Annals of Pure and Applied Mathematics Vol. 15, No. 2, 2017, 201-208 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v15n2a6

Annals of **Pure and Applied Mathematics**

g^{*}s- Homeomorphism and Contra g^{*}s- Continuous Functions in Topological Space

N.Gomathi

Department of Mathematics, Srimad Andavan Arts & Science College (Autonomous) Trichy-620005, Tamilnadu, India. E-mail:gomathi198907@gmail.com

Received 1 November 2017; accepted 9 December 2017

Abstract. In this paper, we introduced a new class of homeomorphism called gs homeomorphism and g*s homeomorphism. Also we investigate a new generalization of contra continuity called contra-g*s-continuous functions

Keywords: gs-homeomorphism, g*s-homeomorphism, Contra-g*s-continuous functions

AMS Mathematics Subject Classification (2010): 54C08, 54C10

1. Introduction

Levine [7] introduction and investigated the concept of generalized closed sets in topological space .Arya and Nour[1] defined generalized semi open [briefly gs- open] sets using semi open sets. In 1987 Bhattacharya and Lahiri [3] introduced the class of semi – generalized closed sets (sg- closed sets) Balachandran [2] introduced generalized continuous maps in topological spaces. Homomorphism plays a very important role in topology.

In 1995, Maki et al. [4] introduced the concepts of semi – generalized homeomorphisms and generalized semi homeomorphisms and studied some semi topological properties. The notion of contra continuity was introduced and investigated by Dontchev [6] Dontchev and Nohiri [8] Jafari and Noiri [5] have introduced and investigated contra. Semi continuous, functions, contra – pre- continuous functions and contra - α -continuous functions between topological spaces.

Throughout this paper (X, τ) and (Y, σ) represents the non- empty topological spaces on which no reperation axiom are assumed unless otherwise mentioned. For a subset A of X, cl(A) and int(A) represents the closure of A and interior of A respectively.

2. Preliminaries

Recall the following definitions.

Definition 2.1. A subset (X, τ) is said to be

- (1) Semi-pre closed (β -closed)[6] set if int(cl(int(A))) \subseteq A
- (2) g-closed[6] set if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X
- (3) w-closed[5] set if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in X
- (4) α -closed[4] set if cl(int(cl(A))) \subseteq A
- (5) wg-closed[5] set if $cl(int(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X

(6) g*-closed[6] set if if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g-open in X

(7) g*s-closed[6] set if if scl(A) \subseteq U, whenever A \subseteq U and U is gs-open in X

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.2. A map $f: X \rightarrow Y$ is said to be

- (1) Continuous function if $f^{-1}(V)$ is closed in X for every closed set V in Y
- (2) g-continuous function if $f^{-1}(V)$ is g-closed in X for every closed set V in Y
- (3) α -continuous function if $f^{-1}(V)$ is α -closed in X for every closed set V in Y
- (4) w-continuous function if $f^{-1}(V)$ is w-closed in X for every closed set V in Y
- (5) g*- continuous function if $f^{-1}(V)$ is g*-closed in X for every closed set V in Y (6) g*s- continuous function if $f^{-1}(V)$ is g*s-closed in X for every closed set V in Y

Definition 2.3. A bijective function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

- (1) homeomorphism if both f and f^{-1} are continuous
- (1) noncontribution from the contribution of the contribution of
- (4) α -homeomorphism if both f and f⁻¹ are α -continuous
- (5) g*- homeomorphism if both f and f^{-1} are g*-continuous
- (6) g^*s homeomorphism if both f and f⁻¹ are g^*s -continuous

Definition 2.4. A map $f: X \rightarrow Y$ is said to be

- (1) Contra-continuous function if $f^{-1}(V)$ is closed in X for every open set V in Y
- (2) Contra-g-continuous function if $f^{-1}(V)$ is g-closed in X for every open set V in Y
- (3) Contra- α -continuous function if f⁻¹(V) is α -closed in X for every open set V in Y
- (4) Contra-w-continuous function if $f^{-1}(V)$ is w-closed in X for every open set V in Y
- (5) Contra-g^{*}- continuous function if $f^{-1}(V)$ is g^{*}-closed in X for every open set V in Y
- (6) Contra-g*s- continuous function if $f^{-1}(V)$ is g*s-closed in X for every open set V in Y

3. g*s-Homeomorphism

Definition 3.1. A bijection $f:(X, \tau) \rightarrow (Y, \sigma)$ is called g*s-homeomorphism if f and f⁻¹ are both g*s-continuous.

Example 3.2. Consider X=Y={a.b.c}, $\tau = \{X, \phi, \{a\}, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}\}$. Let the function f: $X \rightarrow Y$ be an identity map. Then f is bijective Sb*-continuous and f⁻¹ is Sb*continuous. Hence f is Sb*-homeomorphism.

Theorem 3.3. Every homeomorphism is g*s-homeomorphism but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a homeomorphism. Since by the definition f and f⁻¹ is g^{*s} -continuous . Then f is bijection. We know that every closed set is g^{*s} -closed . Then every continuous function is g^{*s} -continuous. Then f and f⁻¹ is g^{*s} -continuous. Then f is g*s -homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

g^{*}s- Homeomorphism and Contra g^{*}s- Continuous Functions in Topological Space

Example 3.4. Consider X=Y={a,b,c} $\tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Let f:(X, τ) \rightarrow (Y, σ) be an identity map. Let A={a,c} is closed in Y and also it is g^{*s} -closed in X. Then f is g^{*s} -homeomorphism. But it is not a homeomorphism. Since {a,c} is not closed in X. f is not a homeomorphism.

Theorem 3.5. Every g*s -homeomorphism is sg -homeomorphism but not conversely Proof: Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a g*s- homeomorphism. Since by the definition f and f -1 is sg-continuous. Then f is bijection. We know that every g*s-closed set is sg-closed. Then every g*s-continuous function is sg-continuous. Then f and f -1 is sg-continuous. Then f is sg-homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6. Consider X=Y={a,b,c,} $\tau = \{X, \phi, \{b\}, \{a,c\}\}, \sigma = \{Y, \phi, \{a,b\}\}$. Let f:X \rightarrow Y be an identity map. Let A={a,c} is closed in Y and also it is sg-closed in X. Then f is sg-homeomorphism. But it is not a g*s-homeomorphism. Since the inverse image {a,c} is not g*s-closed in X.

Theorem 3.7. Every g*s -homeomorphism is gs -homeomorphism but not conversely **Proof:** Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a g*s- homeomorphism. Since by the definition f anf f⁻¹ is gs-continuous. Then f is bijection. We know that every g*s-closed set is gs-closed. Then every g*s-continuous function is gs-continuous. Then f anf f⁻¹ is gs-continuous. Then f is gs-homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

Example 3.8. Consider X=Y={a,b,c,d} $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}, \sigma = \{Y, \phi, \{a\}, \{d\}, \{c,d\}, \{a,c,d\}\}$. Let f:X \rightarrow Y be an identity map .Let A={a,b} is closed in X and also it is gs-closed in Y. Then f is gs-homeomorphism. But it is not a g*s-homeomorphism. Since the inverse image {a,b} is not g*s-closed in X.

Theorem 3.9. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective g*s-continuous map,then the following statements are equivalent (i) f is an g*s -open map. (ii) f is an g*s - homeomorphism. (iii) f is an g*s -closed map.

Proof: (i) implies (ii) Let $f^{-1}:(X, \tau) \rightarrow (Y, \sigma)$ be a bijective g*s -continuous map .Let F be an closed map in (X, τ) . Then X-F is open in (X, τ) . Since f is g*s -open .f(X-F) is g*s -open in (Y, σ) .f(F) is g*s -closed in (Y, σ) . f is g*s -continuous. Now $((f^{-1})^{-1}(F))$ is g*s -closed in (Y, σ) . f is g*s -continuous. Now $((f^{-1})^{-1}(F))$ is g*s -closed in (Y, σ) . f is g*s -continuous. Then f and f f^{-1} is g*s -continuous. f is an g*s -homeomorphism (ii) implies (iii) Suppose f is an g*s -homeomorphism. By the definition f is bijective , f and f f^{-1} are g*s -continuous. Let f be an g*s -closed in (X, τ) . Since f and f f^{-1} are g*s -continuous. Then $(f^{-1})^{-1}(F)$ =f(F)is g*s -closed in (Y, σ) . Then f is g*s -closed map . (iiii) implies (i) Let f is an g*s -closed map. Let U is an g*s

-open in X. Then X-U is g^*s -closed in Y. Since f is g^*s -closed. f(X-U) is g^*s -closed in Y. Y-f(U) is g^*s -closed in Y. f(U) is g^*s -open in Y. f is an g^*s -open map.

Definition 3.10. A bijection f:(X, τ) \rightarrow (Y, σ) is called g*s -irresolute if f⁻¹(V) is g*s - closed in (X, τ) for every g*s -closed V in (Y, σ).

Example 3.11. Consider X=Y={a.b.c.}, $\tau = \{X, \phi, \{a\}, \{a,c\}\}, \sigma = \{Y, \phi, \{a\}\}$. Let f: X \rightarrow Y be an identity map . Let A={c} is g*s-closed in Y. Then f⁻¹({c})={c} is also g*s-closed in X. f is g*s-Irresolute.

Theorem 3.12. The composition of two g*s-Homeomorphisms need not be an g*s – Homeomorphism.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \zeta)$ be an g*s-Homeomorphism. By g*s-Homeomorphism, f and f¹ are both g*s-continuous .We know that ,The composition of two continuous functions need not be a continuous function. Since the composition of two g*s-continuous functions need not be a g*s-continuous function.Therefore g°f is

need not be an g^{*s-} homeomorphism.

Example 3.13. Let $X=Y=Z=\{a,b,c,\}$ $\tau =\{X, \phi, \{a\}, \{a,c\}\}, \sigma =\{Y, \phi, \{a\}, \{b\}, \{a,b\}\}, \xi =\{Z, \phi, \{a\}\}$. Let f and g be an identity map. Here f and g are g*s-Homeomorphism. But g° f is not an g*s-homeomorphism, Since the inverse image of X in $\{b,c\}$ is not g*s-closed in X.

Definition 3.14. A Space X is said to be g*s-compact if every cover of X by g*s-open sets has a finite sub cover.

Definition 3.15. Let x be a point of (X, τ) and V be a subset of X. Then V is called a g*s-neighborhood of x in (X, τ) if there exist a g*s-open set U of (X, τ) such that $x \in U \subset V$.

Definition 3.16. A topological space (X, τ) is called g*s-Hausdorff if for each pair x,y of distinct points of X, there exists g*s-neighborhoods U₁ and U₂ of x and Y respectively, that are disjoint.

Theorem 3.17. Let X be g*s-compact and set Y be a Hausdorff space. If f: $(X, \tau) \rightarrow (Y, \sigma)$ is g*s-continuous, g*s-irresolute and bijective then f is g*s-homeomorphism. **Proof:** Let A be a g*s-closed subset of the g*s-compact space X. Then A is g*s-compact. But f is g*s-irresolute. Hence f(A) is g*s-compact. Take g=f⁻¹. Then g⁻¹(A) is g*s-closed .We know that ,consequently g is an g*s-irresolute map. Then f⁻¹ is g*s-irresolute. f is g*s-homeomorphism.

Thoerem 3.18. If $f: (X, \tau) \to (Y, \sigma)$ is a g*s-Homeomorphism then g*s-cl(f⁻¹(B))= f⁻¹(g*s-cl(B)) for all $B \subseteq Y$ is g*s-closed.

g*s- Homeomorphism and Contra g*s- Continuous Functions in Topological Space

Proof: If $f: (X, \tau) \to (Y, \sigma)$ is a g*s-Homeomorphism. Since f is g*s-Homeomorphism. f and f⁻¹ is both are g*s-irresolute. g*s-cl(f(B)) is closed in (Y, σ) . f⁻¹(g*s-cl(f(B))) is g*s-closed in (X, τ) . Thus g*s-cl(f⁻¹(B)) \subseteq f⁻¹(g*s-cl(B)).Again f⁻¹ is irresolute . g*s-cl(f⁻¹(B)) is g*s-closed in (X, τ) . ((f⁻¹)⁻¹) g*s-cl(f⁻¹(B))= f (g*s-cl(f⁻¹(B))) is g*s-closed in (X, τ) . Hence g*s-cl(f⁻¹(B))= f¹(g*s-cl(B)).

Theorem 3.19. If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an g*s-Homeomorphism then g*s-cl(f(B))=f(g*s-cl(B)) for all B $\subseteq X$.

Proof: If f: $(X, \tau) \to (Y, \sigma)$ is an g*s-Homeomorphism. Since f: $(X, \tau) \to (Y, \sigma)$ is an g*s-Homeomorphism. Then f⁻¹: $(Y, \sigma) \to (X, \tau)$ is also an g*s-Homeomorphism. Since f is an g*s-Homeomorphism then f and f⁻¹ is both are g*s-Irresolute. (g*s-cl(f(B)) is g*s-closed in (Y, σ) . f⁻¹ g*s-cl(f(B)) is g*s-closed in (X, τ) . (g*s-int(A))^c = g*s-cl(A^c). (g*s-int(B))^c = (g*s-cl(B^c))^c. Then f(g*s-int(B)=f((g*s-cl(B^c))^c)=((g*s-cl(B^c)))^c = g*s-cl(f(B)). Therefore, g*s-cl(f(B))=f(g*s-cl(B)).

Theorem 3.20. The set $g^*s-h(X, \tau)$ is a group under the composition of maps.

Proof: Define a binary operation * as follows $\cdot * : g*s-h(X, \tau) \times g*s-h(X, \tau) \to g*s-h(X, \tau)$ f*g= g of for all f,g g*s-h(X, τ). 'o' is the usual operation of composition of maps g of g*s-h(X, τ). We Know That, the composition of maps is associative and the identity map.

I: $(X, \tau) \times (X, \tau) \in g^*s-h(X, \tau)$ serves as the identity element. If $f \in g^*s-h(X, \tau)$ then $f^1 \in g^*s-h(X, \tau)$ such that $f \circ f^{-1} = f^{-1} \circ f = I$, and so inverse exists for each element of $g^*s-h(X, \tau)$ is a group under composition of maps. $g^*s-h(X, \tau)$ is a group under the composition of maps.

Theorem 3.21. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an g*s-Homeomorphism . Then f induces an isomorphism from the group g*s-h (X, τ) onto the group g*s-h (X, τ) .

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an g*s-Homeomorphism .We define I_f : g*s-h $(X, \tau) \rightarrow$ g*s-h (X, τ) . Now 'f' induces an isomorphism from the group $I_f(h) = f \circ h \circ f^{-1}$ for every $h \in g$ *s-h (X, τ) . Since I_f is a bijection .Further for every $h_1, h_2 \in g$ *s-h (X, τ) . If $(h_1 \circ h_2) = f \circ (h_1 \circ h_2) = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1})$ If $(h_1 \circ h_2) = I_f(h_1) * I_f(h_2)$. Thus I_f is a Homeomorphism and so it is an isomorphism induced by 'f' f induces an isomorphism from the group g*s-h (X, τ) onto the group Sb*-h (X, τ) .

4. Contra g^{*}s - continuous functions

In this section I introduce the concept of contra g^*s – continuous function in topological spaces.

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma)$ is called contra g^*s – continuous if the inverse image of every open set in Y is g^*s –closed in X.

Theorem 4.2. Every contra-continuous function is contra g^{*}s continuous but not conversely.

Proof: Let $f: (X, \mathcal{T}) \to (Y, \sigma)$ be contra continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is closed in X. since every closed set in g^*s – closed, $f^{-1}(V)$ is g^*s –closed in X. Therefore f is contra g^*s – continuous.

Example 4.3. Consider X=Y={a,b,c,d} $\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,b,c\}\}, \sigma = \{Y, \phi, \{a\}, \{a,b\}\}$. Let f be an identity map. Here f is contra-g*s-continuous but not contra-continuous. Since the inverse image of {a} is not closed in X.

Theorem 4.4. Every contra g^{*}s continuous function is contra gs continuous function but not conversely.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be contra g^{*}s continuous Let V be any open set in Y. then the inverse image $f^{-1}(V)$ is g^{*}s closed in X. Since every g^{*}s -closed set is gs closed, $f^{-1}(V)$ is gs- closed in X. Therefore f is contra-gs -continuous.

Example 4.5. Consider X=Y={a,b,c} τ ={X, ϕ ,{a},{a,c}}, σ ={Y, ϕ ,{a}}. Let f be an identity map. Here f is contra-gs-continuous but not contra-g*s-continuous. Since the inverse image of {a,b} is not g*s-closed in X.

Theorem 4.6. Every contra g^{*}s –continuous function is contra sg-continuous function but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be contra g^*s – continuous Let V be any open set in Y. then the inverse image $f^{-1}(V)$ is g^*s –closed in X. since every g^*s -closed set is sg-closed, $f^{-1}(V)$ is sg –closed in X. Therefore f is contra sg-continuous function.

Example 4.7. Consider X=Y={a,b} $\tau = \{X, \phi, \{b\}\}, \sigma = \{Y, \phi, \{a\}\}$. Let f be an identity map. Here f is contra-sg-continuous but not contra-g*s-continuous. Since the inverse image of {a} is not g*s-closed in X.

Remark 4.8. Independentness of contra-g*s-continuity

- (i) Contra-g*s continuous function is independent to contra-g-continuous function
- (ii) Contra-g*s continuous function is independent to contra-g*-continuous function
- (iii) Contra-g*s continuous function is independent to contra-w-continuous function
- (iv) Contra-g*s continuous function is independent to contra-pre-continuous function.

The below examples proved the independentness of contra-g*s-continuity

Example 4.9. Consider X=Y={a,b,c,d} $\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,b\}, \{a,b,c\}\}$. Let f:X \rightarrow Y be an identity map .Here f is contra-g*s-continuous but not contra-g-continuous. Since the inverse image of {b,c} is not g-closed in x. In this space $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \}$ and f be an identity map , f is contra-g-continuous but not contra-g*s-continuous . Since the inverse image of {a,b,d} is not g*s-closed in X.

g^{*} s- Homeomorphism and Contra g^{*} s- Continuous Functions in Topological Space

Example 4.10. Consider X=Y={a,b,c} $\tau = \{X, \phi, \{a\}, \{a,b\}\}$. Let f:X \rightarrow Y be an identity map .Here f is contra-g*s-continuous but not contra-g*-continuous .since the inverse image of {b} is not g*-closed in x. In this space $\sigma = \{Y, \phi, \{b\}, \{a,c\}\}$ and f be an identity map, f is contra-g*-continuous but not contra-g*s-continuous . Since the inverse image of {a,c} is not g*s-closed in X.

Example 4.11. Consider X=Y={a,b,c,d} $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$. Let f: \rightarrow Y be an identity map. Here f is contra-g*s-continuous but not contra-pre continuous. Since the inverse image of {a} is not pre-closed in x. In this space σ ={Y, $\phi, \{a\}, \{b\}, \{a,b\}\}$ and we define a map f(a)=b, f(b)=c, f(c)=a, f(d)=d. Here f is contra-pre-continuous but not contra-g*s-continuous. Since the inverse image of {c,d} is not g*s-closed in X.

Example 4.12. Consider X=Y={a,b,c,} $\tau = \{X, \phi, \{a\}, \{a,c\}\}$. Let f:X \rightarrow Y be an identity map .Here f is contra-g*s-continuous but not contra-w-continuous. Since the inverse image of {a,c} is not w-closed in x. In this space $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$ and f be an identity map. Here f is contra-w-continuous but not contra-g*s-continuous. Since the inverse image of {a,b} is not g*s-closed in X.

Remark 4.13. The composition of two contra-g*s-continuous functions need not be an contra-g*s-continuous function.

Example 4.14. Let $X=Y=Z=\{a,b,c,d\}$ $\tau=\{X, \phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$, $\sigma=\{Y, \phi,\{a\},\{b\},\{a,b\}\}, \xi=\{Z, \phi,\{a\}\}$.Let f and g be an identity map. Here f and g are g*s-Homeomorphism. But g \circ f is not an g*s-homeomorphism. Since the inverse image of X in $\{a,c\}$ is not g*s-closed in X.

Theorem 4.15. If a map $f: (X, \mathcal{T}) \to (Y, \sigma)$ is g^*s -irresolute map the $g: (Y, \sigma) \to (Z, \zeta)$ is g^*s -continuous map then $g^\circ f: (X, \mathcal{T}) \to (Z, \zeta)$ is contra- g^*s -continuous function **Proof:** Let F be an open set in (Z, ζ) . Then $g^{-1}(F)$ in g^*s -closed in (Y, σ) , because g is contra- g^*s -continuous . Since f is g^*s -irresolute, $f^1(g^{-1}(F))=(g^\circ f)^{-1}(F)$ id g^*s -closed in X. Hence $g^\circ f$ is contra- g^*s -continuous function.

5. Conclusion

In this paper, we have introduced g*s-Homeomorphism, contra-g*s-continuous functions in topological spaces and studied some properties and this can be extended to other topological spaces like fuzzy and Bi-topological spaces. And these notions can be applied for investigating many other properties.

REFERENCES

1. S.P.Arya and T.Nour, Characterizations of s-normal spacaes, *Indian J. Pure Appl.Math.*, 21 (1990) 717-719.

- 2. K.Balachandran, P.Sundaram and H.Maki, Generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, 15 (1987) 51-63.
- 3. P.Bhattacharya and B.K.Lahiri, Semi generalized closed sets in topology, *Indian J Math.*, 29(3) (1987) 375-382.
- 4. J.Dontchev, Contra continuous functions and strongly S-closed spaces, *Inter. J. Math. Sci.*, 19(2) (1996) 303-310.
- 5. Govindappa Navalgi, Properties of Gs closed and sg closed sets in topology, *Int. Jour* of Communication in Topology, 1 (2013) 31-40.
- 6. S.Jafari and T.Noiri, On contra-pre continuous function, *Bull. Malays. Math. Sci.* Soc., (2) 25(2) (2002) 115-128.
- 7. N.Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palerno*, 19(2) (1970) 89-96.
- 8. S.R.Malghan, Genralized closed maps, J. Karnatak. Univ. Sci., 27 (1982) 82-88.
- 9. A.Pushpalatha ,K.Anitha, g*s closed sets in topological spaces, *Int. J. Contem Math. Sciences*, 62011(19) (2010) 917-929.
- 10. R.Parimelazhagan, Strongly g* closed sets in topological spaces, Int. Jou. Math. Analysis, 6(30) (2012) 1481-1489.