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Abstract. In this article, we consider a discrete time senfacility system under MDP
structure. Decisions are taken at discrete timeclkgpdo control both admission and
service processes in the service facility systerareHhe queue before the server is
divided intoeligible queuéwith finite capacityN) and an unlimitegbotential queueThe
number of arrivals and service completion with rattollow general distributions with
probability mass functions (p.m.fp(land q, () respectively. Control systems are used
to(i) transfer customers from potential queue igilele queue and (ii) change the service
rate depending on the number of customers in thiesy The system is formulated as a
Markov Decision Process and an optimal controlqyals obtained using Policy Iteration
Method. Numerical example is provided to illustrdte problem with managerial insight.
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1. Introduction

Markov decision Process is a versatile and powedal for analyzing probabilistic
sequential decision models with finfiiefinite planning horizon. MDP is a fusion of two
concepts Markov Process and Dynamic programming.

Last three decades, many researchers in the dieloberations and resource
management contributed many results (Berman antaSE], Berman and Kim [2],
Arivarigan [1], Elango [5], Krishnamoorthy [8]). Imost of the studies mentioned above,
the system is considered as a Markov process witte for infinite state space. The
expressions for transition probability functiongdahe infinitesimal generator matrix of
the Markov process are derived. The steady stateapility distribution of the states has
been found. Then by computing proper system pedoo® measures and imposing
respective cost structure, the cost analysis i€ dorget the optimal parameters of the
system.
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So for in the literature on discrete/continuous Rnodels only admission
control or service rate control problems are sulidi¥/e believe that an integrated
approach like Markov Decision Process model is nagtropriate to study service
facility system (Queues- Inventory) and Machine mteance systems (Machine-
Spares). Berman and Sapna [4] studied one sucltasdacility—inventory system under
MDP structure using LPP method to control the servates. Hild Mohamed et al. [6]
analyzed a Markov decision problem: Optimal contwblservers in a service facility
holding perishable inventory with impatient custome

In this paper, we imposed the Markov Decision PsecéMDP) frame on a
simple service facility (Queue system) to implemseqjuential decision making on both
admissionandservice rate This kind of decision problems arrive in feed lbaontrol of
engineering systems, portfolio management and gupphin management etc. The
standard mathematical formulation of this probleroives MDPs. Thus the states of the
system is modeled as Markov chain, whose transitiprobabilities depends on the
appropriate action choices, by considering theestation dependent reward incurred at
each stage.

Recently Kim [7] considered the admission contraid athe inventory
management problem of a make-to-order (MTO) faciliith a common component,
which is purchased from a supplier under stochds#d time with setup cost. Arriving
demands of MTO type (customized types) are satisbig using common (single)
component. Selvakumar et al. [11] considered arglisdime MDP in a service facility
system in which inventory is maintained to complike service. Decisions are taken at
discrete time epochs to control both admission iamentory control in service facility
systems. Control system is used to transfer cus®ifnem potential queue to eligible
gueue, but with single demand class.

In this paper, we try to control both the admissioid service in a service facility
system under periodic review (equally spaced tipwchs). The queue before the server
is divided intoeligible queueandpotential queueHere, we use policy iteration method
to optimize the expected total reward. In the &&sttion a numerical example is provided
to illustrate the model.

2. Model description
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Figure 1: A service facility system with admission and service control

We formulate the model as follows: Decision epoahthe system correspond to
the beginning of each period (Figure 2). The systeobserved every >0 unit of time
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and the decision epochs aye2y,...L7, L <o (finite horizon).Admissions to the service
facility is controlled, by observing the numberanistomers in the system (eligible queue
+ server). Service is controlled by selecting aiserrate from the set of rates fix, b} .

The service ratdgsand b, denote the high and low efficiency servers respelfstiand

they can be changed depending on the number afroess in the system. Assume that
the maximum capacity of waiting spaceNgfinite). Arriving number of customers to
service facility system follows a probability mdaactionp(Qland the arriving customers

are placed irpotential queuePossible number of service completion followseaagal
probability mass functior, ()1 with rate b. The controller useg (lin periodt and uses

g, (Y in periodt+1 means that a sever change occhtaximum number of customers to

be admitted at time epodh= maximum capacity of waiting spach)(- Number of
customers in the eligible queue. Remaining custeraee assumed to be rejected. All
serviced customers depart the system at the epelriofd.

3. Main results
3.1. MDP formulation

We consider the problem as MDP having five comptm(ituples)(T, S A.p.d). (([ﬂ).
Decision Epochs: T={n.27,..l7} , L<oo(finite).
State Space:
S=5x $x $={0,1,2,.}x{ 0,1,2,...N<{ ;b b
S:{( I,i,,i,) : i,denoteshe number of customersinthe potential queue
i,denotesthe numbef customersinthe syst(eligible queue+ server
i;dendesthe current servicate}

Actions:
Ay ={{a.f 0A,, a={0,12,...Ni,} B={ 0 (Policy is state dependen

Decision for Admission Controkr ={0,1,2,...,N-i,} ,(Policy is state depnde nt
Decision for Service Control:
_ |0 - noserverchange
p= {1 - changeof server( lowes high}e}r
Transition probability:
a, @, +a=iy)p@; ) if a+i,>,>0

N

Y. G (MpE) if i;=0a+i,>C
o} (s‘l S é: n=ip+a

() if i,=a+i,=0

0 if i,>a+i,=0.

rosr o

1,220,010 52 0,5=(i,i,i,), S =(>,i%i%).
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Rewards:
Theexpected rewards a function of state and action is

r(s,@)= rxE{min(Y, i+ a} - w(i + 9~ ab,B), & A A, s (i)

The expected number of service completion in petigglgiven by

ir+a-1 N
E{min({.b+a}= > nam+@k+a) ) g(n)
n=1 n=ip+a

and the server changing cost is given by
K+d(b) bzb
b, b)= , b={h, b}, b={ b B .

The stationary reward structure consist of thrempmments: the reward for
service completions and a waiting cos(i,+a) per period when there arg,+a)

customers in the system (eligible queue) and aceerate cosd(b)per period for using
serverb(bl orbz) and a fixed cosK per period for changing service rate.

3.2. Analysis
Clearly {(Il(t),lg),lg(t)):t:O,l,...,L}is a Markov chain with state space

$={0,1,2,}x{ 0,1,2,...,Nx{ h B} Let Z is the number of customers arrive during
the periodt . Customers arriving during the perioe 1enter the potential queue. LEf
denote the number of customers in the potentiaugud? denote the number of
customers in the system ang’ current service rate, immediately prior to the sieci
epocht. Let Y, denote the number of “possible service completidasing periodt.

At the decision epoch, the controller admits(N - Ié‘))+(number of waiting

space in the system at time epaochk u, of customers from the potential queue into the

system,t=1,2,..L.
. x if x>0
() {

0 if x<0.
Time Potential Queue System
_ I 0]
t Z, = Il(t) o 2
t+ 0 I2 U

|(t+1) — |£t) + I](_t) _Yt If | it) < N —l (Zt)
2 N-Y,  if 19=2N-I?
Table 1: State of the service facility syst

t+1 z =1

Hencd + denotes a point in time immediately after the aalritas been
implemented but prior to any service completion.
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We can admit onlyi, = N - I customers, so th@<u <N, t=1,2,...L
The random variabléy, takes non-negative integer values and followsnze ti
invariant probability mass functioq, (n) = Pr{\( = r} , t=1,2,...Land Z, assumes non-
negative values which follows a time invariant pabllity mass function
pm)=P{z =1}, t=012,..L

7 (1) 7 (t+1)

Decision Decision Decision A Decision Decision
Epoch Epoch Epoch Epoch Epoch
1 2 3 -1 i
| | | | |
| | | | | . .. I !

t Y| t+1 : .
Period 1  Period 2 Dexleg 14
Period t

Figure 2: Functional relation diagram

The one step reward are given by(s,a), where s=(1,i,,i,) denote the state of the

system at decision epotlfbeginning oft™ period). Assume the stationary poligy and
hence the transition probability

pt(S'IS.a)= Pr{(ll“*l) | Smls(“l)): él(' 00 3(0) = (s é)} W e

s =(iiyis), s=(i,i,i 5, regardless the past history of the system up te &épocht .

Then{(ll‘t),l Ol 3“’) ‘t= O,l,...,L} is a Markov chain with discrete state space
S=Sx $x SThet- step transition probabilities of the Markov chaimder policyR is
given by

pO(s19(R)=P{( L0191 0) =5 (121 2,19) =4,

Let V(s R, denote the total expected reward over the firdecision epochs

with initial state(i,,i,i,) when policyR is adopted.

Then ]
Vi(s,R) =22 M (s19( R #(R). $=(iiis), s (i)

k=0s0S
where
r,(R)= ry -wxL-c&
r - reward for service completiorw - waiting cost of customer/periog(f,I)- service
cost for server per periog;- number of customers served per period;number of

customers in the eligible queue + 1 in service ten - denote the current service rate.
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3.3. Reward analysis
The average reward functiag, (R) is given by

9.(R) = !im%\.{(s, R), (i.,.i;)0S. The elements of the above average reward function

is due to the Theorem (Puterman [9] and Tijms [10])

Theorem 3.3.1.
Forall s =(iZ,isi3), s=(ii ,i 5[5 ,!im%i pM (] 9( R always exists and.
R =1

o1& 1 if state $ is recurren
imd3 59 (<] 4=/ 7
- 0 if state s is transien

wherey, denote the mean recurrent time from sfald, i ;) to itself.
t t
Also lIm 2> p® (<] §= f21im =Y @ ( 9.
t-etia t-etia
Since the Markov Chailﬁ(ll‘",l Ol 3(") t = O,1.2,..L} is a unichain, irreducible, all its

states are Ergodic and have a unique equilibritgtmildution.
t

Thus, ZT(S.)(R):[iTO%Z P (S| 9( B, exist and is independent of initial state,

k=1
such that7P = 77 and ;SH(S) =1.
3.4. Optimal policy
A stationary policy R*is said to be an average reward optimal policy if
9.1, (R*)< g, ,,(R for each stationary policyR uniformly with the initial state
(il,iz,i 3).

The relative value associated with a given poli&provides a tool for
constructing anew policyR* whose average reward is more than that of theeoturr
policy R.

The objective is to improve the given poli& whose average reward i R)

and relative valuey, , . (R), (i.,,is)0S.
By constructing a new policyR such that for each ¢,i,i,)0S,

Is (R*)_ g( R) + z p(s,s') ( R )VS' = Vs
oy - . N (1)

wheres' =(i;,i,/i;), we obtain an improved policR* with g(R*)< g( R. We
have to find the optimal policiR* satisfying (1) which maximizes the reward function
r(a)-g(R)+> n(sls.9 (R overall actiona AS .

s0S
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3.5. Algorithm

Step O: (Initialization)

Choose a stationary polick for the periodic review based admission and sergantrol
in service facility system with inventory.

Step 1: (Value determination step)
For the current policR, compute the unique squtio@g(R),vs(R)) to the following
linear equations

V.= (R)-g(R+2 n(sIs)(Rv(h., =(ibi)0S

sds
v, =0, where iis an arbitarily chosen state in.

Step 2: (Policy improvement)
For each stats=(i,,i,,i,) JS determine the actions yielding, optimal rewardt ils

a Darg mafr(2)-0(R)+ X n(s15.9 ¥ (R)}

ss
The new stationary policR* is obtained by choosirfg = a,.

Step 3: (Convergencetest)
If the new policy R* = R(the old one), then the searching process stogs pulicyR .
Otherwise go t&tep 1 with R replaced by new* .

8. Numerical example

Consider a MDP formulation of a service facilityssgm under periodic review which
controls the transfer of customers from potentigue to eligible queue and change the
service rate. Decisions at equidistant time epachgaken to admit the eligible number
of customers and select the service rate deperatinpe number of customers in the
system.

For the system, we assunié,=5. The state space become

S ={(5.8).(5.0) (41) (4) (39 (38 (20 (2 (. W (. B (. b(. P
Action set at(iy,i,,i ;)OS is
Ay ~H@B0A a={012..N-i} p={ Off

Assume the reward =1 for service completion per customer, waiting cost
w =0.35 per customer/ period, service rate cdf; )= 1for using serverb,, and
d(b, )= 0.7for using serveib, per period. A fixed coskK =0.4 per period is assumed for
changing service rate (b1 to b2 or b2 to bl) .

Computational procedure
For any given policyR, the policy improvement quantity is given by
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sTS

T(aR)=r(a)-g(R+>. R(sI ¥ p M B wherefla, )R (v)R fora

r(u)

1(0) =

1(0x 0.20 + 1 x 0.80) = 0.

1(0x0.02+1x0.43+2x0.55)=1

1(0x0.08 +1x0.26 +2x0.34+3x0.32) =

1(0x0.07+1x0.19+20.22+3x0.28 + 4 x 0.24) = 2.

galhhlwW[N|F, | O|C

1(0x0.07+1x0.19+2x0.22+3x0.28 + 424) = 2.5

Table

2: Expected reward for service completion using servéte b

r(u)

1(0) = ¢

1(0 x 0.40 + 1 x 0.60) = O.

1(0x0.25+1x0.40 + 20.35) = 1.

1(0x0.10+1x0.31+2x0.30 +3x0.29) =

1(0x0.09+1x0.29+2x0.27 +3x0.21 + 4%4) = 2.0z

Ol  WIN|FP,|O|C

1(0x0.09+1x0.29+2x0.27 +3x0.21 + 4%4) = 2.0:

Table 3: Expected reward for service completion using servate b

e | 8|8 |S S8 |S|s|8 F| 3
L g | e ed|djidle e
(5b,) |0.04/ O |0.06/ O |0.14] O |0.21] O |0.30] O [0.25 O
(5b,)| 0 |0.18/ 0 |030] O |0.25/ 0 |0.15 O |0.07] O | 0.05
(4b) | O 0 007/ 0 010 O |0.20f O |035 O |0.28/ O
(4by) | O 0 0 |017| O [02¢] O |0.28|] O |0.1¢| O | 0.1C
(3b)| O 0 0 0| 014 0 |022/ O [040f O |[024]| O
(3by)| O 0 0 0 0| 018 0 | 035 O |0.28/ O | 0.19
2b)| O 0 0 0 0 0| 0.18 0 |045 0 |037| O
2by) | O 0 0 0 0 0 0| 020 O |0.44| 0 | 0.36
(Lb)| O 0 0 0 0 0 0 0| 038 0 |062 O
1by)| O 0 0 0 0 0 0 0 0 |04 O 0.€
(Oby)| O 0 0 0 0 0 0 0 0 0 1.( 0
Oby)| O 0 0 0 0 0 0 0 0 0 0 1.C
Table 4: Pre-specified transition probabilities of the syste
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Iteration 1:
Policy iteration algorithm is initialized with

RY=({0.0 {09 {o.p{ op{ ojof. dd. d¢. .0 . pp Jofe.d {39)
which prescribes the transfer of 4 customers fratemtial queue to the system(eligible
queue + 1 in server) in sta(®,b, ) and 3 customers at sta@,b,) respectively. Solving

the system of linear equations connecting the aeen@ward g(R)® by assuming
V,,1=1,2 we get

Visp) (RY) = -.9826193917y,, \ (RY) =~ 270295063,,,,( K') =~ .605041D ,
Vi, (RY) = 7950200374y, . (V) = - 8381333138y, ( K)) =- .63704268;
Voo (RY) = 7572777341y, ( #Y) = - 8525000000y, ( ®) = - .9354838;
Viup) (RY) = ~.8000000000y,,\(R') = 0Oy, ( R)= 0¢ R)= 0300000

s\{al | | o e o e e o | | . .

) — S| 9|9 | | 9| 9| 9|« ) —

0 CeA < < a2 a2 & QL = = £ £
(5,b) X X X X X X X X X X -.9826193914§ -.83
(5,b,) X X X X X X X X X X -1.270295063 72
(4,by) X X X X X X X X -32| -.83| -.6050411108B -.48
(4,b,) X X X X X X X X -43| -72| -7950209374  -.3¥
(3,by) X X X X X X -32| -.83| .03| -48 -.8381333138 -.37
(3,p) X X X X X X 43| -72| -.08 -37 -.6370426829 -55
(2,b) X X X X -32| -.83 03| -48 -.1f% -3F  -.7572777341-.70
(2,by) X X X X -43| -72| -08 -37 .03 -55 -.85250000P0-.57
(1,by) X X -32| -83| .03| -48f -1 -3y -17 -70 -9838710| -.085
(1,by) X X -43| -72| -08f -374 .03 -55 -30 -537 -8000000| -.95
Oby) | -62| -1.01| .03| -48 -1 -37 -17 -40 -55 -B51.030000000 -1.1
Ob) | -43| -72| -08/ -37, .03 -5 -3p -57 -45 -95.7300000000 -1.4

Table5: Iteration 1: reward matrix for different decisit

The new policy will be

R¥=({o4 {0} {1p{ ojnf gof, 3¢, 3¢, 1.0 . B . 12{e.0 {3.9)

Since the new poIic;R(z) is different from the initial poIicyR(l), the searching process
continues.
Iteration 2:

For the policyR"?, solving the system of linear equations connedtiegaverage reward
g(R)? by assumings, i =1,2 we get
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Vs (R?) =-.9193548387y,, (RY) =~ 1.148995148,, ( K)) =~

.376344086

V(4,b2)(R(2)) = —5287981193\{3&)( Féz)) = 0Y3,b2)( &2)) - — 13413615, &’bl)( ﬁ)) -0
Vit (R?) =0,y (R = 0,y ( R) = 0, 1, ( R) =0, 9,,( B)=0
g(R?) =.03000@00.

MoBl o | als|a|as|lals|als|la| = o
9 9 < < 2 & & & = = 2 =2

(5,b1) X X X X X X X X X X -.4093548388§ -.83
(5,b,) X X X X X X X X X X -.858995147§ -.72
(4,by) X X X X X X X X -32| -.83] -.026344086D0 -.48
(4,b,) X X X X X X X X -43| -72| -2387981198 -.3f
(3,b1) X X X X X X -32| -.83| .03] -4§ -.1800000000 -.37
(3,b2) X X X X X X -43| -72| -08 -37 -.0241463414 -55
(2,by) X X X X -32| -83| .03] -48 -15 -3f -.20000000D0 .70-
(2,by) X X X X -43| -72| -08 -37 .03 -55 -.33000000D0 .57-
(1,by) X X -32| -83| .03| -48/ -1 -3 -1f 710 -.5800000 | -.085
(1,by) X X -43| -72| -08| -37; .03 -55 -30 -57 -4800000| -.95
(0,by) -62| -101| .03| -48 -1 -37 -1y -70 -%5 -B51.030000000] -1.1
(0,by) -43 | -72| -08] -37 .03 -5 -3pb -57 -45 -957300000000] -1.4

Table6: Iteration 2: reward matrix for different decisit

The new policy will be

R7=({o.¢ {0} {op{ op{ 1of. 4q. 3¢ . 1p.pp .}2{a.d {39) Since

the new policy R¥is different from the initial poIicyR(z), the searching process
continues.

Iteration 3:
For the poIicyR(B), solving the system of linear equations connedtiregaverage reward

9(R)® by assumingy,,i=1,2 we get

Vo) (RY) = 3645833333y, (RY) = - .9631207758,, ()= ,
Viuny) (RY) = -.1325301208y,, (RY) =

Otony ()= Oy ( R)=
Vian) (RY) =0, v (RY) =0, v, (RF) =0,y (RY) =0,
g(R®) = .03000000000.

Viow) (R¥) =0,

s{a| s | o |ls|la|ls|a|le|a|s|= =) =
Ln n < <t (80} (80} (V] N — — o o
— — — — — — — — — — — —
(5,b1) X X X X X X X X X X -.3645833333 -.83
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(5,b,) X X X X X X X X X X -.7631207758 -.72
(4,by) X X X X X X X X -32| -.83 0 -.48
(4,b,) X X X X X X X X -43| -72| -132530120p -.3Y
(3,by) X X X X X X -32| -.83| .03| -48 -18000000Q0 -.37
(3,by) X X X X X X -43| -72| -08 -.37 0 -.55
(2,by) X X X X -32| -83| .03] -48 -1% -3y -.2000000000 .70-
(2,by) X X X X -43| -72| -08] -37 .03 -5p -.33000000D0 .57-
(1,by) X X -32| -83| .03 -48] -1 -37 -1f -70 -.5800000 | -.085
(1,b,) X X -43| -72| -08] -37 .03 -5% -30 -57 -4800000 | -.95
Ob,) | -62| -1.01| .03| -48 -1% -37 ~-1f -70 -55 -851.030000000{ -1.1
Oby | -43| -72| -08 -37 .03 -5 -30 -57 -45 -957300000000] -1.4

Table7: Iteration 3: reward matrix for different decisit

Since the new policy

R9=({o. {0} {op{ op{ dof, 4, 3¢ . LD . .12fe.d {39)is

identical with the policy, the searching procespsthere. After three iterations we
obtained the following optimal policy:

R=({o.q{o}{op{op{ 1of. dq, 24,10 B J{ad{39)

The optimal solution schedule is

(5h)(5k) (4h)(4k)(3h)(30) (28 ( 20)( 2 ( 1 ( o) ( 0y
AR 2 2 2 2 2 2 2 2 2
{o.g{o3{o0{op{1p{ ojf 2} 3¢ 3¢ 3p R0 B

9. Conclusion and futureresearch

In this article we presented an application of MarkDecision Process (MDP) for
admission and service control using classical aggronamely policy iteration’. The
optimum admission of customers and service ratebetemployed is found so that
expected reward is maximized. We are currentlgyshig Markov Decision Process in
discrete time with admission and service controlfuture we would like to extend the
model to control both service and replenishmentdeorsimultaneously in a service
facility with inventory management..
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