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1. Introduction

The stability problem of functional equations onigied from a question of Ulam [41]
concerning the stability of group homomorphismsekdy[25] gave a first affirmative

partial answer to the question of Ulam for Banaglaces. Hyers' theorem was
generalized by Aoki [2] for additive mappings andRassias [34] for linear mappings by
considering an un-bounded Cauchy difference. Tipempaf Rassias [34] has provided a
lot of influence in the development of what we cg#neralized Ulam stability of

functional equations. In 1982, Rassias [17] folldwthe innovative approach of the

Rassias theorem [34] in which he replaced the fas48 +|y||” by |x|"||y|* for p,aOR
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with p+q=1. A generalization of the Rassias theorem was obthby Gavruta [21] by
replacing the unbounded Cauchy difference by armgémentrol function in the spirit of
Rassias approach. In 2008, a special case of Gastbeorem for the unbounded Cauchy
difference was obtained by Ravi et.al., [38] by sidaring the summation of both the
sum and the product of tw@- norms in the sprit of Rassias approach. The #abil
problems of several functional equations have leg¢ensively investigated by a number
of authors and there are many interesting resohlisearning this problem (see [3, 7, 8, 9,
10, 30, 20, 38)).

The solution and stability of the following add#ifunctional equations

txry)=f(x)+1(y)

(1.1)
(1.2)
gg@xj}g(ﬂ—iﬂ)g(x),nzz \ \(1.3)
an(x): [;FMJ (1.4)

were discussed in (see [4, 5, 39])
In this paper, the authors investigate the gersaaition and generalized Ulam-
Hyers stability of a new type aof- dimensional additive functional equation of thenfo

f(;mj+zf{ 3 kxk—|x,J+f(xl—kZ:; J

1=2 k=1k#l

=(n+2) £ () +(n-3) 2 ()

= (1.5)

With n>3in Banach space and Banach Algebra using direcfized point methods.
Now we will recall the fundamental results in fixpdint theory.

Theorem 1.1. [16] (The alternative of fixed point) Suppose tHatr a complete
generalized metric spacgX,d) and a strictly contractive mapping: X - X with
Lipschitz constant. . Then, for each given elemerfl X, either

(A1) d(T"x,T™ x)=e Onz0,

or

(A2) there exists a natural numbersuch that:

(i) d(T”x,T”*lx)<oo forall n>n;
(i) The sequencT"x) is convergent to a fixed poinf of T

(iii) y is the unique fixed point of in the sety :{yD X :d(T"°x, y) <oo};

. * 1
dly,y)s——d(y,Ty) forall yOy.
(V) d(y.y)==d(y.Ty) forall y
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2. General solution
In this section, the authors discuss the genehaligo of the functional equation (1.5) by
consideringX andY are real vector spaces.

Theorem 2.1. If f:X - y satisfies the functional equation (1.1) for aly0O X if and
only if f satisfies the functional equation (1.5) for gllx,,xs,....x, O X.

Proof: Let f:X - Y satisfy the functional equation (1.1). Settirg y=0 in (1.1), we
have f (0)=0. Setx=-y in (1.1), we getf (-y)=-f (y) for all yOX. Thereforef is
an odd function. Replacing by xand y by 2xin (1.1), we obtain

f(2x)=2f(x) and f(3x)=3f(x) (2.1)
for all xO X. In general for any positive integer a, we have
f (ax) = af (x) (2.2)
for all xO X. ReplacingX byg in (2.2), we get
f (Zj =1 (%) (2.3)
a a

for all xO X. Itis easy to verify from (1.1) that
P+ x,) = £ () + (X)) + ..+ 1 (x)) (2.4)

for all x,%,,x,,....x, 0 X Replacing(x,%,,...x,)in (x,2x,,...,nx,) in (2.4) we arrive
f (%, 2%, Ky, ) = T () + F( X))+ F( &)+ .+ f(nx,) (2.5)
for all x,x,,...x,0X. Replacing x, by -2x,x, by -3x,..., and x, by -nx,
respectively in (2.4) and using the oddnesd ofwe get the following equations

f (X =2%,+ 3%+ ..4nx,) = f(x)=f(2,)+f(X)+ .+ f(nx,)

f (X +2% =3+ .. 4nx,) = (x)+f(2,)-f(X)+ .+ f(nx,) (2.6)

f (X +2% + 3%, +..—nx,) = F(x)+f(2,)+f(X)+ .o f(nx,)
for all x,x,,....x, 0 X .Replacing (x,%,,....%,) in (x,=2%,,...— nx,) in (2.4), we have
f (X% —2% +3x,+..4+nx )= (x)-f(X,)-f(X)+ .= f(nx,) (2.7)
for all x,x,,....x, 0 X .Adding (2.5),(2.6), (2.7) and using (2.1) (2.2), have

demonstrated our result.
Conversely, Letf: X - Y satisfy the functional equation (1.5). Settingx,,...,.x, O X.

by (0,0,...Q in (1.5), we get f(0)=0. Replacing (x.X,,....x,) by (0,x,..,0 and
(x,%,...,0in (1.5), we obtain

f(2x)=2f(x) and f(3x)=3f(x) (2.8)
for all xO X.Replacing(x,,,....x,)by (0,-x,...,0 and using (2.8) in (1.5), we get
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f (-x)=-f(x) for all xOX. Therefore fis an odd function. Replacifg,x,,....x,) by

(xl%oj and using (2.8) in (1.5), we have

(n=1) f (% +x,)+2f (x,=x,) =(n+1) f (x,) +(n= 3 f (x,) (2.9)
for all x,x,,....x,0X. Replacingx by x,,x, byx in (2.9) and using the oddness bf
we get

(n=2) f (% +%,)-2f (x,~x,) =(n=3 f(x)+(n+ 1) f(x,) (2.10)
for all x,x,,0X.Adding (2.9) (2.10) and replacing by x,x, by y, and sincen>3, we
arrive our result. Hence the proof is completed.

3. Generalized ulam-hyers stability in Banach space
In this section, lety, be a normed space ang be a Banach space. The authors
investigate the generalized Ulam-Hyers stability tbé n- Dimensional Additive
Functional equation (1.5). Define a mappibgf : X" - Y by
DF (X, Xy yee X)) = f[kakj+Zf[ > kxk—lx,j+f[xl— kxk]
k=1 1=2 k=1k#1 k=2

n

~(n+2) (%) -(n-3) 2K (%)

k=2

for all x,x,,...x,0X with n>3

3.1. Direct method

Theorem 3.1. Let j+1. Let ¢y: X" —~ [0,0) be a function such that

1//(n”x1,n”><2,...,n”>§])
n

lim

[

for all x,x,,...x,0X with n>3let f:X - Ybe a function satisfying the inequality

=0 (3.1)

D (% Xp0eeX )| S0(% X, 0-%,) (3.2)
for all x,x,,...x,0X.Then there exists a unique functién X - Y such that
1 & W(n”x)
- < : 3.3
(%) A(X)H<n(n_3)|;;j o (3.3)
2
Where ¥ (n'x) = (%(0,....Q n'x)for all x0X. The mapping A(x) is defined by
n-1times
f(n'x
A(X) =lim (n” ) (3.4)
for all xO X.
Proof. Assumej =1.Replacing(x,x,.....x,) by (0,...,0 x)in (3.2) and using oddness &f
n-1times
we get

[(n=3) (g =n(n-3 f (x)| < (©.....0x

n-1times
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for all xo X. Dividing the above inequality by(n-3)we obtain

f(nx) 1
- f(x) Sn(n—_s)élf(%t%;r_f)()
for allxox. Letting W(x) =¢(0.....0x)in (3.6), we arrive
f(nx) _ W(x)
n f(X)HS n(n-3)

for allxa x. Now replacingx by nx and dividing byn in (3.7), we obtain
f ()£ (g __w(nq

n? n "_ n’(n-3)
for all xa x. Combining (3.7) and (3.8), we obtain

)¢ <L3){w(x)+‘“(”x)}

n " n(n- n

for allxd x. In general for any positive integer, we obtain that
f(n'x 14 W(n*x
() e 540013

n “n(n-3)iE n

- 1 & LIJ(nkX)
_n(n—S)Z n*

k=0

i !n' x)
for allxo X. In order to prove the convergence of the sequ | , replacex by
n

n™x and divided byn™ in (3.10), for anym,| > 0, we arrive

||f<:;;>x_f(:;x)u:n%Hf<;'j:)x-f<nmx)

.13 LIJ(nHmX)
_n(n_s)kz; T (3.11)

f(n'x
For all xdx.Hence the sequenc{eg} is a chauchy sequence. Sincds complete,
n

there exists a mapping: X - Y such that

f(n

A(x):limMDxDx.
I~e n

Letting | ~ « in (3.10), we see that (3.3) holds forxallx. Now we need to proveA

satisfies (1.5), replacingx,,x,....x,) by (n'x,n'x,,...n'x,) and divide byn' in (3.2), we

arrive
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for all x,x,,...x, 0X. Letting| - « inthe above inequality, we see that

g A oo

=(n+1) A(x)+(n- 9 kA(x)

Hence A satisfies (1.5) for alk;, x,,...,x, 0 X with n>3. To prove A is unique, letR(x)
be another additive mapping satisfying (1.5) an8)(3'hen

|A(X) - R(¥)| < n—ll{“A(n' x)— f (n' x)”+“f (n' x)— R(n' x)m

2 o q_,(nk+| X)

k+l

“nin-3)& n

for all xoXx. HenceAis unique.
For j=-1, we can prove the similar stability result. Thismpletes the proof of the

theorem.
The following corollary is a immediate consequeméeTheorem 3.1 concerning the
stability of (1.5).

Corollary 3.2. Let Aand s be nonnegative real numbers. If a functienx - v

satisfies the inequality

/]1

||D f (%, %1 xn)"s /]Z")g"s, sz 1; (3.12)
i=1

MO} sed

for all x,x,,....x, 0X. Then there exists a unique additive functionx - Y such that

A
(n=-3)|n-1’

A<l A
I (9=~ =5 (313)

Al
(n—3)|n—n“5| ’

for all xoOx.

3.2. Fixed Point Method
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In this section, the authors present the generdhlidam-Hyers stability of the functional
equation (1.5) in Banach space using fixed poirthog:

Here after through out this section, {etbe a vector space and B Banach space
respectively. Define a mapping

D f (X, % e X ) = f(ikxk}if[ 3 kxk—lx,]

k=1 1=2 k=1k#1

e[Sk (o) 1 ()~ (0-3) 30 (x)

k=2

for all x,x,,....x, 0 X .with n>3.

For to prove the stability result we define thddwling:
4 is a constant such that

and Q is the set such that
Q={glg: X - v,9(0)=¢

if i =0,
if i=1

S|~ 5

Theorem 3.3. Let f:v - Bbe a mapping for which there exist a function
@, ¥,Y:V" - [0) with the condition

.1
ggﬁw(ﬁf&,ﬁm---,ﬁm )=0 (3.1)
Such that the functiona inequality with
D f (%% )| S@(% X 0x,) (3.2)
for all x,x,,....x, OV .If there existsL = L(i) <1. Such that the function
1 X
- Y(X)=———W| = 3.3
o v = v (3.3)

has the property
Y(x) = Lyiv[#lj (3.4)

for all xOv. Then there exists a unique additive mappiagy — B satisfying the
functional equation (1.5) and

1+
|09~ A9l s Y09 (3.5)
for all xOv.
Proof. Consider the se@ ={p/p:X - Y, p(0)=0 and introduce the generalized metric
on Q,
d(p.g) =d(p,g) =inf{ K 0(0,%) | p(x)-a(x} < KY(x),x OV}
It is easy to see th@n,d) is complete.
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DefineT:Q - Q by

Tp(x) = L P(44X),
#

For all xav.Now, p,q0Q,we have

d(pg) <K
= | p(¥) = a(¥)] < K Y(x), xOV

= Hi P(4X) - a(4x)
H H

s—lKY(,uix),xDV,
/1

< LKY(x),xOV,

= Hi P(4X) -= a(44x)
H H

= [Tp(x) - Ta(¥)| < LK Y(x), xOV,

=d(p,q) < LK.
This implies d(Tp,Tg) < Ld(p,q),for all p,gquQ.i.e., T is a strictly contractive mapping
on Q with Lipschitz constant.. From (3.6), we arrive

™ _ f(X) siw(o,._,o,x) (3.6)
n n(n-3) —

for all xov. Using (3.4) for the casie=0 it reduces to
1
Hf(nx)—f(x)HsFlY(x)
for all xoOv.

i.e., d(Tf,f)51:L:Ll—0:L1—i <o
n

Again replacingx :E in (3.6), we get

X 1 X

for all xav. Using (3.4) for the case=1it reduces to

f(x)—nf(;‘j <Y()

ie., d(f,TH)<1=L=l"'=L"<w
in both cases, we arrive

for all xOv.

d(f,Tf)< L
Therefore (Al) holds.
By (A2), it follows that there exists a fixed poiat of T in Q such that
A(x) = lim % f, (,ui"x) (3.8)

For all xOv.
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To prove A:V - B is additive. Replacingx,x,....x,) by (4%, 4%,.... 4%, ) in (3.2) and
dividing by z*, it follows from (3.1) that
IO (1 bt

[A(% %0, )| = fim %
<lim o (1 bt )| -0
<lim U

For all x,x,,....x, OV .i.e., A satisfies the functional equation (1.5)
By (A3), A is the unique fixed point of in the sety={A0Q:d(f,A)<w} A is the
unique function such that
[ (%)= AX)||< KY(X)
for all xov and K >o.Finally by (A4), we obtain
1
d(f,A)s——d(f,TF
(f, A<= d(f.TF)
this implies
Ll—i

d(f,A)<
(fL.A=TT

Which vyields
Ll—i
[f (%)= AX)| < HY(X)

for all xav . This completes the proof of the theorem.
The following Corollary is an immediate consequentd@heorem (3.3) concerning the
stability of (1.5)

Corollary 34. Letf:v - Bbe a mapping and there exists real numbieaad s such
that

/L

||D (% X000 xn)"s /1{ zl||>q||s} sz 1 (3.9

- N S ns 1.
A ST 2
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for all x,x,,....x, V. Then there exists a unique additive functidery - B such that

A
(n=3)|n-1’
AN
f(x)-A(x)|<d—20 1
17 G0 g ©
AN*
(n—3)|n—n”5|’
for all xav.
Proof: Setting
A,
WX X%, = /‘{nllxlls},
i=1
ARSI
for all x,x,,....x, 0V . Now,
A
/jik
K K k _ A L ko I
WX K X, ) = E{;"M X }
A n s n ns
AT+ S ™.
Ak,
— /LUik(S—l){ X ")ﬂ"S},
i=1
s IR TS

—>OGSH—>OO,
- 0asn - o,
~0asn - oo,

Thus, (3.1) is holds.

But, we haveY(x) = (nis) w(ﬂ = (nf?’)({O, Oé]

n-1times

Hence
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A
(n-3)’
1 X A s
Y(x)= 0,..0— |=¢— ,
(X) (n_3){ pry o n] (n_S)nS ||XI|
A ns
e
Now,
A
,U(n—S) lui_ y(X),
w7 u T 3>n Jeod'. =),
! /Jins—ly(x)
e
Now from (3.5), we prove the following cases fondiion (i).
Case: 1 L=n"if i=0
1-0
A (n)7
"f(X) 'D‘(X)"S n-3 1- n(—l) - (n—l)(n—3)
Case: 2 L=n"if i=1
1-1
A () -
f(X)—AX)|| < =
700 -A0d] < n—S{ 1—n1J a=n)p-3)
Case: 3 L=n""for s<1if i=0
(nS 1)1 0 /1
f A(X)|| <
" (X) (X)" ( )n 1 n(s 1) " " (n 3)(n n )" "
Case: 4 L:% for s>1if i=1
A s-1
f(xX)-AX)|<—
=AM = s
nS
Case: 5 L=nor s<lif i=0
n
/] (n(ns_l) )l ns __ A ns
00 =AM < (n=3) nns[ e |1 -mﬂxﬂ :
Case: 6 L= nls_l for s>Lif i=1
n n
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( 1 )1—1
I£09- A0l < 2 4" =

ns-1

A

n

Hence the proof is complete.

4. Basicresultsin Banach algebra
Here after, through out this paper, let us consijesind B,to be a normed Algebra and a

Banach Algebra, respectively.

Definition 4.1. A C-linear mappingA: X - X is calledAdditive Derivation on X if
A satisfies.

A(xy) = A(x) y+xA(y) (4.1)
For all x,yd X.

Definition 4.2. A C-linear mappingA: X - X is calledGeneralized Additive
Derivation on X if A satisfies.

A% X %) = AX) (Xoe %, ) + et (XX, . %, ) A(X,) 4.2)
For all xx,..x, 0X.

5. Stability results: a direct method
In this section, we investigate the generalizedJHyers stability of the functional

equation (4.1)

Theorem 5.1. Let j+1. Lety: X" [O,oo) be a function such that
“l//(n”xl,n” xzﬁ' xn)“ 0. im Ht,l/(n”xl A x, hxn)”

lim | T =0, (5.1)
| - oo nJ Lo nnl
For all xx,..x,0X.let f: X - Y be a function satisfies the inequality
D f (% %X, )| S (X X0 %,) (5.2)
And
fx,...x_,x)—f Xo e -
[ (e ,) = £ () (XX, 1><n) 5.3)
(%X %,00) ||<w e X1 %)
For all xx,..x, 0 X.Then there eX|sts a unique functien X - Y such that
1 & lIJ(n”x)
- < _ 5.4
[ (x)- A< EEER (5.4)

where ¥ (nx) :zp[( ..... 0 n x] for all xOX. The mappingA(x) is defined by
%/_J

n-1times

A(x)lim ') (5.5)

| - oo nnli
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for all xO X.

Corollary 5.2. LetA andsbe a nonnegative real numbers. If a functian - B satisfies
the inequality

A,
"D f(xl'x2 ..... xn)"s /]Z;:")qus sz 1 (5.6)

il S a ns 1
A N+ A, SE—
{l;lllxll 2 Ixl } -

[ (X X, ) = £ (6) (X %) = o (X 0% ) ()]

A
ﬂ;llxllsy s# 1, (5.7)

A S 522

for all x,x,,....x, 0V . Then there exists a unique additive functidrX - Y such that

IN

A
(n=3)|n-1’

1700 g (5.8)

4™
(n—3)|n—n“s| '

for all xO X.

6. Stability results: afixed point method
Theorem 6.1. Let f:v . B be a mapping for which there exist a function

W, W,y:V" - [00) with the condition

1 1

im % (s g ﬂikxn)=0,klgrg#—ikw(ﬁ4kx1+4kxz,---#ikxn)= v (6.1)
Such that the functional inequality with
D (XXX, )| @ (%0 %z %,)

and

(6.2)
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[F (X %) = F00) (% 0oy %) = o

=06 % %) T 0] < 2%, %)
for all x,x,,....x, OV . If there existsL = L(i) <1 such that the function

X - y(x):%q—'(gj,

Has the property/(x) = Ly y[ng

For all xOX.Then there exists a unique additive mappingv - B satisfying the
functional equation (1.5) and

[t (- A()| <

1-L
Corallary 6.2. LetA and sbe a nonnegative real numbers. If a functiprx - v
satisfies the inequality

y(x)| for all xOX.

A,
ERICEY BRI o 1

n S N ns 1
A N+ . , S#E—:
{l;lllxll S| } :

[ (X eeeXs %) = £ (6) (XX s X0 ) = o= (X0 0) ()]

/]a

AT 51

Z S 0 ns 1
A + ¢ , S%—;
{Lll ")9" ;"X" } n

for all x,x,,....x,0V . Then there exists a unique additive functidrnx - Y such that

IN

A
(n=3)n-1’

It (x)-A(X) < % for all x0X.
n-o)jn—n

AN”

(n—3)|n—nm|'
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