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Abstract. Granulate the similar things is an essential parmultivalued information
system. Rough set theory plays a vital role to esohaprecise problem. In Particular,
multigranular rough set is an efficient tool to Wwam multivalued information system.
Soft set theory is also deal uncertainty. In tlipgr we propose multigranular rough soft
set and its properties.
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1. Introduction

With the help of granulation we can encapsulateitigéscernible thing into a single
capsule. For a partition of equivalence relation multi equivalence relations
multigranulation is an emerging mathematical tooluncertain data processing. Even
though rough set is a powerful tool to solve impegroblems occur in engineering
environmental sciences, physics and so many fidlds,unigranular that is we work on
single equivalence relation with rough sets. Iis fiper we introduce one hybrid notion
of rough set.

In 1999, Molosdtov [5] recognized soft set theanhtaindle uncertainty. Soft set
is defined as the image of the function from atti#subset to the power set of the
universal set. Beside soft set theory, Pawlakd8htified rough set as an approximations
holding set. Both the sets have so many extensidrapplications. Vinay et al. [9] gave
the definition of rough soft sets using soft ralat.

2. Preliminaries
Let U be a common universe and let E be a setrafpeters.

Definition 2.1. ([1]) A pair (F, E) is called a soft set (over U) if aodly if F is a
mapping of E into the set of all subsets of thelsewhere F is a mapping given by F: E
— P (V).

In other words, the soft set is a parameterizedlyaai subsets of the set U.
Every set ) (e € E), from this family may be considered as theo$etelements of the
soft sets (F, E), or as the seteedpproximate elements of the soft set.
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Definition 2.2. ([6]) For two soft sets (F, A) and (G, B) over U, (F,i8)called a soft
subset of (G, B) if

(1) AcBand

(2) vee A, F () and G €) are identical approximations.
This relationship is denoted by (F, BXG, B).
Similarly, (F, A) is called a soft superset of @,if (G, B) is a soft subset of (F, A). This
relationship is denoted by (F, A) (G, B).

Definition 2.3. [6] Two soft sets (F, A) and (G, B) over U are calelt equal if (F, A) is
a soft subset of(G, B) and (G, B) is a soft sub$¢f, A).

Definition 2.4. [6] The intersection of two soft sets (F, A) and (G,0Ber U is the soft
set (H, C), where C =@AB andve € C, HE) = F () or Gf) (as both are same set). This
is denoted by (F, AN (G, B) = (H, C).

Definition 2.5. [6] The union of two soft sets (F, A) and (G, B) olkis the soft set (H,
C), where C = AB andve € C,

F(e), if eJA-B
H(e) =< G(e), if edB-A
Fe)OG(e),if eUANB
This is denoted by (F , AYl (G, B) = (H, C).

Definition 2.6. [6] NULL SOFT SET. A soft set (F, A) over U is saidide a NULL soft
set denoted b, if e€ A, F(e) = 0.

Definition 2.7. [3] Let R be an equivalence relation on U. The pairRYis called a
Pawlak approximation space. The equivalence R isnotalled an indiscernibility
relation R, one can define the following two rowgproximations:

R.(x) ={x0OU :[x]; O X}

R* (x) ={x0OU :[X]g n X = P}
R (X)And R (X) are called the pawlak lower approximation and thaelak upper
approximation of X, repectively.

Definition 2.8. [11] Let A,B [0 E and (F, A), (G, B) be soft sets. Then a soft relation
from (F, A) to (G,B) is a soft subset ¢F, A) X (G, B).

Definition 2.9. [12] A soft relation R on a soft set (F,A) is called
i. SoftreflexiveifF(a) X F(a)UR, Dal A
ii. Soft symmetricifF(a) X F(b)DR= F(b) X F(a), J(a,b)DAX A
iii. Soft transitive if
F(a) X F(bh)OR,F(b) X F(c) = F(a) X F(c), Ja,b,cOA
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Definition 3.5. [11] Let (F,A) be soft. Then
[F(@]={F@):F(@XF(@)OROaa OA

3. Multigranular rough soft sets
Definition 3.1. Let (F, A R) be a soft approximation space. B2QQ [1R. Then soft

lower approximation and soft upper approximatiof@&fB) [ (F, A), are defined as
apr . (G.B) = J{F(@O(F,A:[F(a), O(G B)or[F(a)l, O(G,B)}
aldA

—P+Q

apr~(G,B) =(apr (G, B))°
respectively. The multigranular boundary regiodé$ined as

——P+Q ——P+Q

BNp.o(G,B) =apr (G,B) \ﬂmq (G,B). If apr .. (G,B)zapr "(G,B)
then (G, B) is called multigranular rough soft set.
Example 3.2. LetU ={u,,u,,U,,U,,Us,Ug},
E={e.e &, €.}, A={€,6&, 6,6,6]} andB={g,e, &} .(F,A) and(G,B)

defined as follows

(F, A) ={(e, {u,u,,us}), (&, {u,, Uy, Us, Ug}), (€5 {U,,Us, Us, Ug}), (€, {U,, Us}),
{e {u;,uz,u,, U}

and (G, B) ={(e, {u,,u,,u,}), (&, {u,,u.}), (e, {u,,u;})} . Also, consider a soft
relationR ={[ F(e)] : forall e(] A}.

Let P={F(e) X F(&,), F(&;) X F(e,),F(e,) X F (&), F(&;) X F(&)} and

Q={F(e) XF(e,),F(&) X F(&) F(e,) XF(e,),F(e,) X F(e&),F (&) X F(e5)}
Then

apr . (G.B)={F(&)}, apry.o(G,B)=(F.A).
Proposition 3.3. For a soft approximation spa¢g, A, R), for all subse{(G, B),(H,C)
of (F,A)and P,QUR

L apr, (F)=F,=apr (F,)

i apr, (F)=Fa=apr  (Fy)

ii. If (G,B)0(H,C) thenapr | (G,B)apr_ (H,C) and

apr (G,B)Dapr " (H,C)

v apr, (GB)=(@pr " (GB))
apr”“(G,B) = (apr (G, B)°)°
Vi ﬂmq((G'B) n (H,C)) :ﬂP+Q(G’ B) n ﬂmQ(H’C)

353



M.Gilbert Rani, R.Rajeswari and J.Jenitha Seronmani
vii. EMQ(G,B)D@P@(H,C) Dﬂmq((G,B)D(H,C))

vii.  apr S((G,B)0(H,C))=apr (G,B)Dapr “(H,C)
ix. apr ((G,B)n(H,C)Oapr “(G,B)napr _(H,C)

Proof: From the definition3.1 and operations on soft set.
Each fact of the above proposition verified witk thllowing example.
Example3.4. LetU ={u,,u,}andE ={e,e,,e;}, A={e,e}. (F, A) defined as
{(ey{u,,u,}), (e, {u,,u,}) Then the subset of (F,A) are

(F. A ={(ey {u,, u,}), (e, {u})}

(F. A ={(ey {u;,u,)), (e, {u})}

(F, A)° ={(e, {u}), (&, {uy,u.})}

(F. A" ={(ey {u.}), (e, {uy,u.})

(F,A)° ={(e, {u}), (&, {u )}

(F.A° ={(e, {u,}), (e, {u})}
(F. A" ={(ey {u}). (e, {u,}
(F. A° ={(e, {u,}), (e, {u})}
(F. A ={(e, {u;,u,}}

(F. A ={(e, {u;,u,})}

(F, A" ={(e, {u})}

(F. A ={(e, {u.}

(F. A ={(e, {u})}

(F. A" ={(e, {u,})}

(F, A" = F,

(F.A*=(F,A
The equivalence soft relation R,P and Q are

R={F(e)X F(&),F(e) X F(e;),F(e;) X F(e), F(e,) X F(x,)},
P={F(e)XF(e), F(e) X F(e,),F(e,) X F(&)} and
Q={F(e)XF(e) F(&)XF(e) F(&)XF(e)}

In the above example,
apr_ ((F,A).i = 12349) ={F(e,)}

apr, ((F,A),i= 56781112131415 = F,
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apr C((F,A),i = 12349) = (F, A)

pr°((F,A) i = 5678111213141 =F,

Proposition 3.5. Let (F, A, R) be a soft approximation space arseRoft equivalence
relation. Then for all the subsef&, B) of (F, A)

4,

i.  (G,B)Oapr °(G,B)
i. apr”?(G,B)0(G,B)

ii. apr - (apr -.o(G,B) 0 (G,B)
v. (G,B)Dapr, (apr (G, B))

v. apr “(apr (G,B)Oapr (G,B)

vi. ﬂpﬂg (G’ B) b ﬂP+Q (ﬂ P+Q (G’ B))

Conclusion

In this paper, we defined multigranular rough s@ft and its properties alone. In future
we will find the reduction of the attributes usimltigranular rough soft set and define
the topological structure of multigranular rouglit set.
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