the emergency
customers finding the server busy on their arreitther with feedback or without
feedback, leave the system and are lost.

2. Description of the model

Consider 2-server finite capacity loss and delasuging system with controllable arrival
rates, no passing and feedback. There are two tgbesustomers (Elective and
Emergency) arrive at the service station one by acwording to a bivariate Poisson
stream with arrival ratef,, - €), (A, =€), (A4, —€).(A, —€) (> 0). There is 2-server
providing service to all the arriving customerse@lve and Emergency) either with
feedback or without feedback. Service times arepeddent and identically distributed
exponential random variables with service rate- (£),. After the completion of each
service, the Elective and Emergency customers ithargoin at the end of the queue
with probability p or they can leave the systermhwitobabilityqg, p + q = 1, the customer
both newly arrived and those opted for feedbacksarged in the order in which they
join the tail of the original queue. It is assuntiealt there is no difference between regular
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arrivals and feedback arrivals. The Elective andeEyency customers are served
according to the first come first served rule wWiliowing assumptions.

The arrival processXi(t)} and the service process<{t)} of the system are
correlated and follow a bivariate Poisson procégsngby

e TS %k Xk
W N () A -]t [ -e]
k=0

k!(x —K)!(x, —K)!

X, %=0,1,2,3, .45 th>0i=01and =1, 2

n=0,1,2,..c-1,cc+1,..r-1rr+1, ..R-1,RR+1, .. k—1Kk
with parametersly;, A2, A11, A12, L @and € as mean arrival rate of Elective customers,
mean arrival rate of Emergency customers, whensilstem is in the faster rate of
arrivals either with feedback or without feedbatiean arrival rate of Elective customers,
mean arrival rate of Emergency customers, whenststem is in the slower rate of
arrivals either with feedback or without feedbackean service rate and mean
dependence rate (co-variance between arrival anctegrocesses) respectively.

Also the mean arrival rate and mean service ratenvthe system is of size n is
defined as

P{X1(t) = Xq, Xo(t) =X} =

4;0; 0sn<c;j=12
Aij = 34,0; csn<R-1
A0, r+lsns<k;j=1,2

nqu, 0<n<c
cgu; csn<k

3. The postulates of the model

1. Probability that there is no arrival (Elective aftimergency) and no service
completion during a small interval of time h, wite system is withlj, i =0, 1 &

j =1, 2 faster (slower) rate of arrivals eitherhwfitedback or without feedback, is
1 - —8o+p(u—e&2+a(u—&h +o(h)

2. Probability that there is one arrival (Elective aBRgnergency) and no service
completion during a small interval of time h, wite system is withlj, i =0, 1 &

j =1, 2 faster (slower) rate of arrivals eitherhafitedback or without feedback, is
(Ai—&a+o(h)

3. Probability that there is no arrival (Elective althmergency) and one service
completion during a small interval of time h, whee system is in faster or in slower
rate of arrivals either with feedback or withoutdback, is

[A(u — &)z + p(u — €)z]h + o(h)

4. Probability that there is one arrival (Elective aBRthergency) and one service
completion during a small interval of time when the system is either in faster
(A;;1=0, 1 &) =1, 2) or in slower rate of arrivals either wittedback or without
feedback, is

[(Aij — €0+ p(u — &)z + g — &)z]h + o(h)
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4. Steady state equations

We observe that onlg,(0) exists whem =0, 1, 2, ...c—1,c,c+ 1, ...r = 1,r;
bothP,(0) andP,(1) exists whem =r + 1,r + 2, ...,R— 2,R— 1; onlyP,(1) exists when
n=R, R+ 1,..k FurtherP,(0) =P,(1) = 0 ifn>k.

The steady state equations which are written tilvabe matrix of densities are
given by

[(A0j — §) A Po(0) =0 - €) P1(0) - (1)
[(Aoj —§)0+ a( — &)] P1(0) = [(Ag — §)OPo(0) + i1 — £)P2(0)] - (2)
[(Ao - §)0+ 2(1s - €)] Pa(0) = [(Agj - §)OPra(0) + (s - €) Pria(0)]

n=23,..r-1 .. (3)

[(Agj - £)3+ 20t - 8] P(0) = (g - §)3P1(0) + At - &) Prss(0)
+20(4 - €) Prea(1) + (i - €) P(1) . (4)
[(Ao - §)0=+ (1 - )] Pn(0) = Ao - §)OPn1(0) + (4t - €) Pres(0) .. (5)

n=r+1r+2,..R-2
[(Ag - §)0+ 20( - &)] Pra(0) = (g - §)OPr2(0) ... (6)
[(Ay - §)0+ (4 - )] Praa(1) = 2y - &) Prea(1) - (7

[(Ay - §)0+ 20(1 - )] Po(1) = (A - §)OPna(1) + (44 - &) Prea(1)
n=r+2r+3,..R-1 .. (8)

[(Ay - )0+ 20( - ] P(1) = (hy - §)3Pra(1) + (kg - §)GPra(0)
+20(4 - €) Prea(1) . (9)

[(Ay - §)0+ 20(1 - )] Po(1) = Ay - §)OPna(1) + (i - &) Prea(1),
n=R+1,R+2,..k-1 ... (10)
(A - £)3Pa(1) = (- § P(1) .. (11)

L pj(o)_(AOj_gj)J pj(l)_(Alj_gj)J
et = and =
2 2q9(u-¢) 2 2qu-¢)

whereg, + & = € Ao1 + Aoz = Ao, (Jo1- &) + No2- &) =Ao- €
and  An+Ap=A, (Ai-&)+ -8 =Ui-9
From (1), (2) and (3), it can be shown that,

P.(0) = %(pj (0))" Po0);n=1,2, .1 .. (12)
Using the result (12) in (4) and (5) we get

l_(p](o))n r
L (0,0)RO)-|—22|p

.. p;(0)
2n—1 - pj (0) r+l (1)1 If 2 z1
2
Pn(0) = n=r+1r+2,.R-1 ... (13)
2P (0)- (N1 )P (); N AVN
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Using equation (13) in (6) we get

z(l_pjw)J(pj «»JR*’
2 A2 poy it 2%s1 =12
Pr(1) = P (0) s 0) 2 . (14)
2 2
%PO(O); if pj—(()):l,j =12
Using the results (13) and (14) in (7) and (8),g&é
B L(J_) n-r
1[ 2 j o) j=12if AW 2O,
Pn(l): 1—'0j2(]-) n:r+_’]_,r+2’m,R (15)
(N=1)P., ) if”J‘T(l)zpiT@zl;jzl,z

where R.(1) is given by (14)
From (9), (10) and (11) we have recursively deritreat,

PO (A @)
[ 2 J [ 2 j if 'Oi—(o);tl,'oi—(l);tl;jzl,z
Pn(1) = 1——3— n=R+1,R+2,..K ... (16)
(R=1)P.,(0) i A0 20y =12

whereP,,1(1) is given by (14).

5. System characteristics

In this section the following system characterstare considered and their analytical

results are derived.

1. The probabilityP(0) that the system is in faster rate of [Electared Emergency]
arrivals either with feedback or without feedback.

2. The probabilityP(1) that the system is in slower rate of [Electared Emergency]
arrivals either with feedback or without feedback.

3. The probabilityPy(0) that the system is empty.

4. The expected waiting time of the [Elective and Egeercy] customers when the
system is in the faster rate of arrivals eithehviitedback or without feedback.

5. The expected waiting time of the [Elective and Egeecy] customers when the
system is in slower rate of arrivals either witbdback or without feedback.

6. The difference between the expected waiting timglettive and Emergency customers

when the system is in the faster rate of arrivitfieewith feedback or without feedback.
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7. The difference between the expected waiting timeEtdctive and Emergency
customers when the system is in slower rate oValgieither with feedback or
without feedback.

The probability that the system is in faster rafe aorivals [Elective and

Emergency] either with feedback or without feedbiack

PO =T RO+ 3 R (0) - a7)

Using (12), (13) and (14) in (17), we get

p,(0) (R—r)(p i (O)JRH
2l —2 _— 2 po) it 2 9Q%1 212
0 ()Y .o)R°()"T A
po)=1 |1-2% [PJ()] _(P,( j .. (18)
2 2 2
2[R+r]P,(0); if 'Oj—m)=1; =12

The probability that the system is in slower rate arrivals (Elective and
Emergency) either with feedback or without feedbiack

PW= Y PO+ S P . (19)

n=r+1 n=R+1

From (14), (15), (16) and (19), we get

2 (R_r) 1_10]7(1) . L(]_) k—r+1_ LCL) k-R+1
2 2 2
i
2

) [=*2)
PL) =~ 2 2 Jpoy it 29, A0

IXONRTXO 2 72
2 2

(R+r —1- )P, (0); if piT(o)zpiT(l):l; j=1,2

#£1,j=12 .. (20)

The probability Pg(0)] that the system is empty can be calculatednftbe
normalizing condition

P) +P(1) = 1 .. (21)
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Using the results (18), (20) and (21), we get,

-1

p,0)
- 2 LSl P
Po(0) =12 - p](0)+ 1_,01-7(1) B, 7j=12 .. (22)
2
(p] (1)]k r+l [p] (l)]k R+1
_(R=r) . _
where A= pj=12
(1 p(l)} 1=~ 0)°
2
(pJ(O)J [1 P (0)j
=i=12

7T 0 (20
2 2

The expected waiting time of the Elective cust@mehen the system is in the
faster rate of arrivals either with feedback omhwiit feedback is given by

EWed = L [zanmow{zmowzmo)}[” 2+1, ﬂ 23

n=r+1

0; n=0

Z— n=1,2,3,..k
=

Using the results (12), (13), (14) and (23), we get

where a=

1 F G
E(Weieo) = C,+D} P(0) +<E, 1 L P,
W) = Q)| (TR0 +z(1—p1(°>j+2(1_/’1(0)) X
2 2
1 F G,
= C +D,+2{E 1 P.,(0 .. (24
qu-e)| 1+2(1_p1(0)j+2( 1(0)j3 i
2 2
2 1_(/)1(0))“
£4(0) 2
whereC, = p(O)+2[ > j 1_,01(0)
2

The expected waiting time of the Emergency custeméen the system is in the
faster rate of arrivals either with feedback orwiit feedback is given by
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E(Wened = (ﬂl 5)[Zan+lp (o>+{zp(0)+ 5 P(O)}(” 2+, azﬂ ... (25)
0; n=0
where a—{z_ n=12,3,.k

Using the results (12, (13), (14) and (25), we get

E(Wemed -1 I¢c +D,+2 3+ R + G,

au-¢)| 27 2(1_&(O>j 2( (O)j

~1B,|P(0) ... (26)
2

(P (0
pz(O)jz ! ( 2 j

2

L 2( P, (O)I“l ( P, (0)]“ R[pj (0)]“ 2
D, = 2 ~ 2 pj(O)\J;j:].,Z

E (O)j El_p;Z@] ( 2

- p,(0) [1_(,01. (O)JR-r—lj )
2 2 _(R-r-1)

(1_'01(0)J2 1—L<0)

2 2
_(pj(O)JR‘*‘l

PPN AC) 2 _ (R-NR-r-1) . _

Fi=(r-2) > 1_,017(0) r-2)R-r-1+ 5 j=1,2

2

(0)Y? SO0 N ks
GF[l—pJT()] +(R-r +1)(—p'2( )J —(R—r)[—pjz( )] -1j=12

wherePy(0) andP,.1(1) are given by (22) and (14) respectively.
The expected waiting time of the Elective customvben the system is in the
slower rate of arrivals either with feedback orhwitit feedback is given by

KZP(lHZP(l)J( —2+l, ﬂ . @7)

n=r+l

whereC, = [1+%p2 (0)} + 3(

j=1,2

E(WEIel) -
a(u

From (14), (15), (16) and (27), we get,
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1 1 R-r-DR-T1) A
E(Wgiey) = -2)(R-r-1
(Weea) au-9) 2(1_101(1)j (r=2)(R-r-1)+ 5 +(l_,01(1)j
2 2
B C,
+( pl(l)jz +(1 pl(l)j Frad) - (28)
1_7
2 2

The expected waiting time of the Emergency custeméen the system is in the
slower rate of arrivals either with feedback orheitit feedback is given by

[[Z P+ ZP(l)j(” 2+1, H . @9)

q(l'l ‘9) n=r+1
From (14), (15), (16) and (29), we get,

E(Weme) =

__ 1 1 R-r-1HR-r) A
E(Weme) = -2)(R-r -1
(Weme) W-5) 2(1—[)2(1)j (r-2)(R-r-1+ - +(1—p2(1)j
2 2
B. 2,1 C,
—t S |l—== .. (30
+(1_pz(1)j2 +(;jj(1 pz(l)j ) (30)
2 2
where A = (R 2)[1( 2] +( 2] ] (r 2)—2 j=1,2

B, =1—[pj—(1)] _ +(k—R+2)[(’0j—(1)j_ _(pj_(l)]_ ]
2 2 2
+(k—R+1)[[pJ_(l)j _ ('01 mj ]'J =12
2 2

c;=<R_r-1)+[1_ﬂj_<1>_[Pi_<1>j‘ (28 ];j=1,2
2 2 2

wherePy(0) andP,.1(1) are given by (22) and (14) respectively.

The difference between the expected waiting tirhétlective customers and
Emergency customers when the system is in therfaate of arrivals either with
feedback or without feedback is given by

Do = E(Wemed — E(Weie) .. (31)
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Using the results (24) and (26) in (31) we get

1
q(u-¢)

A():

21 1 F,, F
(CZ C1)+(D2 D1)+2 |:[ZTJE2 Eli|+5 1_ ,022(0) 1_ 10150)

=1

1 G G
42 2 L 1L(B,-B) |P,(0) .. (32)
1622 (-2
2 2

The difference between the expected waiting tirhétlective customers and
Emergency customers when the system is in the sloate of arrivals either with
feedback or without feedback is

Al = E(WEme]) - E(WE|31) (33)

[@@_m@}
1 (R+r-4)R-r-1) 2 2

A=
a(u-¢) 4 (1_/%CDJ(1_ﬁaGJj
2 2
WA A | |_B B

(1—‘5CDJ (1—’%CDJ (1_%%CDJZ (1_/%C0j2
2 2 2 2

21 C C,
+ = 2 - L P,.@) ... (34)
3 ](1 28] [1-a®)
2 2
wherePy(0) andP,.1(1) are given by (22) and (14) respectively.

6. Numerical illustrations
For various values ofy, Ay, A1y, & and fixed values af, R, r, k, the values dPy(0), P(0) and

P(1) are computed and tabulated by talprgq = % ,c=2,r=6,R=14k=22.

Table 1:
Ao Aoz A & H Po(0) P(0) P(1)
6 0.5 14 | 0.5384824760.999727953 2.72045611& 10%*
9 1.0| 16| 0.5711681390.999331448 2.42965805% 10*
8
7

0.5 18 | 0.5294300810.999688968 3.11031598% 10°*
1.0 12| 0.5999815820.999814729 1.85270813% 10%*

7 5
8 7
9 7
6 5
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For various values ok, Aoy, A1, & 1 and fixed values daf, R, r, k, the values dPy(0),

P(0) andP(1) are computed and tabulated by talprgq = % ,c=2,r=6,R=14k=22.

Table 2:
Aot Aoz A & H Po(0) P(0) P(1)
7 5 4 | 05| 14| 1.0000003370.999996989 3.01113950% 10%
8 7 6 1.0| 16| 0.7500024180.999970990 2.900985846 10%
9 7 6 | 05| 18| 0.8461547570.99998819] 1.1808385 10%
6 5 4 | 1.0| 12| 0.8750010840.999991337 8.66185841& 10%°

For various values of traffic intensitigg0), 0.(1), o(0) and fixed values df, R,

r, k, the values oPy0), E(Wkeg and E(W.;) are computed and tabulated by taking

p:q:%.CZZ,I’=6,R= 14,k = 22.

Table 3

A(0)

A1)

~0)

Po(0)

E(Weie)

E(WEIel)

0.962962¢9

0.8148148

1.6296296

0.53848241

60.216822959

2.30544028& 10%

0.9333333

1.0666666

1.7333333

0.57116813

90.191642350

1.95483640% 10%

0.9714285

0.8571428

1.7142857

0.52943008

10.168165285

2.04817257% 10%*

0.909090¢

1.0909090

1.6363636

0.59998158

20.257493967

2.04718943(x 10%*

For various values of traffic intensitigg(0), 0:(1), o(0) and fixed values df, R,

r, k, the values oPy(0), E(Weme9 and E(W ) are computed and tabulated by taking

p:q:%.CZZ,I’=6,R= 14,k = 22.

Table 4:

20)

P1)

~0)

Po(0)

E(WEmeO)

E(WEmel)

0.6666664

0.5185185

1.6296294

1.000000337%

0.407405101

2.67223561% 10

0.800000¢

0.6666666

1.7333333

0.750002418

0.344406862

3.87367912% 10%

0.7428571

0.6285714

1.7142857

0.846154757

0.301889433

8.16885538% 10

0.7272727

0.5454545

1.6363636

0.875001084

0.483755854

3.94431113% 10%

The numerical results for the expected waitingetnof the two classes of

customers (Elective and Emergency) for varyingvatrrates (faster and slower) either

with feedback or without feedback has been providetle Tables 1, 2, 3 and 4.
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From Tables 1 and 2 the following obser vations can be made:

In the long run, the probability that the systenbtoin the faster rate of arrivals
either with feedback or without feedback is neanhjty. But the probability that
the system to be in the slower rate of arrivalbegitwith feedback or without
feedback is very small.

When the system is in the faster rate of arrivilsee with feedback or without
feedback, the probability that the system sizeei® zlecrease when the arrival rate
of the Elective customers or the arrival rate ef Bmergency customers increases.

From Tables 3 and 4 the following obser vations can be made:

Either the system is in the faster rate of arrivalsn the slower rate of arrivals
either with feedback or without feedback, the exgeavaiting time of Elective
customers [E(Weg)] and the expected waiting time of emergency cusis
[E(WEemep] increase as the parametggg0) and p, (0) increases.

When the system is in the faster rate of arrivilsee with feedback or without
feedback, the expected waiting time of Electivetaumers [E(Weg)] and the
expected waiting time of Emergency customers [E(\)] decrease as the traffic
intensities o, (0) and p, (0) increases.

When the system is in the slower rate of arrivilsee with feedback or without
feedback, the expected waiting time of Electivetaumers [E(We;)] and the
expected waiting time of Emergency customers [E(W] increase as the traffic
intensityo(1) andp,(1) increases.
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