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Abstract. This paper presents the study of  magnetohydrodynamic flow version of the  
Casson fluid flow with Hall effect and Rotation in the presence of an inclined magnetic 
field and porous medium. Exact solution of the governing equation is obtained by 
Similarity transform technique for the MHD flow of incompressible, electrically 
conducting, Casson fluid past a uniformly accelerated and insulated infinite plate. The 
effects of the Hall parameter, Hartmann number, Angle of inclination, Porosity parameter 
and the Rotation parameter on the velocity components are shown graphically. We 
concluded that the axial velocity decrease and transverse velocity increase for increasing 
values of Magnetic parameter and Porosity parameter but it is converse in the case of 
Hall parameter. Both the velocity decreases when the values of Casson fluid parameter 
and Rotation parameter are increased. 
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1. Introduction 
The influence of magnetic field over rotation has drawn considerable attention for so 
many years because it is fundamental to various geophysical phenomena, such as 
geomagnetic dynamo, solar spin down etc. The steady and unsteady Ekman layers of 
incompressible fluid have been investigated as basic boundary layers in a rotating fluid 
appears in the oceanic, atmospheric, cosmic fluid dynamics and solar physics or 
geophysical problems. 

Gupta (1972) analyzed the effect of a uniform transverse magnetic field on 
Ekman layer. The hydromagnetic boundary layer and hydromagnetic multiple boundary 
layers in a rotating fluid was investigated by Debnath (1972, 1975). Guchhait et al (2012) 
investigated the combined effect of Hall current and rotation on MHD flow in a rotaing 
vertical channel. 

In the last two decades, voluminous research has been performed on flow 
through porous media. The applications of porous media are seen in various fields such 
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as hydrology, environmental pollution, insulation of building and equipment, energy 
storage and recovery, geothermal reservoirs, nuclear waste disposal and the storage of 
heat generating materials such as coal.  

A porous medium or a porous material is a solid (often called frame or matrix) 
permeated by an interconnected network of pores (voids) filled with a fluid (liquid or 
gas). The concept of porous media is used in many areas of applied science and 
engineering mechanics (acoustics, geomechanics, soil mechanics, rock mechanics), 
engineering (hydrology, petroleum geology, geophysics), biology and biophysics, 
material science etc. 

Casson fluid is defined as a shear thinning liquid which is understood to have an 
immeasurable viscosity at zero rate of shear, a yield stress below which no flow occurs 
and a zero viscosity at an infinite rate of shear Dash (1996). A variety of experiments 
executed on blood with varying anti-coagulants, temperatures, haematocrits and strongly 
recommend the performance of blood the same as a Casson fluid (Blair, 1959 and Charm, 
1965). Due to a immense application and motivated in this area, an attempt is made to 
study the effect of Coriolis force and magnetohydrodynamics in Casson fluid flow with 
Hall current and porous medium. 
 
2. Formulation of the problem 
Consider the flow of an incompressible electrically conducting, Casson fluid past an 
infinite and insulated porous flat plate occupying the plane y = 0.  Initially the fluid and 
the plate rotate in unison with an uniform angular velocity Ω�  about the y - axis normal to 
the plate. The �-axis is taken in the direction of the motion of the plate and � – axis lying 
on the plate normal to both � and y – axis. Relative to the rotating fluid, the plate is 
impulsively started from rest and set into motion with uniform acceleration in its own 
plane along the � - axis. An uniform magnetic field ��, parallel to 
 - axis is imposed and 
the plate is electrically non conducting.  

The Physical configuration and the nature of the flow suggest the following form 
of velocity vector ��, magnetic induction vector ��,  the uniform angular velocity Ω� , the 
Casson fluid parameter γ , 
 is the permeability, electro static field �� and Pressure	�, thus ��= (u,0,w), ��= (��, ��, ��), Ω�  = (0,Ω�,0), ��= (��, 0, ��) and �  is Constant. The 
rheological equation of state for an isotropic and incompressible flow of a Casson fluid is 
as follows [8] 

��� =	
���
�� 2 ��� + ��√2"# $��,					"	 > 	"&
2'�� + ��(2"&)$��,					"	 < 	"&

+ 
where  " = $��$�� and $�� are the ,-, .)/ℎ	component of the deformation rate, " is the 
product of the component of deformation rate with itself, "& is a critical value of this 
product based on the non-Newtonian model, �� is plastic dynamic viscosity of the non-
Newtonian fluid and �� is the yield stress of the fluid. The basic equations with reference 
to the rotating frame governing the unsteady flow in the presence of magnetic field and 
Hall current are as follows: ∇. ��=0                                                                                      (1) 
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23�24 + ,��. ∇)q� + 2Ω� × q� = − 8
ρ
∇P + ν :1 + 8

γ
<∇=q� + 8

ρ
,J̅ × B�	) - νA q�                      (2) 

The generalized Ohm’s law, neglecting ion-slip effect but taking Hall current into 
account is, B̅
σ
= ,�� + q� × C�) − D̅×��E.F                                                (3) 

where σ = FGτEHI   (is the electrical conductivity). 

The initial and boundary conditions are  	J = 0, K = 0		for all  / ≤ 0		and  for all 
   	J = M�, K = 0		for all  / > 0		and 
 = 0,   J → 0, K → 0		for all  / > 0  and   
 → ∞                        (4) 
Physical quantities are cast in non-dimensional form by using the following non-
dimensional scheme. 
∗ = PQ�

ν
,			J∗ = RPQ ,			K∗ = SPQ ,			/∗ = PQG4

ν
                                (5) 

Now introducing the above non-dimensional quantities in equation (2), the components 
are 2R24 = :1 + 8

γ
< 2GR2�G − σTQGν

ρPQG,8UωGτG) ,J + ωτK) − =νPQGKΩ� − νGRAPQG                       (6)                                                              

2S24 = :1 + 8
γ
< 2GS2�G − σTQGν

ρPQG,8UωGτG) ,ωτJ − K) + =νPQG JΩ� − νGSAPQG                                   (7)                                                                                                                    

where the non-dimensional parameters are defined below  V= = σTQGν
ρPQG  is the square of the Hartmann number, W = ωτ is the Hall Parameter  X= = νΩYPQG  is the Rotation parameter i.e., the reciprocal of Ekmann number and  

XZ = νGAPQG is the Porosity parameter. 

The corresponding initial and boundary conditions (4) in non-dimensional forms are  / ≤ 0 ∶ J,
, /) = 0; 		K,
, /) = 	0 for all 
. / > 0 ∶ J,0, /) = 1,K,0, /) = 0 / > 0 ∶ J,
, /) → 0,K,
, /) → 0 as 
 → ∞                                (8)                                                                                        
 
3. Solution of the problem 
By introducing  � = J + -K,  equation (6) and (7) becomes 2324 = ] 2G32�G − ^: _G8UHG< ,1 − -W) + XZ − 2-X=` �                                     (9)                                                                              

where ] = :1 + 8
γ
< 

The initial and boundary conditions take the form �,
, 0) = 	0, �,0, /) = 	1,				�,
, /) → 0		as
 → ∞                          (10)                                                                                                                                     

Using the abbreviationa =	 ^: _G8UHG< ,1 − -W) + XZ − 2-X=`, 
Equation (2.9) can be written as 2324 = ] 2G32�G − a�                                            (11) 

Also substitute �,
, /) = $�b4c,
) in (11), we have 
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]	c′′,
) − ,-d + a)c,
) = 0                                                                        (12) 
Equation (12) can be solved under the boundary conditions, c,0) = $e�b4, c,∞) = 0                                                                            (13) 
The solution is  

c,
) = $e�b4$fY√g(�b	Uh                                                                               (14) 

Hence �,
, /) = $�b4 ^$e�b4$e�(�b	Uh`                                                    (15) 

Real and imaginary parts of equation (15) are  J,
, /) = $e�ij]kl
m=                                                                             (16) K,
, /) = −$e�ijl-n	
m=                                                                         (17) 

where o = _G8UHG + XZ; 	p = − _GH8UHG − 2X=;	 
m8 = 8

√& qrU (rGU,bUs)G= ; m= = 8
√& qerU (rGU,bUs)G=  

 
4. Shearing stress 
The nondimensional shear stress components �� and �� at the plate due to the primary 

and secondary flows are respectively denoted as �� = :2R2�<�t�and �� = :2S2�<�t�which 

are derived from equations (16) and (17). 
 
5. Results and discussion 
Figures 1 and 2 Show the effect of Hartman number in primary and secondary velocity 
profile. From figure it is clear that, when the Magnetic parameter increases the primary 
velocity decrease and secondary velocity increases. It is seen from figures 3 and 4 that the 
primary velocity J increase and secondary velocity K decrease  with an increase in Hall 
parameter. Figures 5,6 and 7,8 depict the primary and secondary velocity profile for 
increasing values of Casson fluid parameter and rotation parameter X=.  It is also seen 
that in both the cases both primary and secondary velocity retards.  Figures 9 and 10 
displays the velocity profiles for increasing values of porosity parameter and it shows that 
the primary velocity decrease and secondary velocity increases. 

Figure 11-14 shows the primary skin friction �� and secondary skin friction �� 
for increasing values of Casson fluid parameter  and Porsity parameter respectively. From 
figures it is clear that primary and secondary shear stress decrease for increasing values 
of Casson fluid parameter. But the primary shear stress decrease and secondary shear 
stress increase for increasing values of Porosity parameter. 

 
6. Conclusion 
• It is concluded that the Primary velocity decrease and secondary velocity increase for 

increasing values of Magnetic parameter and Porosity parameter but it is converse in 
the case of Hall parameter.  

• The primary and secondary velocity decreases when the values of Casson fluid 
parameter and Rotation parameter are increased. 

• The Shear stress �� at the plate decrease with increase of Casson fluid parameter and 
Porosity parameter. 
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• The Shear stress �� at the plate decreases when the Casson fluid parameter increased 
and increases when Porosity parameter is increased with respect to the Hall 
parameter	W. 

   
 

Figure 1: Effect of Hartmann number ,V=) on primary velocity profile  
when 	W = 1; 		d � 1; u � 0.2; 	X= � 1; XZ � 1 

 
 
 

  
Figure 2: Effect of Hartmann number ,V=� on secondary velocity profile  

whenW � 1; 		d � 1; u � 0.2;	X= � 1;	XZ � 1 
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Figure 3: Effect of Hall parameter ,W� on primary velocity profile  
when 		V= � 1; 	d � 1; 	u � 0.2;	X= � 1;	XZ � 1 

 
 
 

  
 

Figure 4:  Effect of Hall parameter ,W� on secondary velocity profile  
when  	V= � 1; 	d � 1; 	u � 0.2;	X= � 1;	XZ � 1 
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Figure 5: Effect of Casson fluid parameter ,u� on primary velocity profile  
when 	V= � 1; 	d � 1; 	W � 1;	X= � 1;	XZ � 1 

 
 
 

  
 

Figure 6:  Effect of Casson fluid parameter ,u� on secondary velocity profile  
when  	V= � 1; 	d � 1; 	W � 1;	X= � 1;	XZ � 1 
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Figure 7: Effect of Rotation parameter ,X=� on primary velocity profile  
when 	W � 1; 		d � 1; u � 0.2; 	V= � 1;XZ � 1 

 
 

  
Figure 8: Effect of Rotation parameter ,X=� on secondary velocity profile  

When W � 1; 		d � 1; u � 0.2;	V= � 1;	XZ � 1 
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Figure 9: Effect of Porosity parameter ,X=� on primary velocity profile  
when 	W � 1; 		d � 1; u � 0.2;	V= � 1;	X= � 1 

 
 
 

  
Figure 10: Effect of Porosity parameter ,X=� on secondary velocity profile  

when W � 1; 		d � 1; u � 0.2;	V= � 1;	X= � 1 
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Figure  11: Shear stress  ��  for different u  when 	V= � 1; 		d � 1;		X= � 1;	XZ � 1 
 
 

  
 

Figure 12: Shear stress  ��  for different  u when  	V= � 1; 		d � 1;		X= � 1;	XZ � 1 
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Figure 13: Shear stress  ��  for different 	V=  when 	d � 1; 	u � 0.2;	X= � 1; 	V= � 1 
 
 
 

  
 

Figure 14: Shear stress  ��  for different 	V= when d � 1; 	u � 0.2;	X= � 1; 	V= � 1 
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