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Abstract. In this paper, an algorithm is developed to fingl plaradoxical solution of multi
objective transportation problem with linear coastts. It also attempts to obtain its best
paradoxical pair and paradoxical range of flow Isyng the sufficient condition of the
existing paradox. Numerical illustration is alsoyded to check the feasibility.
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1. Introduction

The term Paradox arises when a transportation gmobldmits a total cost which is lower
than the optimum. This is attainable by shippirrgda quantities of goods over the same
routes that were previously chosen as optimal wiichnusual phenomenon noted by
Szwarc (1971). The classical transportation probkethe name of a mathematical model
has a special mathematical structure. The matheahdtirmulation of a large number of
problems conforms to this special structure. Hitakc(1941) originally developed the
basic linear transportation problem. Klingman ang$el (1974 and 1975) introduced a
specialized method for solving a transportationbfgm with several additional linear
constraints. Hadley (1987) gave the detailed smiutprocedure for solving linear
transportation problem. Till date, several reseanglstudied comprehensively to solve
transportation problem cost minimizing its cosvarious ways.

In some situations, if we obtain more flow with des cost than the flow
corresponding to the optimum cost then we say paradcurs. Charnes and Klingman
(1971), Szwarc (1973), Adlakha and Kowalski (1988) Storoy (2007) considered the
paradoxical transportation problem. Gupta et aB®%considered a paradox in linear
fractional transportation problem with mixed coasits. Joshi and Gupta (2010) studied
paradox in linear plus fractional transportatiootpem. Basu, Acharya and Das (2012)
developed an algorithm for finding all paradoxiqadirs in a linear transportation
problem. Acharya, Basu and Das(2015), discussededfiooiess paradox in a
transportation problem under fuzzy environment Witear constraints. Sophia Porchelvi
and Anna Sheela (2015) developed an algorithmn Ifnear multi-objective fractional
transportation problem and its paradoxical solution
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This Paper is organized as follows: In Section 3iBdefinitions are given.
Section 3 explains the mathematical formulation andficient condition for the
existence of paradox of linear Multi objective spartation problem. In Section 4, an
Algorithm is developed to solve linear Multi objiefet transportation problem. In Section
5, a Numerical Example is given to show the optis@ution of linear Multi objective
transportation problem. In that solution, the pasachl range of the flow and the best
paradoxical pair is found. The conclusion of thpgrdas given in Section 6.

2. Preliminaries

Paradox in a transportation problem: In a transpiort problem if we can obtain more
flow (FY) with lesser cost ¢} than the optimum flow (§f corresponding to the optimum
cost (Z) i.e.F> P’ and Z< Z° then we say that a paradox occurs in a trangjmrta
problem.

2. Cost-flow pair: If the value of the objectivenfition is 72 and the flow is £
corresponding to the feasible solutio! ¥f a transportation problem, then the pair
corresponding to the feasible solutiof X

3. Paradoxical pair: A cost-flow pair, (Z,F) of abjective function is called paradoxical
pair ifZ< Z’and F>B where Z is the optimum cost and’ s the optimum flow of the
transportation problem.

4. Best paradoxical pair: The paradoxical pair@) is called the best paradoxical pair of
a transportation problem if for all paradoxicalm@, F), either Z< Z or Z=Z but F>F.

5. Paradoxical range of flow: [’Be the optimum flow and e the flow corresponding
to the best paradoxical pair of a transportatiablam then [E F] is called paradoxical
range of flow.

3. Mathematical formulation

Consider the following linear Multi-Objective Trgetation problem (LMOTP)

(Pl) Minimize Z :{Z(i,j)e] Cl-ljxij, Z(i,j)E] Cizjxi]-_ e Z(i,j)E] Ci’j-xl-j_}

SUbjeCt tOZjENXij =a;, iEM

YiemXij = bj ,JEN

Xij=0v (i) €J

where ais the I" source, pis the |' destination

X;= the amount transported from tfesiource to the"jdestination.

C'ij = the cost per unit amount transported fr8rsaurce to the destination corresponding
to k objectives. i.e. I=1, 2,3,...k.

In this paper we assume that 8, i€ M andb;>0, j€ NandZ?=1 X;ij=a;, %% Xij=b;,

Let X°= {Xl-oj\ (i,)) € 1 x J} be a basic feasible solution correspondmthe basis B of the
problem P and the value of the objective functioh®Z* corresponding to the basic
feasible solution Xis given below.

Z'= Yijyes Clixij» Z2 = Xijyeg ChxXij o e e o Z= Y pyes Chixyj
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Let F be the corresponding flow.
Then |'9= Ziel a; = Z]'EI b]
Let (U, VY), (L=1,2,3....k) be the corresponding dual vaeaissociated with the above
k problems (B, so that i + V= C- for (i, )UB V L= 1,2,3,...k.
Let'¢ = (U"+VY) -G
If CHi;< 0 for (i, j)0 B vL=1,2,3,...k, then the solution is optimal.

Theorem 1. The sufficient condition for the existence of mhrsical solution of (B is
that if 3 at least one cell (r,$) B in the optimum table of (Pwhere aand h are replaced
by a+ | and kt+ | respectively(I>0) then U+ V") <0, L=1,2,3...k.

Proof: Let Z-**-*be the value of the objective function artd&-“be the optimum flow
corresponding to the optimum solutiof®€-“of problem P. The dual variables;tand
Vi are given by

U+ Vit =G, (i, j)€J

Then, 2= Z(i,j)e] Cll]x” ) Z2 = Z(i,j)e] Clzjxl] Joren een aus Zk = Z(i,j)e] Cl’jx”

and I§ = Z:ﬁl a; = Z?=1 b]

Now, let3 at least one cell (r,§) B, where aand R are replaced by,&al and k+ |
respectively (I>0) in such a way that the optimuasib remains same, then the value of
the objective function Z is given by

Z=[Z2+1(U"+Vh]

The new flow F is given by

F=Yla;+1=Y]_ b +1=F+I

F-P=1>0

Therefore, for the existence of paradox we musehavZ22% 0.Hence the

sufficient condition for the existence of paradsittiata at least one cell (r,§) B

in the optimum table such that if @and Q are replaced by, & | and i + | respectively.
Then (1> 0) then I(y + Vi) <0, L=1,2,3...k.

(i.e) (U- + V") < 0, the solution is optimal.

4. Algorithm for solving linear multi objective transportation problem
Step 1: Find the cost-flow pair'(F) for the optimum solution X (i= 1,2,3,.....K)

Step 2: Fix i=1

Step 3: Find all cells where (r, B)B such that (U+V) <0 if it exists otherwise go to
step 8.

Step 4: Among all cells (r, §) B satisfying step 3 find min flow for I=1 which @mtinto
the existing basis whose corresponding cost istmini. Let (Z,F) be the new cost flow
pair corresponding to the optimum solution( 1,2,...k)

Step 5: Write ( Z F).

Step 6: By re-fixing i=i+1
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Step 7: Repeat the procedure goto step 3.

Step 8: We write the best paradoxical pair ) = (Z, P) for the optimum solution X
=X
Step 9: Finding the paradoxical solution, end &t stage.

5. Numerical illustration
Consider the following Multi objective linear trgpmtation problem using the numerical
values, as tabulated below:

Table 1:

Dl DZ D3 D4 di
4 10 11 35

O 1 9 9 27 20
1 6 6 20
38 25 10 49

0O, 32 22 6 42 10
5 2 13 15
19 8 25 35

O; 17 2 22 28 15
6 1 10 11
10 12 15 13

O, 6 5 6 7 35
6 2 4 3

bj 25 25 15 15

Solving the above problem using the Northwest commethod, the optimal Multi
objective transportation table is presented in &bl

Table II:
D, D, Ds D,
Ut Uy U
b,=25 b,=25 b=15 b,=15
Ope=2C | 4 1 . [10 9 11 9 35 27 2
(20) 21 -14 -4

O, a=1C | 38 32 25 22 10 6 149 42 1
(5) (5) 13 17 @
0 0 0[28 23 4|26 24 3
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Oz a=1F | 19 17 8 2 2522 1[35 28 1
(15) -4 -3 -1
2112 4/0 0 011 3 39 4 2
Oy a=3% |10 6 12 5 15 6 13 7
(5) (15) (15) 0 0 O
2515 50 0 00 O qgo o g
VY 25 12 15 13
V? 15 5 6 7
V3 5 2 4 3

For this solution is X= {20, 0, 0, 0, 5, 5, 0, Q,® 0, O, 0, 5, 15, 15} for which Z =
(995,540,185), £995, =540, £=185.

When we check the sufficient condition for the exige of paradoxical solution (tJV)
where(r, s@B in Table 1, we observe that fort,Za paradox occurs in the cell
(1,2)(1,3)(1,4) but not in (2,3),(2,4),(3,1),(3(3)4),(4,1).

Next 72, a paradox occurs in the cell (1,2)(1,3)(1,4) bat in (2,3),(2,4),(3,1), (3,3),
(3,4),(4,1).

Next Z, a paradox occurs in the cell (1,2),(1,4) butinatl,3), (2,3), (2,4), (3,1), (3,3),
(3,4) and (4,1).

Hence Z, 7%, Z° the paradox occurs commonly in the cell (1,2) @nd).

Applying Step 1: The cost flow pair is (995, 5485} (80, 80, 80) corresponding to the
optimum solution X= {X11= 20, X1 =5, X520 = 5, X3 =5, X42 =5, X3 = 15, X4 = 15}

Step 2: Fix i=1

Step 3: Now check the sign of4JVs and we obtain for the non-basic cells (1, 2) dnd (
4), the sign that is negative.

Step 4: Hence consider |I=1 enters in to the optirbasis for the cell (1, 2)

Tablelll:
D: D, Ds D, Uli U2i U3i
b1=25 b2=26 b3=15 b4=15
Org=24 1 1|10 9 11 9 35 27 2
(21) 21 -14 -4
O, &=1C | 38 32 25 22 10 6 1 |49 42 1
(4) (6) 13 17 @
Os =15 | 1917 8 2 25 22 |35 28 1
(15) 10 4 -3 -
Oy 8= 3t 10 6 12 5 15 6 13 7
(5) (15) (15) 0O 0 0
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VY 25 12 15 13
V? 15 5 6 7
V3 5 2 4 3

The corresponding paradoxical pair is (986, 531),188, 81,81).
For the cell (1,4)Multi objective transportatiomlais presented in Table IV

TablelV:
D, D, Ds D
uh UG U3
b1:25 b2=25 b3=15 b4:16
O =2 |4 1 10 9 11 9 35 27 2
(21) 21 -14 -4
O, &=1C |38 32 25 22 10 6 1 | 49 42 1
(4) (6) 13 17 0
Os &=1F | 19 17 8 2 2522 1[3528 1
(15) -4 -3 -1
Os =35 | 10 6 12 ¢ 2|15 6 13 7
(4) (15) (16) 0O 0 O
VY 25 12 15 13
V2 15 5 6 7
V3 5 2 4 3

The corresponding paradoxical pair is (987, 533,184, 81,81)

The min cost = {(986, 531, 183), (987, 533, 183)}986, 531, 183).

Hence I=1 enters in the optimum basis from the ¢gll2) and corresponding table is
Table IV, the corresponding paradoxical pair is6(9831, 183) (81, 81, 81). Repeating
this process in the next table

TableV:
D, D, Ds D4
Ut ud U
b1:25 b2=27 b3=15 b4:15
O g=2C | 4 1 10 9 11 9 35 27 2
(22) 21 -14 -4
O, 8,=1C | 38 32 25 22 10 6 1|49 42 1
3 @) 13 17 O
Os 8=1t | 19 17 8 2 125 22 1|1 3528 1
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(15) -4 -3 -1
O;&=3E| 10 6 |12 5 15 6 13 7
(5) (15) (16) 0 0 O
VY 25 12 15 13
V7 15 5 6 7
V3 5 2 4 3

The corresponding paradoxical pair is (977, 522) 182, 82, 82)

Henceforth from the final Table-VI the best paradakpair and the paradoxical range of
flow showing an increase in the flow within the walof the objective function, and thus
decreases from the optimal solution of the Multjéabve linear transportation problem.

TableVI:
D, D, Ds D
ut us U3
b1:25 b2=30 b3=15 b4:15
O =2 |4 1 10 9 11 9 35 27 2
(25) 21 -14 -4
Oy a=1C | 38 32 25 22 10 6 1 [49 42 1
(0) (10) 13 17 0
Oz &=1F | 19 17 8 2 25 22 10 |35 28 1
(15) -4 -3 -1
Os =35 | 10 6 12 5 15 6 <« | 13 7
) (15) (15) 00 0
Vi 25 12 15 13
V2 15 5 6 7
V3 5 2 4 3

The corresponding paradoxical pair is (950, 495,185, 85, 85)

Applying step 8: The best paradoxical pair is, &) = {(950, 495, 175) (85, 85, 85)}.
Corresponding to the optimum solutiof} X{X 1= 25, %1 =0, Xp» = 10, Xgp =15, Xyp =
5, X453 = 15, s = 15} and the paradoxical range of flow i€,[F] = (80, 80, 80) (85, 85,
85).

6. Conclusion

In this paper, a new algorithm is developed to esdhe paradoxical solution of linear
Multi objective transportation problem. This algbm gives step by step procedure for
the development of finding the best paradoxical @ad a paradoxical range obtained.
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