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Abstract. This paper treats the optimal controlling of theeintory replenishment in
retrial service facility system maintaining inventdor service. Arrival of demands to the
system is assumed as Poisson and service timezsssuened to follows an exponential
distribution. Here, the customers are not allowefbtm a queue. A customer who sees
the server busy joins the orbit and reattemptssistem with exponential distribution
time. For the given values of maximum inventory aedrder level, we determine the
optimal ordering policy at various instants of tinfféhe system is formulated as a Semi-
Markov Decision Process and the optimum servicesr&t be employed is found using
linear programming method so that the long—run etquk cost rate is minimized.
Numerical examples are provided to illustrate tluzlet.
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1. Introduction

Queuing systems with retrials, in which customerzeat attempts to obtain service, was
originally a topic of telecommunications researbtore recently, these systems have
served as models for particular computer netwosksch may explain the current level
of activity on the subject. As an example, the tooeers" of this queue could be a
network of computers attempting to access the sdatebase, which may only be used
by one customer at a time.

In last two decades, many researchers in the fBiéldetrial queuing system
contributed many results. For example, Elcan [8]yddainambi et al. [1], Dragieva [6],
Dudin et al. [7] and Artalejo et al. [3,5] discudsa single server retrial queue with
returning customers examined by balking or Bermaaltations and derived the analysis
part and solution technique using Matrix methodgenerating function or Truncation
method using level dependent quasi-birth-and-deatbess (LDQBD).

Paul et al. [13] an&rishnamoorthyet al. [11, 12] analyzed a continuous review
inventory system at a service facility and retabtustomersin all these systems, arrival
of customers form a Poisson process and servicestiane exponentially distributed.
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They investigate the systems to compute performameasures and construct suitable
cost functions.

The main contribution of this article is to derite optimum control rule for the
inventory replenishment process in retrial serfaglity system maintaining inventory
for service. We consider a service facility systmma the orbit with finite waiting space.
For the given values of maximum waiting space, imaxn inventory, reorder level s and
lead times, the system is formulated as a Semi-MarRecision Process and the
optimum inventory policy to be employed is obtaineihg linear programming method
so that the long — run expected cost rate is menhi

The rest of the paper is organized as followslirRiary concepts of retrial
gueues is given in section 1. A brief account ofrda process with continuous time
space is described in section 2. We provide a ftatian of our Semi - Markov Decision
model in the next section 3. In section 4, we gnesa procedure to implement long—run
expected cost rate criteria to get the optimalsalghe system parameters.

2. Preliminaries
In this paper, we assume the following: A custormgives to the system according to a
Poisson process with ratg> 0). When the server is idle the arriving customeedatiy

enters the server gets service and leaves themsyste arriving customer who finds a
server busy is obliged to leave the service arehrapeats his request from a virtual
space namelgrbit. A reattempt made by a customer after a random fiméhe service
from theorbit is calledretrial. Customer’s retrials for service from an orbitldel an
exponential distribution with raté (> 0). (If there are i customers stay in the othé
retrial rate isd).

S
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Arrival (. > 0)

Departure
(u=0)

Customers who
Find Server busy
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Figure 1: Inventory Control in Retrial Service Facility System

Service times of customers are independent of ettuér and have a common
exponential distribution with parametgr(> 0). One (unit) of item is served to each
customer during service. The capacity of orbitisited to the maximum of N. The
maximum capacity of the inventory is fixed as S.afbver the inventory level reaches
to a prefixed level s (8 s < S), an order for Q = S — s > s items is plaed the lead
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time follows an exponential distribution with pareter y.Supply of items from
manufacturer is random with fixed probability say p

The order filling for the inventory occurs with egip (> 0) and non — filling the
inventory with ratey(1 - p) where p denote the probability of supplyooder quantity.
The size of the order is adjusted at the time pfeshment so that immediately after
replenishment the inventory level becomes S. Odéeision is made at each level less
than or equal to the reorder level s. Wheneverirtientory level reaches to zero, the
arriving customers enter the orbit, status of gwwer remains 0.

3. Analysis of system
Let X(t), N(t) and I(t) denotes the status of tleever, number of customers in thebit
and inventory level at time t, respectively.

Then {(X (t), N (1), | (t)): t> 0} is a three dimensional continuous time Markov
process with state spaggx E, x E, ,where,

E - 0 if theserverisidle. E,={0,1,2, ...,N};and §={0, 1, 2,...,S}.
Y711 if theserverisbus

The infinitesimal generator A of the Markov procéss entries of the forr(’a(‘i';f‘k*)”)).

Some of the state transitions are given below:
From state (0, j, k) only transitions into theldoling states are possible:
(0 (1, ], k) with ratex (direct customer arrival).
(i) (1, j-1, k) with rated (Customer arrival from orbit).
Here,j=1,2..Nand k=0, 1, 2.,S.
From state (1, j-1, k) only transitions into tlildwing states are possible:
() (1, ], k) with ratex (direct customer arrival).
(i) (O, j-1, k-1) with rateu (Service completion).
Here,j=1,2...Nand k=1, 2...S.
From states (0, j, 0) transitions are possible tmihe states (0, j +1, 0) focEN — 1.

3.1. MDP formulation
Now, we formulate the MDP by considering the follog/five components:

Decision epochsThe decision epochs for the system are takenraona points of time
say theservice completion times.

State spaceE, x E, x E, = Eis considered as the state space, where
_ {0 if the serverisidle
=

1 if theserverisbusy’ B ={01,2,...} And § ={ 0.1,2,,...¢
Action set: The reordering decisions (0- no order;1- orderc@mpulsory order) taken
at each state of the system (i, jkE and the replenishment of inventory done atypte
The compulsory order for S items is made when itgrlevel is zero. Let A(r =1, 2,
3) denotes the set of possible actions. Where; 0}, A, ={0, 1}, A; ={2} and
A=A0A0A;

The set of all possible actions are at E.
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{0}, s+l<ks<S
A =101, 1skss , A=l A.

{2}’ k :0 rdE
Suppose the policy(sequence of decisions) is defined as a fundtidh— A, given by
f(,j, K ={@):(j KOE, alA,r=1, 2, 3}
Let & ={(i,j, k) OE"/f(i, j, k) = 0}.
E,={(,j, k) OE'/f(i,j, k) =0or 1}
Es={(,j, k) OE/f(,], k) =2}

Transition probability: p{'™;) (@) denote the transition probability from state (k)j,
to state (I, m, n) when decision a is made at $iajtek).

Cost: ¢ (a) denote the cost occurred in the system when a@ios taken at state
(.5

(i, J, K).

3.2. Steady state analysis
Let R denote the stationary policy, which is defeigtic time invariant and Markovian
Policy (MD). From our assumptions it can be seeat §fyx(t), N(t),(t)) :t = 0} is

denoted as the controlled procﬁ(ss R (t),NR(t),17 (t)); t> o} when policy R is
adopted. The above process is completely Ergddévery stationary policy gives rise to

an irreducible Markov chain. It can be seen that @&very stationary policy
f, {x "N f} is completely Ergodic and also the optimal statigr@olicy R exists,

because the state and action spaces are finite.
If d;is the Markovian deterministic decision rule, theected reward satisfies
the transition probability relations.

pt((l,m,n) |(i,j,k) ,dt(i,j,k)) = Z Q((l,m,n)l(ivivk)va) Ry i @)

alA and
r.(i,j,k),d, (i, ], k) = z rt(i,j,k,a)pd!(i'j,k)(a).

al Ag
For Deterministic Markovian Poligy 0 M "°  where,M "® denotes the space of
Deterministic Markovian policy. Under this polidy an action@C A(r) js chosen with
probabilityr1 _ (r) , whenever the process is in state E .Whenever _(r) =0or1, the

stationary Markovian policy1reduces to a familiar stationary policy.

Then the controlled process TX N, IR}, where, R is the deterministic
Markovian policy is a Markov process. Under theigall , the expected long run total
cost rate is given by

C"=hl"+cW' + ca," + pa,". 1)
where, h -holding cost / unit item / unit timgsewaiting cost / customer / unit time,
C, — reordering cost / ord@r; service cost / customér” - mean inventory level,

W' - mean waiting time in orbit(f - reordering rate)'b” - service completion rate.
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Our objective here is to find an optimal poli€y for which C™ < C" for every
MD policy in T"°

For any fixed MD policyrl DN and i, j,k), (1, m,n)0 E , define
Re(Lm,n, =P X" ()= 1,N" @)= m,I" ()= n|X" (0)= i,N" (0)= |,I" (0)= K
(i,j,k),(I,m,MOE.

Now Pij’k’ (I,m, n,t) satisfies the Kolmogorov forward differential edoat
P, '(t) = P(t)A,where, A is an infinitesimal generator of the Markgrocess
{0X 711, N (1), 17(t) : t =0}

For each MD policyt, we get an irreducible Markov chain with the stpiace E
and actions space A which are finite,

PZ(I,m.,n)= lim P7Z (I,m r].t)exists and is independent of initial state
‘ ' t - o ljk ' B
conditions. Now the system of equations obtainedozawritten as follows:
AP(0,0,S)=yp3. P(0,0,k) ®)
k=0
(1+19PO.j.S)=ypX PO.jK.E j<N 3

(A+ ) P(@L0,SFAP (0,0,Sy oP (O,l,S)ypZi: P(,0,Kk), (

A+HPL}SFEAY P (.1 1.5} ¢ PP (0.1 LS)‘VDé PLjKA& j< N-1(5)

HPUNSFAYP (N KV PANK) («
AP0,0K=PLjk Ds+ £ke S 1 @
(A+jJPOj,K=pPLjk DE £ No+ Eks S 1 (€
(A+1)PA,0,K=A PO,0KJ POLKs+ <ks S 1 (
A+ )P j,k):AiPa, FiL+(+HDIPO.F LK), £ N Is+ Kks S 1 (
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1
HUP@N,K=AD P (i,N-i,K), st ks S- 1
i=0

(A+yp)P(0,0,K= i PLOK 1), 8K< s
A+]3+yPPO,},K=LPLj K 1,k j<N EK<s
A+ 1+ yp)PLO,KEAP (0,0,kF 5 P(0,LK) LK< s

A+ 1+ o) P K= A3 PG i)+ (+1)0P(O, jr LK) j <N - LEK<S
i=0

(A+yp)P(0,},0= 1 PA,jI¥A PO5 LO)&jsN- 1
yPP(O,N,0=AP (ON- 1,0y # P, N,2)

Together with the above set of equations, the mtatbability condition
> PT(i,j,k) =1

(i,j,k)OE

gives steady state probabilities’{®j, k), (i, j, k) O E} uniquely.

3.3. System Performance Measures
The average inventory level in the system is givgn

=3 3Sk> P, j,K).

i=01k=1 j=0

Mean waiting time in the orbit is given by

i=0,1j=1
The reorder rate is given by

N S
=> 2 2 yP (i, ik).
i=0,1 j=0k=0
The service completion rate is given by

N S
ay =1y > > P(i,i.K).
i=0,1j=1k=1
Now the Iong run expected cost rate is given by

ShY S K P k) + qzz“ ";115)2 (i j, k)

i=0,1k=1 j=0 i=0,1j=
+CZZZZVP”(i,j,k) +ﬁu222 P (i, }, k)
i=0,1j=0k=1 i=01j=1k=1
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4. Linear programming problem
4.1. Formulation of LPP
In this section we propose a LPP model within a Mi2ifhework. First we define the
variables, D (i, j, k, a) as a conditional probiypiéxpression
D (i, j, k, @) = Pr {decision is a | state is (ik)}. (25)
Since < D (i, j, k, @)< 1, this is compatible with the deterministic timgariant
Markovian policies. Here, the Semi—Markovian demigbroblem can be formulated as a
linear programming problem. Hence,
0<D (. jka<land > D(,j,k,a)=1i=010<j<N;0<k<M.

alA={0,1,2}
For the reformulation of the MDP as LPP, we definether variable y (i, j, k, @) as
follows.

y(i,j,k,a)=D(,j,k,a)P"(,j,k). (26)
From the above definition of the transition prolitibs
P™(i,j,k) =Y y(i,j, k,a),(i,jk)OE, aOA ={0, 1,2} (27)

alA

Expressingp” (i, j, k) in terms ofy(i, j,k,a) the expected total cost rate function (24) is
obtained and the LPP formulation is of the form

Minimize
c'=h Y YIRS Phikars Y ¥y U9 J‘”z P i.j.k.a)
alA={0,1,2} i=01 k=1  j=0 alA={0,1,2}i=0,1 j=1 k=1
(Z S Y pa-pPGikar Y zzspr’(i,j,k,mj
alA={0} 0,1 j=0 k=1 alA={1,2} i=0,1 j=0 k=1
+Bu D > > P ika) (28)

alA={0,1,2} i=0,1 j=1 k=1
subject to the constraints,
(1) y(,j.k,a)=0,(G,j,k\OE,ad A ,l=0,1,2

@ > > > vy(ijka)=1,

=0 (i,j,k)OE, aOA
and the balance equations (2) — (18) are obtaipeddacing
P”(i,j, k) by Z y(i, j, k,a) .

alA

Lemma 4.2.The optimal solution of the above Linear Prograngrnoblem yields a
deterministic policy.
Proof: From the equations

y(,j, k,a)=D(,j,k,a)P" (i,j, k) (29)

and

P™(,j,k) =Z v(i, j, k,a), (i, j,K) O E. (30)
aldA

Since the decision problem is completely ergodergbasic feasible solution to the
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above linear programming problem has the propégt/for each
(i,j,k) OE, y(i, j,k,a) > 0O for every &lA.

5. Numerical illustration and discussion
In this section we consider a service facility systmaintaining inventory to illustrate the
stochastic model described in section 4, througimerical examples. We have
implemented TORA software to solve LPP by simpligodthm.
Consider the MDP problem with the following paraerst
S=3,s=1,N=4,=2,u=3,y=4,6=3,p=08,h=01,62};j=1,2p=2

The optimum cost for the system is C =24.634 antin@xb ordering policy for
the proposed system is given in the table:

{X(1), N(©), I(Y} | (0,0,3 | (0,2,3 | (0,2,3](0,3,3 | (1,0,3 | (1,1,3 | (1,2,3 | (1,3,3
Action 0 0 0 0 0 0 0 0
{X(t), N(©), I()} | (0,0,2 | (0,1,2/| (0,2,2 ] (0,3,2 | (1,0,2 | (1,1,2']| (1,2,2 | (1,3,2
Action 0 0 0 0 0 0 0 0
{X(t), N(®), I(t)} | (0,0,1 | (0,2,1| (0,22 ]| (0,31 |(1,01 | (1,11 | (1,21 | (1,31
Action 0 0 0 0 0 0 0 1
{X(©), N(©), I()} | (0,0,0 | (0,1,0 | (0,2,0'| (0,3,0
Action 2 2 2 2

That is whenever the inventory level reaches theder level s(>0) the optimal decision
is to refill the inventory with Q=S-s items.

6. Conclusion

Analysis of inventory control at service facility fairly recent system study. In most of
previous works optimal ordering policies or systgmerformance measures are
determined. We approached the problem in new stgiag Semi—Markov Decision

Process to control optimally the inventory replanignt. The optimum control policy to

be employed is found using linear programming meiteo that the long—run expected
cost rate is minimized. In future we like to extetiis model to multi server-retrial

Service Facility system with inventory maintenance.
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