Annals of Pure and Applied Mathematics Vol. 15, No. 2, 2017, 215-223 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v15n2a8

Annals of **Pure and Applied Mathematics**

Group {1,-1, *i*, -*i*} Cordial Labeling of Certain Splitting Graphs

M.K.Karthik Chidambaram¹, S.Athisayanathan² and R.Ponraj³

 ¹Department of Mathematics, St.Xavier's College Palayamkottai 627 002, Tamil Nadu, India. E-mail: karthikmat5@gmail.com
 ²Department of Mathematics, St.Xavier's College Palayamkottai 627 002, Tamil Nadu, India. E-mail: athisxc@gmail.com
 ³Department of Mathematics, Sri Paramakalyani College Alwarkuruchi 627 412, Tamil Nadu, India. E-mail: ponrajmath@gmail.com
 ¹Corresponding Author

Received 10 October 2017; accepted 10 December 2017

Abstract. Let G be a (p,q) graph and A be a group. Let $f: V(G) \rightarrow A$ be a function. The order of a ∈ A is the least positive integer n such that $a^n = e$. We denote the order of a by o(a). For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. f is called a group A Cordial labeling if $|v_f(a)-v_f(b)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n = 0, 1). A graph which admits a group A Cordial labeling is called a group A Cordial graph. The Splitting graph of G, S'(G) is obtained from G by adding for each vertex v of G, a new vertex v' so that v' is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q) graph then S'(G) is a (2p, 3q) graph. In this paper we prove that Splitting graphs of Star S ' (K_{1,n}), Fan S'(F_n), Comb S'(P_nΘK₁), Ladder S'(L_n), Friendship graph S'(C_n⁽³⁾), Umbrella graph S'(U_{n,n}) and Book S'(B_n) are group {1,-1, i,-i} Cordial for every n.

Keywords: Cordial labeling, group A Cordial labeling, group $\{1,-1, i,-i\}$ Cordial labeling, splitting graph.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

Graphs considered here are finite, undirected and simple. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^n = e$. We denote the order of a by o(a). Cahit [3] introduced the concept of Cordial labeling. He has done an extensive study on cordial labeling of graphs[4, 5]. Cordial labeling behaviour of several graphs are also studied by Diab [7, 8], Salehi [12], Cichacz [6] and many others. Several authors have defined several types of cordial labeling [11]. Motivated by this, we defined group A

M.K.Karthik Chidambaram, S.Athisayanathan and R.Ponraj

cordial labeling and investigated some of its properties. We also defined group $\{1,-1, i,-i\}$ cordial labeling and discussed the behaviour of that labeling for some standard graphs [1,2].

The Splitting graph of G, S'(G) is obtained from G by adding for each vertex v of G, a new vertex v' so that v' is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q) graph then S'(G) is a (2p, 3q) graph. In this paper we discuss the labeling for Splitting graphs of some graphs. Terms not defined here are used in the sense of Harary [10] and Gallian [9].

2. Preliminaries

The greatest common divisor of two integers m and n is denoted by(m, n) and m and n are said to be relatively prime if (m, n) = 1. For any real number x, we denote by $\lfloor x \rfloor$, the greatest integer smaller than or equal to x and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to x. A path is an alternating sequence of vertices and edges, v_1 , e_1 , v_2 , e_2 , ..., e_{n-1} , v_n , which are distinct, such that e_i is an edge joining v_i and v_{i+1} for $1 \le i \le i \le n$ n-1. A path on n vertices is denoted by P_n. A path v_1 , e_1 , v_2 , e_2 , ..., e_{n-1} , v_n , e_n , v_1 is called a cycle and a cycle on n vertices is denoted by C_n. A bipartite graph is a graph whose vertex set V (G) can be partitioned into two subsets V1 and V2 such that every edge of G joins a vertex of V_1 with a vertex of V_2 . If G contains every edge joining V_1 and V_2 , then G is a complete bipartite graph. If $|V_1| = m$ and $|V_2| = n$, then the complete bipartite graph is denoted by K_{m,n}. K_{1,n} is called a star graph. Given two graphs G and H, G+H is the graph with vertex set V (G) U V (H) and edge set E(G) U E(H) U { $uv/u \in V$ (G), $v \in V$ (H)}. A Wheel W_n is defined as $C_n + K_1$. The Cartesian product of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ with the vertex set V1×V2 and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever $[u_1 = v_1$ and u_2 adj v_2] or $[u_2 = v_2$ and u_1 adj v_1]. The Book B_m is the graph $K_{1,m} \times P_2$. The graph $L_n = P_n \times P_2$ is called a Ladder.

3. Main results

Definition 3.1. Let G be a (p,q)graph and consider the group $A = \{1,-1, i,-i\}$ with multiplication. Let $f : V(G) \rightarrow A$ be a function. For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. f is called a group $\{1,-1, i,-i\}$ Cordial labeling if $|v_f(a) - v_f(b)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n = 0, 1). A graph which admits a group $\{1,-1, i,-i\}$ Cordial labeling is called a group $\{1,-1, i,-i\}$ Cordial graph.

Example 3.2. A simple example of a group $\{1,-1, i,-i\}$ Cordial graph is given in Fig. 3.1.

Group $\{1,-1, i, -i\}$ Cordial Labeling of Certain Splitting Graphs

Definition 3.3. The Splitting graph of G, S'(G) is obtained from G by adding for each vertex v of G, a new vertex v' so that v' is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q) graph then S'(G) is a (2p, 3q) graph.

We now investigate the group $\{1,-1, i,-i\}$ Cordial labeling of Splitting Graph of some graphs .

Theorem 3.4. The splitting graph of the Star S'(K1,n), is group $\{1,-1, i,-i\}$ cordial for every n.

Proof. Let u be the vertex of $K_{1,n}$ of degree n and let $u_1, u_2, ..., u_n$ be the vertices of degree 1 adjacent to u. Let v be the vertex corresponding to u in S'(K1,n) and $v_1, v_2, ..., v_n$ be the newly added vertices so that for $1 \le i \le n$, v_i is adjacent to the neighbours of u_i . Also v is adjacent to the neighbours of u. Number of vertices in S'($K_{1,n}$) is 2n + 2 and number of edges is 3n.

Case 1. n is even.

Let n = 2k, $(k \ge 1, k \in Z)$. If k = 1, a group $\{1,-1, i,-i\}$ cordial labeling of S'(K1,2) is given in Fig 3.2. Suppose $k \ge 2$. Two vertex labels should appear k + 1 times and two should appear k times in a group $\{1,-1, i,-i\}$ cordial labeling. Each edge label should appear 3k times. Define a labeling f of S'(K_{1,n}) as follows.

Label the vertices v, v_1 , v_2 , ..., v_k with 1. Label the remaining vertices arbitrarily so that k +1 of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = n + k = 3k.

Figure 3.2:

Case 2. n is odd.

Let n = 2k + 1, $(k \ge 0, k \in Z)$. If k = 0, then S'(K_{1,n}) is P₄which is known to be group $\{1,-1, i,-i\}$ cordial. Suppose $k \ge 1$. Each vertex label should appear k + 1 times. One edge label should appear 3k + 1 times and another should appear 3k + 2 times. Define a labeling f of S'(K1,n) as follows. Label the vertices v, v₁, v₂,..., v_k with 1. Label the remaining vertices arbitrarily so that k + 1 of them get label -1, k + 1 of them get label i and k + 1 of them get label -i. Number of edges with label 1 = n + k = 3k + 1. Table 3.1 shows that f is a group $\{1,-1, i,-i\}$ cordial labeling.

Ν	v _f (1)	v _f (-1)	v _f (i)	v _f (-i)	$e_{f}(0)$	$e_{f}(1)$
2k, k≥2, k ∈Z	k+1	k+1	k	k	3k	3k
2k+1, k≥1,k ∈Z	k+1	k+1	k+1	k+1	3k+2	3k+1

M.K.Karthik Chidambaram, S.Athisayanathan and R.Ponraj

Table 3.1:

Definition 3.5. The graph $F_n = P_n + K_1$ is called a fan graph where $P_n: u_1, u_2, ..., u_n$ is a path and V (K_1) = u.

Theorem 3.6. The splitting graph of the fan $S'(F_n)$ is group $\{1,-1, i,-i\}$ cordial for every n.

Proof. Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n in F_n and u be the vertex of degree n in F_n . Let v be the vertex corresponding to u in $S'(F_n)$ and $v_1, v_2, ..., v_n$ be the newly added vertices so that for $1 \le i \le n$, v_i is adjacent to the neighbours of u_i . Also v is adjacent to the neighbours of u. Number of vertices in $S'(F_n)$ is 2n + 2 and number of edges is 6n - 3.

Case 1. n is even.

Let n = 2k, $(k \ge 1, k \in \mathbb{Z})$. Two vertex labels should appear k + 1 times and two should appear k times in a group $\{1,-1, i,-i\}$ cordial labeling. One edge label should appear 6k-1 times and another edge label appears 6k-2 times. Define a labeling f of S'(Fn) as follows.

Label the vertices u_1 , u_3 , u_5 , ..., u_{2k-1} with 1. Label the remaining vertices arbitrarily so that k + 1 of them get label -1, k + 1 of them get label i and k of them get label -i. Number of edges with label 1 = 4 + (k - 1)6 = 6k - 2.

Case 2. n is odd.

Let n = 2k + 1, $(k \ge 0, k \in Z)$. If k = 0, then $S'(F_n)$ is P_4 which is known to be group $\{1,-1, i,-i\}$ cordial. Suppose $k \ge 1$. Each vertex label should appear k + 1 times. One edge label should appear 6k + 1 times and another should appear 6k + 2 times. Define a labeling f of $S'(F_n)$ as follows.

Label the vertices v_2 , u_2 , u_4 , ..., u_{2k} with 1. Label the remaining vertices arbitrarily so that k + 1 of them get label -1, k + 1 of them get label i and k + 1 of them get label -i. Number of edges with label 1 = 6k + 2.Table 3.2 shows that f is a group $\{1,-1, i,-i\}$ cordial labeling.

n	v _f (1)	v _f (-1)	v _f (i)	v _f (-i)	$e_{f}(0)$	$e_{f}(1)$
$2k, k \ge 1, k \in \mathbb{Z}$	k	k+1	k+1	k	6k-1	6k-2
$2k+1, k \ge 1, k \in \mathbb{Z}$	k+1	k+1	k+1	k+1	6k+1	6k+2

Table 3.2:

Group $\{1,-1, i, -i\}$ Cordial Labeling of Certain Splitting Graphs

Definition 3.7. Let G_1 , G_2 respectively be two (p_1, q_1) , (p_2, q_2) graphs. The corona of G_1 with G_2 , $G_1 \Theta G_2$ is the graph obtained by taking one copy of G_1 , p_1 copies of G_2 and joining the ith vertex of G_1 with an edge to every vertex in the ith copy of G_2 .

Definition 3.8. The graph $P_n\Theta K_1$ is called a comb.

Theorem 3.9. The splitting graph of the Comb S'($P_n\Theta K_1$) is group {1,-1, i,-i} cordial for every n.

Proof. Let u_i $(1 \le i \le n)$ be the vertices of the path P_n and $v_i(1\le I \le n)$ be the pendent vertices of $P_n\Theta K_1$ adjacent to the vertices of P_n . Let u_i' , v_i' $(1\le i \le n)$, be the vertices corresponding to ui, $v(1\le i \le n)$ in $S'(P_n\Theta K_1)$.Number of vertices in $S'(P_n\Theta K_1)$ is 4n and number of edges is 6n - 3. Each vertex label should appear n times. One edge label should appear 3n-1 times and another should appear 3n - 2 times. Let f be a labeling of $S'(P_n\Theta K_1)$ defined as follows:

 $\begin{array}{l} f(u_i) = -1(1 {\leq} i {\leq} n); \\ f(vi) = I \; (1 {\leq} I {\leq} n); \\ f(u'i) = 1(1 {\leq} i {\leq} n); \\ f(v'i) = -I \; (1 {\leq} i {\leq} n). \end{array}$

Number of edges with label 1 = 3n - 1 and so f is a group $\{1,-1, i,-i\}$ cordial labeling of $S'(P_n\Theta K_1)$.

Theorem 3.10. The splitting graph of the Ladder S'(Ln) is group $\{1,-1, i,-i\}$ cordial for every n.

Proof. Let u_i , $v_i(1 \le i \le n)$ be the vertices of the two paths in L_n so that uiand v_i are adjacent. Let u'i and v'I $(1 \le i \le n)$ be the vertices corresponding to ui and $vi(1 \le i \le n)$. Number of vertices in S'(Ln) is 4n and number of edges is 9n - 6.

Case 1. n is even.

Let n = 2k, $(k \ge 1, k \in \mathbb{Z})$. If k = 1, a group $\{1,-1, i,-i\}$ cordial labeling of S'(L2) is given in Fig 3.3.

M.K.Karthik Chidambaram, S.Athisayanathan and R.Ponraj

Figure 3.3:

Suppose $k \ge 2$. Each vertex label should appear 2k times and each edge label should appear 9k - 3 times. Define a labeling f of S'(Ln) as follows. $f(u_2) = f(u_4) = \ldots = f(u_{2k}) = 1;$

 $f(u_2) = f(u_4) = \dots = f(u_{2k}) = 1,$ $f(u_2') = f(u_4') = \dots = f(u' 2(k-2)) = 1;$ f(u'1) = f(v'1) = 1; $f(u1) = f(u'3) = \dots = f(u'2k-1) = -1;$ $f(v1) = f(u'3) = \dots = f(u'2k-1) = -1;$ For $2 \le i \le 2k$, f(vi) = i and f(u'2k-2) = i. For $2 \le i \le 2k$, f(v'i) = -i and f(u'2k) = i. Number of edges with label 1 = 6k + 3(k - 2) + 1 + 2 = 9k - 3.

Case 2. n is odd.

Let n = 2k + 1, $(k \ge 0, k \in \mathbb{Z})$. If k = 0, then S'(L1) is P4 which is known to be group $\{1,-1, i,-i\}$ cordial. Suppose $k \ge 1$. Each vertex label should appear 2k + 1 times. One edge label should appear 9k + 1 times and another should appear 9k + 2 times. Define a labeling f of S'(Ln) as follows.

 $\begin{array}{l} f(u2) = f(u4) = \ldots = f(u2k) = 1; \\ f(u'2) = f(u'4) = \ldots = f(u'2(k)) = 1 \text{ and } f(u'1) = 1 \\ f(u1) = f(u3) = \ldots = f(u2k+1) = -1; \\ f(u'3) = \ldots = f(u'2k+1) = -1; \\ For \ 1 \leq i \leq 2k + 1, \ f(vi) = i \ and \ f(v'i)) = -i. \\ Number \ of \ edges \ with \ label \ 1 = 9k+1. \ Thus \ f \ is \ a \ group \ \{1,-1, \ i,-i\} \ cordial \ labeling \ of \ S'(Ln). \end{array}$

Definition 3.11. Let $C_n^{(t)}$ denote the one-point union of t cycles of length n. The graph $C_3^{(t)}$ is called a friendship graph.

Theorem 3.12. The splitting graph of the Friendship graph $S'(C_3^{(t)})$ is group $\{1,-1, i,-i\}$ cordial for every n.

Proof. Let u be the vertex of degree 2n in S'($C_3^{(t)}$) and ui, vi $(1 \le i \le n)$ be the vertices of degree 2 in each $C_3^{(t)}$ Let u' be the vertex corresponding to u in

 $S'(C_3^{(t)})$ and u'i, v'I $(1 \le i \le n)$ be the vertices corresponding to ui and vi $(1 \le i \le n)$. Number of vertices in $S'(C_3^{(t)})$ is 4n + 2 and number of edges is 9n.

Case 1. n is even.

Let n = 2k, $(k \ge 1, k \in \mathbb{Z})$. Two vertex labels should appear 2k + 1 times and two other vertex labels should appear 2k times. Each edge label should appear 9k times. Define a labeling f of S'(C₃^(t)) as follows.

f(u') = 1; For $1 \le i \le k$, f(ui) = f(u'i) = 1; f(u) = -1; For $k + 1 \le i \le 2k$, f(ui) = f(u'i) = -1; For $1 \le i \le 2k$, f(vi) = i and f(v'i) = -i; Number of edges with label 1 = 4k + 3k + 2k = 9k.

Case 2. n is odd.

Group $\{1,-1, i, -i\}$ Cordial Labeling of Certain Splitting Graphs

Let n = 2k + 1, $(k \ge 0, k \in Z)$. If k = 0, then S'($C_3^{(t)}$) is S'(C3) which is known to be group $\{1,-1, i,-i\}$ cordial. Suppose $k \ge 1$. Two vertex labels should appear

2k + 2 times and two other vertex labels should appear 2k + 1 times. One edge label should appear 9k + 4 times and another should appear 9k + 5 times. Define a labeling f of S'(C₃^(t)) as follows.

f(u') = 1; For $1 \le i \le k$, f(ui) = 1 and for $1 \le i \le k + 1$, f(u'i) = 1;

f(u) = -1; For $k + 1 \le i \le 2k + 1$, f(ui) = -1 and for $k + 2 \le i \le 2k + 1$, f(u'i) = -1; For $1 \le i \le 2k + 1$, f(vi) = i and f(v'i) = -i;

Number of edges with label 1 = 9k + 4. Table 3.3 shows that f is a group $\{1,-1, i,-i\}$ cordial labeling of S'(C₃^(t)).

n	v _f (1)	v _f (-1)	v _f (i)	v _f (-i)	$e_{f}(0)$	e _f (1)
$2k, k \ge 1, k$ $\in \mathbb{Z}$	2k+1	2k+1	2k	2k	9k	9k
2k+1, k $\geq 0, k \in \mathbb{Z}$	2k+2	2k+2	2k+1	2k+1	9k+5	9k+4

Table 3.3:

Definition 3.13. The Umbrella graph Un,m, m > 1 is obtained from a fan Fn by pasting the end vertex of the path Pm : v1v2...vm to the vertex of K1 of the fan Fn.

Theorem 3.14. The splitting graph of the Umbrella graph S'(Un,n) is group $\{1,-1, i,-i\}$ cordial for every n.

Proof. Let ui, $vi(1 \le i \le n)$ be the vertices of Un,n where $ui(1 \le i \le n)$ are the vertices of the path in Fn and $vi(1 \le i \le n)$ are the vertices of the path in Un,n where v1 is identified with K1. Let u'i, v_i '($1 \le i \le n$) be the corresponding vertices of S'(Un,n). Number of vertices in S'(Un,n) is 4n and number of edges is 9n - 6.

Case 1. n is even.

Let n = 2k, $(k \ge 1, k \in Z)$. Each vertex label should appear 2k times. Each edge label should appear 9k - 3 times. Define a labeling f of S'(Un,n) as follows:

 $\begin{array}{l} f(u1) = f(u3) = \ldots = f(u2k-3) = 1; \ f(un) = 1; \\ f(v2) = f(v3) = \ldots = f(vk+1) = 1; \\ f(u2) = f(u4) = \ldots = f(u2k-2) = 1 = f(u2k-1) = -1; \\ f(v1) = f(vk+2) = \ldots = f(v2k) = -1; \\ For \ 1 \leq i \leq 2k, \ f(u'i) = i; \\ For \ 1 \leq i \leq 2k, \ f(v'i) = -i; \\ Number \ of \ edges \ with \ label \ 1 = 4 + (k-2)6 + 4 + 4 + (k-1)3 = 9k - 3. \end{array}$

Case 2. n is odd.

Let n = 2k + 1, $(k \ge 0, k \in Z)$. If k = 0, then S'(U1,1) is P4 which is trivially group $\{1,-1, i,-i\}$ cordial. Suppose $k \ge 1$. Each vertex label should appear2k + 1 times. One edge label should appear 9k + 2 times and another should appear 9k + 1 times. Define a labeling f of S'(Un,n) as follows.

M.K.Karthik Chidambaram, S.Athisayanathan and R.Ponraj

 $\begin{array}{l} f(u1) = f(u3) = \ldots = f(u2k-3) = 1; \ f(un) = 1; \\ f(v2) = f(v3) = \ldots = f(vk+1) = f(vk+3) = 1; \\ f(u2) = f(u4) = \ldots = f(u2k-2) = 1 = f(u2k-1) = f(u2k) = -1; \\ f(v1) = f(vk+2) = \ldots = f(v2k) = f(v2k+1) = -1; \\ For \ 1 \leq i \leq 2k + 1, \ f(u'i) = i; \\ For \ 1 \leq i \leq 2k + 1, \ f(v'i) = -i; \\ Number \ of \ edges \ with \ label \ 1 = 4 + (k-2)6 + 4 + 4 + (k-1)3 + 4 = 9k + 1. \\ Table \ 3.4 \ shows \ that \ f \ is \ a \ group \ \{1, -1, i, -i\} \ cordial \ labeling \ of \ S'(Un, n) \ . \end{array}$

n	v _f (1)	v _f (-1)	v _f (i)	v _f (-i)	$e_{f}(0)$	$e_{f}(1)$
$2k, k \ge 1, k$ $\in \mathbb{Z}$	2k	2k	2k	2k	9k-3	9k-3
2k+1, k $\geq 0, k \in \mathbb{Z}$	2k+1	2k+1	2k+1	2k+1	9k+2	9k+1

Table 3.4:

Theorem 3.15. The splitting graph of the Book S'(Bn) is group $\{1,-1, i,-i\}$ cordial for every n.

Proof. Let u and v be the center vertices of the two K1,n's and ui, $vi(1 \le i \le n)$ be the pendent vertices adjacent to u, v respectively. Let u', v', u'i, v'i $(1 \le i \le n)$ be the corresponding vertices of S'(Bn). Number of vertices in S'(Bn)is 4n + 4 and number of edges is 9n + 3.

Case 1. n is even.

Let n = 2k, $(k \ge 1, k \in Z)$. Each vertex label should appear 2k+1 times. One edge label should appear 9k + 1 times and another edge label should appear 9k + 2 times. Define a labeling f of S'(Bn) as follows:

 $\begin{array}{l} f(u) = 1; \mbox{ For } 1 \leq i \leq k, \ f(ui) = 1; \\ \mbox{ For } k+1 \leq i \leq 2k, \ f(v'i) = 1; \\ f(v) = -1; \mbox{ For } k+1 \leq i \leq 2k, \ f(ui) = -1; \\ \mbox{ For } 1 \leq i \leq k, \ f(v'i) = -1; \\ f(u') = i; \ \mbox{ For } 1 \leq i \leq 2k, \ f(u'i) = i; \\ f(v') = -i; \ \mbox{ For } 1 \leq i \leq 2k, \ f(vi) = -i; \\ \mbox{ Number of edges with label } 1 = 2(2k+1) + 3k + 2k = 9k + 2. \end{array}$

Case 2. n is odd.

Let n = 2k + 1, $(k \ge 0, k \in \mathbb{Z})$. Each vertex label should appear 2k + 2times. Each edge label should appear 9k + 6 times. Define a labeling f of S'(Bn) as follows. f(u) = 1; For $1 \le i \le k$, f(ui) = 1;For $k + 1 \le i \le 2k + 1$, f(v'i) = 1; f(v) = -1; For $k + 1 \le i \le 2k + 1$, f(ui) = -1;For $1 \le i \le k$, f(v'i) = -1; f(u') = i; For $1 \le i \le 2k + 1$, f(u'i) = i;f(v') = -i; For $1 \le i \le 2k + 1$, f(vi) = -i;

Number of edges with label 1 = 2(2k + 1 + 1) + 3k + 2(k + 1) = 9k + 6. Table 3.5 shows that f is a group $\{1,-1, i,-i\}$ cordial labeling of S'(Bn).

Group {	1,-1	l, <i>i</i> , -	-i}	C	ordial	Labe	eling o	of	Certain	Spl	litting	Graphs
---------	------	-----------------	-----	---	--------	------	---------	----	---------	-----	---------	--------

n	v _f (1)	v _f (-1)	v _f (i)	v _f (-i)	$e_{f}(0)$	$e_{f}(1)$
$2k, k \ge 1, k$	2k	2k	2k	2k	9k-3	9k-3
2k+1, k $\geq 0, k \in \mathbb{Z}$	2k+1	2k+1	2k+1	2k+1	9k+2	9k+1

Table 3.5:

Acknowledgement. The authors are thankful to the Reviewers for their valuable suggestions.

REFERENCES

- 1. S. Athisayanathan, R. Ponraj and M. K Karthik Chidambaram, Group{1,-1, i,-i} Cordial labeling of sum of Pn and Kn, *Journal of Mathematical and Computational Science*, 7(2) (2017) 335-346.
- 2. S. Athisayanathan, R. Ponraj and M. K. Karthik Chidambaram, Group A cordial labeling of Graphs, to appear in *International Journal of Applied Mathematical Sciences*.
- 3. I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars Combin.*, 23 (1987) 201-207
- 4. I. Cahit, On cordial and 3 -equitable labelings of graphs, *Utilitas Mathematica*, 37(1990), 189-198.
- 5. I. Cahit, Recent results and open problems on cordial graphs, *Contemporary methods in Graph theory*, R. Bodendiek (ed.), Wissenschafts verlag, Mannheim, 1990, 209-230.
- 6. S. Cichacz, A. G "orich and Z. Tuza, Cordial labeling of hyper trees, *Disc. Math.*, 313(22) (2013) 2518-2524.
- 7. A.T.Diab, Generalization of some results on cordial graphs, *Ars Combinatoria*, 99 (2011) 161-173.
- 8. A. T. Diab, On cordial labelings of wheels with other graphs, *Ars Combinatoria*, 100 (2011) 265-279.
- 9. J. A. Gallian, A Dynamic survey of graph labeling, *The Electronic Journal of Combinatories*, 7 (2015) #D56.
- 10. F. Harary, Graph Theory, Addison Wesley, Reading Mass, (1972).
- 11. N. B. Rathod and K. K. Kenani, V4 cordial labeling of quadrilateral snakes, *International Journal of Emerging Tech. Appl. Eng. Tech Sci*, 9 (2016) 45-51.
- 12. E.Salehi and Y. Mukhin, Product cordial sets of long grids, Ars Combinatoria, 107 (2012) 339-351.