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Abstract. A b-coloring by k colors of a graph G is a propertex coloring of G using k
colors such that in each color class, there egistsrtex adjacent to at least one vertex in
every other color class and the b-chromatic numb@) of G is the largest integer k
such that there is a b-coloring by k colors. A ¢wrdp is b-continuous if G has a b-
coloring by k colors for every integer k satisfyip@) < k < y,(G). The b-spectrum,&5)

of G is the set of all integers k for which G has-eoloring by k colors. The graph T(m,
n) is the graph obtained by joining a vertex of tele G, to a pendant vertex of the path
P, by an edge. In this paper, we find the b-chromatimber of the Cartesian product of
the Tadpole graph T(m, n) and pathfd? any r> 1. Also, the b-continuity properties of
these graphs are discussed.

Keywords: b-coloring, b-chromatic number, b-continuity, Taliparaph, b-spectrum,
Cartesian product.
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1. Introduction

All graphs considered in this paper are finite, @en and undirected. For those
terminologies not defined in this paper, the readay refer to [3]. A proper k-coloring
of a graph G is an assignment of k-colors to théices of G such that no two adjacent
vertices are assigned the same color. Equivalengsoper k-coloring of G is a partition
of the vertex set V(G) into k independent sefsWs, ..., Vk. The sets V(1 <i<Kk) are
called color classes with color i. The chromationbery(G) is the minimum k for which
G admits a proper k-coloring. Later, new types eiftex coloring were introduced and
one such coloring is b-coloring. The concept obledng was introduced by Irving and
Manlove in 1991 [4]. A b-coloring by k-colors of i a proper k-coloring such that in
each color class, there exists a vertex adjaceat kast one vertex in every other color
class. Such a vertex is called a color dominatiergex. Hence, if G has a b-coloring by k
colors, then it has at least k color dominatingtiges. Consequently, G has at least k
vertices of degree at least k — 1. The b-chromatimber of G, denoted Iyy(G), is the
largest integer k such that G has a b-coloring loplkrs. To determine the upper bound
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of y(G), the term t-degree of G, denoted by t(G) wdindd as t(G) = max{i ;K i <
|\/(G)|, G has at least i vertices of degree at leasl}. Hence, the inequalityy(G) <
t(G) follows. In 2003, Faik [2] introduced the capt of b-continuity. It was defined as if
for each integer k satisfyingG) < k < x,(G), G has a b-coloring by k-colors, then G is
said to be b-continuous. Later the b-spectryGBof G was defined as the set of all
integers k for which G has a b-coloring by k colams. $(G) = {k: G has a b-coloring by

k colors}. If S(G) contains all the integers fropiG) toy,(G), then G is b-continuous.
A Tadpole graph T(m, n) [8] is the graph obtaingddining a cycle G, m> 3
to a path R n> 1 with a bridge.
Graphs T(5, 1) and T(3, 4) are shown in figure 1.
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Definition 1.1 The Cartesian product;& G, of two graphs Gand G is the graph with
vertex set \¥xV,, and any two distinct vertices;(w;) and (y, v,) are adjacent in &< G,
whenever (i) y= W and v, O E; or (i) w0 E; and \ = Vs.

Cartesian product ¥ Psis shown in figure 2.
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Figure2:

Structural propertiesof Cartesian product 1.2
i. IfueV(Gy) and\e V(Gy), then {u} x V(G;) O0G; and V(Q) x {v} OG;.

i. InGyx Gy, there ardV(G,)| copies of Gand|V(G,)| copies of G
iii. G, x K OG;and K x G, 0G..

In this paper, we find the b-chromatic number ahT() x R, the Cartesian product
of a Tadpole graph and a path for alb3 and n, & 1. Also we prove that these graphs

are b-continuous.
Graph T(4, 3) x Pis shown in figure 3.
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Figure3:
2. Preliminaries
In this section, some properties of the Tadpol@lyri(m, n) and some basic results on
T(m, n) are given.

Observation 2.1. [4, 5]

i) If G admits a b-coloring with k-colors, then G muisive at least k vertices of
degree at least k — 1.

i) Any proper coloring withy colors is a b-coloring.

i) If G contains an induced path or cycle on at |8astrtices, then

iv) y(G) is at least 3.

v) If G contains an inducedKtheny,(G) > n.

vi) For a graph Gy(G) < yu(G) < t(G).

Vi) %(G), 1(G) € S(G) and from the definition of,85), the minimum

viii) value of $(G) is the chromatic number of G and maximum vaifie

iX) Sy(G) is the b-chromatic number of G.

Observation 2.2. For m>3 and > 1,
i. T(m, n)has m+n verticesand m +n edges.
ii. T(m, n) has exactly one vertex of degree 3, ontexarf degree 1 and
m + n — 2 vertices of degree 2.

2, if m is even
" Xmm’n)):{s if m is odd

Theorem 2.3.[8] For m>3 and r> 1,
i. t(T(m,n))=3
ii. 2<y(T(M, n))<3.
iii. Tadpole graph T(m, n) is a b-continuous graph.

3. Mainresults
In this section we prove that the Cartesian prodifictadpole graph and a path is b-
continuous. To prove the theorem we use few natatdmd terminologies.

Notations and Terminologies 3.1
Throughout this paper, the following notations semininologies are observed.
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i. ¢ is a function which assigns colors to the vestioé a graph in discussion.

Hence, if u is any vertex of a graph, then c(u)adesits color.

ii. Infigures, the color dominating vertices are @ctl

iii. We refer to a color dominating vertex adv. In particular, if u is a color
dominating vertex of color i, then it is referredasi-cdv.

iv. InT(m, n) xR, {vy, Vs ..., Vin} represents the vertex set \i{fCand {w, W, ...,
U} represents vertex set Vi)Pof T(m, n) and {w, w,, ..., W} represents the
vertex set V(B. Further Ris joined to G, at v by the edge ;.

With the above notations we observe the following.

Observation 3.2.
i V(@Mm, n)xR)={(vi,w):i=1tom,k=1toru {(uj,w):j=1ton,
k=1tor}
i.  V(T(m,n)) x{wg} OT(m, n)foreachk=1tor.
iii. {vi} x POP foreachi=1tomand fux P.OP foreachj=1ton.

Observation 3.3. Form>3,n>1 and r> 2
L MTmn)xR|= (m+n)r
i. [E(T(Mn)xP|=(r-1)(m+n)

2, if m is even
i. — y(M(mn)xRk)= 3 if m is odd

Observation 3.4.In T(m, n) x R, form>3,n>1 and > 2
i. there are exactly 2 vertices of degree 2,
ii. there are exactly 2(m—1) + 2(n— 1) + (r — 2}ieces of degree 3,
iii. thereareexactly2+ (m-21)(r—2)+ (n—-0L}2) vertices of degree 4
iv.  there are exactly (r — 2) vertices of degree 5.

Observation 3.5. Form>3 and n> 1
i. tTmnxRP=4,r=2
i. t(Tmn)xRP)=5,3<r<7
ii. t(T(mn)xRP=6,r>8

From observation 2.1(v), 3.3(iii) and 3.5, the Wwerhatic number of,(T(m, N)xR lies
between 2 and 6. Also from observation 2.1(ii)ptove T(m, n) x Pis b-continuous it is
enough to prove that T(m, n) % Ras a b-coloring by k colors for each k satisfying
x(T(m, n) x R<k<t(T(m, n)xR). From 1.2(iii), T(m, n)xPO T(m, n) and from theorem
2.3(iii), T(m, n) is a b-continuous graph. ThusmTl () x Ris b-continuous for r = 1 and
hence we prove theorems to fing(l§m, n) x B) for various values of m, n ang-r2.
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Theorem 3.6. If m is even, n» 4 and r> 1, then

{2, 3 4 . if r=2
S(Tm,n xR =4 {2, 3 4 5 , if 3sr<7
{2, 3 4 5 6 , if r=8
4 | if r=2
w(T(m, n) xR =<5 |, if 3<r<7
6 , if r=8

and T(m, n) xPis a b-continuous graph.
Proof: Since m is even, from observation 3.3(i(T(m, n) xR) = 2. Hence,
T(m, n) xR) has a b-coloring with 2 colors.

Case(i)r=2
By observations 2.1(v) and 3.5(i),

2y(T(m, n) xR) <4
We prove that T(m, n) xFhas a b-coloring by 3-colors and 4-colors. Let,ofk) = Kk, k
=1, 2. Assign colors 2, 3 to the each pair ofiges (v, wy) and (v, w,) for even i (2<i
<m), and to (4 wy) and (y W) for even j (2<j < n). If we assign colors 3 and 1 to the
each pair of vertices (wv;) and (v w,), for odd i (3<i < m-1), and to (4 wy) and
(u,wy), for odd j (1<j <n). Then (v, wy) is 1-cdv, (¥, wy) is a 2-cdv and ¢/ W) is a 3-
cdv. Then we get a b-coloring by 3-colors.

Next we prove that T(m, n) x, Fhas a b-coloring by 4-colors. Since there are
exactly 2 vertices of degree 4, assign any tworsplsamely 1, 2 to those vertices. Let
civi,w) =k, k=1,2and coyw) =k + 2, k=1, 2. Let cgv wi) = 4 and c(y, w.) = 3.
Assign colors 2, 1 to the each pair of verticesviy) and (v, w,) for odd i (3<i<m—1)
and to (y w,) and (y w,) for odd j (1<j < n). If we assign colors 1 and 2 to the each
pair of vertices (vi, wi) and (V.1 W) forodd i (3<i<m-3),andto  (uw;)and (y,

w,) for even j, (1< j < n), then (v, wy) is k-cdv and (% wy) isa  (k+ 2)-cdv, k =1, 2.
Then we get a b-coloring by 4-colors.

From the above results, T(m, n) xH&as a b-coloring by 2-colors, 3-colors and 4-

colors. Hencey(T(m, n) x R) =4 and §= {2, 3, 4}.

Case(ii) 3<r<7
By observations 2.1(v) and 3.5(ii),
2x(T(m, n) xR) <5

We prove that T(m, n) xPhas a b-coloring by 3-colors, 4-colors and 5-l@&ince
T(m, n) xBis an induced sub graph of T(m, n),x#® apply the same color scheme as
given in case (i)to T(m, n) %P In addition, for each odd k, 8k <r, c(v, w) = c(v,
wy), for all i = 1 to m, and c{uwy) = c(y, wy), for all j =1 to n.

Similarly, for each even k, 8k <r, c(v, w) = c(4, wy), for all i = 1 to m, and
c(u, W) = c(y, wy), for all j = 1 to n. Then we get a b-coloring ®yolors and 4-colors.
Next we prove that T(m, n) xFhas a b-coloring by 5-colors. For k,<lk < r, assign
colors 5, 1, 3 to the vertices;{wv), colors 4, 2, 5 to the vertices,(wy) and colors 2, 4,
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5 to the vertices @y W), in cyclic order. For each odd i,<8i <m - 1, assign colors 5, 3,
1 to the vertices (vw), and for each even i,8i <m -1 colors 2, 4, 5 to the vertices, (v
wy) in cyclic order.

Similarly, for each odd j, ¥ j < n, assign colors 3, 2, 1 to the vertices \{),
and for each even j, £ j < n, c(y, W) = c(v;, W), for all k = 1 to r in cyclic order.
Therefore (v, W), (V2, W), (V3, Wo), (Vm, W) and (v, wy) are 1, 2, 3, 4 and 5 color
dominating vertices respectively. Then we get alboring by 5-colors.

From the above results, T(m, n),xRas a b-coloring by 2-colors, 3-colors, 4-coland a
5-colors. Hencg,(T(m, n) xR) =5 and §={2, 3, 4, 5}.

Case(iii)r>8
By observations 2.1(v) and 3.5(iii),
2u(T(mM, n) x ) <6

Let us show that T(m, n) xPhas a b-coloring by 3-colors, 4-colors, 5-colonsl &-
colors. Since T(m, n) XPB3 < r < 7) is an induced sub graph of T(m, n), 42> 8), we
apply the same color scheme as given in case(ii{rn, n) xR, r> 8. Then we get a b-
coloring by 3-colors, 4-colors and 5-colors
Next we prove that T(m, n) xMas a b-coloring by 6-colors.For each k = 1 tossjign
colors 6, 1, 2, 3, 4, 5 to the vertices, (), colors 3, 4, 5, 6, 1, 2 to the verticeg, (W)
and 4, 5, 6, 1, 2, 3 to the vertices, (m), colors 2, 3, 4, 5, 6, 1 to the verticesg (u), 1<
k < rin cyclic order. For each odd i<2 <m - 1, c(v, W) = c(w, W), for each even i, 4
<i<m-2, c(v, W) = c(w, w) and for each odd j, 8j < n, c(y, wi) = c(w, w) and for
each evenj, 2j< n, c(y, w) = c(w, W), for all k = 1 to r,. Therefore (yw.,) is k-cdv
for k = 1 to 6. Then we get a b-coloring by 6-cslor

From the above results, T(m, n),xRas a b-coloring by 2-colors, 3-colors, 4-
colors, 5-colors and 6-colors. Heng€T(m, n) xR) =6 and $= {2, 3, 4, 5, 6}.

From case (i), (ii) and (iii), T(m, n) xi& a b-continuous graph for m is even,
m>4andn, i 1.

Theorem 3.7. For m = 3,

{3 4 ,if r=2 >1
{3 4 ,if r=3 1
S(Tm,nx=< {3 4 58 ,if r=3 ,
{3 4 8 , if 4<r<7,
{3 4 5 6 ,if r=8 n=
4 , if r=2, n=1
4 , if r=3 1
xw(T(m, n) xR) =<5 , if r=3
5 , if 4<r<7,
6 , if r=8, nz
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and T(m, n) x Pis a b-continuous graph.
Proof: Since m = 3, from observation 3.3(iii(T(m, n) xB) = 3. Hence, T(m, n) %P
has a b-coloring with 3 colors.

Case(i)r=2and =1
By observations 2.1(v) and 3.5(i),

SB(T(m, n) xR) < 4
Since T(m, n) xpPcontains K as an induced sub gramssign distinct colors to the
vertices of K. Let c(v, W) = Kk, c(w, W) = k+2, k =1, 2, c(y wy) = 2, ¢\ Wo) = 1,
c(u, wy) =4 and (g W) = 3. Then each (ywy) is a k-color dominating vertex, and(v
wy) is a (k+2)-color dominating vertex, k = 1, 2. Feach even j, c(uw) = c(w, W) and
for each odd j, cuw) = c(u, W), (2<j<n), forall k=1 tor. Then we get a b-
coloring by 4 colors. Hencg(T(m, n)xR) =4 and §={3, 4 }.

Case(i)r=3andn=1
By observations 2.1(v) and 3.5(ii),

B(T(m, n) xB) <5
Since T(m, n) xKis an induced sub graph of T(m, n), & apply the same color
scheme as given in case (i) to T(m, n) X®/e can get the color dominating vertices. In
addition, let each i, £ i< 3, ¢c(v, ws) = c(v, wy) and c(4, ws) = c(u, wy). Then we get a
b-coloring by 4-colors which is shown in figure 4.

> (D] <+

Figure4:
Next we prove that T(m, n) xRas no b-coloring by 5-colors.
By observation 3.4, there is exactly one vertexiedree 5 and 5 vertices of degree 4.
From the five vertices of degree at least 4, wetrges five color dominating vertices.
Assign distinct colors namely 1, 2, 3, 4, 5 to thesrtices. Let c{yw,) =i, 1<i < 3;
c(vy, wy) = 4, and c(y, ws) = 5. Then (v, w,) is a 1-cdv. To get 3-cdv, let g(wvs) = 4
and c(4, wy) = 5. Then (y, wy) is a 3-cdv. To get 2-cdv, assign colors 4 and the
vertices (y, ws) and c(y, wi). But this is impossible. From the above discusgsioe
cannot get a b-coloring by 5-colors. Heng@(m, n) xR) =4 and $={3, 4 }.

Case(iii)r=3and =2
By observations 2.1(v) and 3.5(ii),
8(T(m, n) xR) < 5.
We prove that T(m, n) xFhas a b-coloring by 4-colors and 5-colors. Sifden, 1) xR
is an induced sub graph of T(m, n), ¥ apply the same color scheme as in case (ii) to
T(m, n) xR. In addition, for even j, c{uw) = c(w, W) and for odd j, c(uwy) = c(u,
W), (2<j<n)forall k =1 to 3. Hence we get a b-coloringdcolors.
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Next we prove that T(m, n) xfhas a b-coloring by 5-colors. Since there are 6
vertices of degree at least 4, we assign cologs 3, 4 and 5 to any five of these vertices.
Letc(v, wo) =i,i=1, 2,3; c(4w) =4 and c(y, ws) = 5, then (v, ws) is 1-cdv. Since
c(v,, W) = 2 and (Y, W,) is adjacent to the vertices of colors 1, 3, gissiolors 4 and 5
properly to the adjacent vertices (which are natcgdored) of (y, w.). Therefore, c(y
wz) = 4, ¢(%, W) = 5. Then (¥, wy) is 2-cdv. To get (¥ ws) is 3-cdv, we must assign
color 4 and 5 to (y ws) and (¥, wy). Since (¥, Ws) is adjacent to the vertices of colors 4
and 5, c(¥, ws) # 4 and 5, Therefore fvw,) cannot be 3-cdv. Hence assign colorc(v
W) to (v, wy). Since c(y, wy) = 3 and (v, wy) is adjacent to the vertices of colors 1 and
5, assign colors 2 and 4 properly to the adjacerices (which are not yet colored) of
(v1, wy). Let c(w, wi) =4 and c(y wy) = 2, then (v, wy) is 3-cdv. Since cgyws) =5 and
(v1, ws) is adjacent to the vertices of colors 1 and digascolors 2 and 3 properly to the
adjacent vertices (which are not yet colored) of (). Therefore c(y ws) = 2, c(y, Ws)
= 3. Hence (¥ ws) is 5-cdv. By observation 3.4, T(m, n) xfftas one more vertex of
degree 4, namely (uw,). Therefore, we use the vertex,(w.), to get 4-cdv. Since c{u
W) = 4 and (4 W») is adjacent to the vertices of colors 1, 2 anadsiign color 5 to
(Uz, Wp). Hence (4 W) is 4-cdv.Let c(b wy) = 3 and c(& ws) = 2. In addition for each
odd j, c(y, W) = c(w, w) and for each even j, g(uv) = c(w, W), (3<j<n) for all k =
1 to 3. Then we get a b-coloring by 5-colors. Hep€&(m, n) x B) =5 and $= {3, 4,

5}.

Case(iv)4<r<7andrn>1
By observations 2.1(v) and 3.5(iii),

3 (T(m, n) xR) <5
We prove that T(m, n) xFPhas a b-coloring by 4-colors and 5-colors. Assiglors 1, 2,
3, 4 to the vertices (yw), colors 2, 3, 4, 1 to the vertices,(w), colors 3, 4, 1, 2 to the
vertices (¥, W¢) and colors 4, 3, 2, 1 to the vertices, () for all k = 1 to r in cyclic
order. For each odd j, g(ww) = c(u, wi), and for each even j, g(uw) = c(w, W), (2<]
<n)forallk=1tor. Then gyw) is k-cdv, k = 1 to 4 and also we get a b-colotyg-
colors.

Next we prove that T(m, n) xPas a b-coloring by 5-colors. Assign colors 1, 2,

3, 4 to the vertices (vw), colors 3, 4, 5, 1 to the vertices,(W), colors 5, 1, 2, 3 to
(vs, W) and colors 4, 5, 1, 2 to the vertices, () for all k = 1 to r in cyclic order. For
each even j, c{uwy) = c(w, W), and for each odd j, g(um) = c(w, W), (2<j < n) for
all k=1tor. Then (¥ wy) is k-cdv, k = 1 to 3, (¥ W,) is 4-cdv and (¥ ws) is 5-cdv
Thus we get a b-coloring by 5-colors. Heng@ (m, n) xR =5and $={3,4,5}.

Case(v)r>8and =1
By observations 2.1(v) and 3.5(iii),

3 x(T(M, n) xR) <6
In this case we prove that T(m, n),x4fas a b-coloring by 4-colors, 5-colors and 6-clor
Since T(m, n) XP (4 <r<7)is an induced sub graph of T(m, n), XP> 8), we apply
the same color scheme as in case(iv) to T(m, p)(kP 8). Then we get a b-coloring by
4-colors and 5-colors.

Next we prove that T(m, n) xPas a b-coloring by 6-colors. If we assign colors

6, 1, 2, 3, 4, 5 to the vertices;(wy), colors 2, 3, 4, 5, 6, 1 to the vertices, (v), colors
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3,4,5,6,1, 2to gyw) and colors 4, 5, 6, 1, 2, 3 to the vertices\w) forallk=1tor
in cyclic order, then (v wy) is (k — 1)-cdv for k = 2 to 7. For each even(j,cwy) = c(\,
w,) and for each odd j, g(un) = c(w, W), (2<j<n) for all k = 1 to r. Then we get a b-
coloring by 6-colors. Hencg(T(m, n) xR) =6 and §={3,4, 5,6 }.

From case (i), (i), (iii), (iv) and (v), T(m, n)Pxis a b-continuous graph for
m=3andn, k1.

Theorem 3.8. If mis odd, m>5 and r= 1, then

{3 4 . if r=2
S(Tm,nxA=4 {3 4 5 , if 3sr<7 ,
{3 4 5 6 , if r=8
4 , if r=2
w(Tm,n) xp) =15 , if 3<r<7
6 , if r=8

and T(m, n) x Pis a b-continuous graph.
Proof: Since m is odd, from observation 3.3(ijfT(m, n) xR) = 3. Hence,
T(m, n) xR) has a b-coloring with 3 colors.

Case(i)r=2
By observations 2.1(v) and 3.5(i),

8 p(T(m, N)XxR) <4
Now we prove that T(m, n) xPhas a b-coloring by 4-colors. Assign colors 10 3w,
wy), colors 2, 4 to (& w), colors 3, 1 to (% wi) for all k = 1, 2 in order. Let c{uw,) =
4, c(w, W) = 2. Then (¥ wy) is i-cdv and (¥ w-) is a (i + 2)-cdv, for all i = 1, 2. For
each even i, c{vw) =2, c(v, wo) = 4 and for each odd i, g(wy) =5, c(v, wo) = 1 (4<
i <m). Also, for each even j, g(ww) = c(w, w) and for each odd j, g(wi) = c(u, W),
(2<j<n)for k=1, 2. Then we get a b-coloring by 4arel Hencey(T(m, n) xR) = 4
and 3 = {3, 4}.

Case(ii) 3<r<7
By observations 2.1(v) and 3.5(ii),

8 x(T(m, n) x A <5
Since T(m, n) xpis an induced sub graph of T(m, n),xB <r <7, we get four color
dominating vertices. In addition, for each odd (;,on) = c(v, wy) and c(y wi) = c(y,
wy), for each even k, c(wv) = c(\, w,) and c(y wi) = c(y, wp), (B<k<r)foralli=1
to m and for all j = 1 to n. Then we get a b-caigrby 4-colors.

Let c(w, W) =k, k =1 to 3. Assign colors 3, 4, 5 to.(wv), colors 4, 5, 1 to ¢y
wy). In addition, for each even i, assign colors,5} fo (v, wi) and for each odd i, assign
colors 2, 3, 5to (ywy) (3<i<m-1)forall k=1to 3in order. Also assignams 5, 1, 4
to (w, wy) for all k = 1 to 3 in order.

For each even j, cfwy) = c(wv, wi) and for each odd j, g(w) = c(w, W), (2<
j<n) forall k=1to 3. Each c{yw) =k, k= 1to 3, is k-cdv. Also fy w,) is 4-cdv and
(v2, W») is 5-cdv. In addition, for each odd k, g(w¢) = c(v, ws), and for each even Kk,
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c(vi, W) = c(¥, Wy), (4<k<r) foralli=1tom. Then we get a b-coloring b-colors.
Hencey,(T(m, n) x ) =5 and $= {3, 4, 5}.

Case(iii)r>8
By observations 2.1(v) and 3.5(iii),
B(T(m, n) xR) <6

We show that T(m, n) x,Phas a b-coloring by 4-colors, 5-colors and 6-&l@&ince
T(m, n) xR 3<r<7,is an induced sub graph of T(m, n) xP> 8, we apply the same
color scheme as given in case (ii) to T(m, n) x> 8. Then we get a b-coloring by 4-
colors and 5-colors. Next we prove that T(m, n) k& a b-coloring by 6-colors. Assign
colors 6, 1, 2, 3, 4, 5 to the vertices, (W), colors 2, 3, 4, 5, 6, 1 to the vertices 4, (u
wy), colors 3, 4, 5, 6, 1, 2 tofvwy) and colors 4, 5, 6, 1, 2, 3 to the vertices ) for
all k =1 to r in cyclic order. For each odd i, ¢c@w) = c(v, W), and for each even i,
c(Vi, W) = (W, W), (8<i<m-—1)forallk=1tor. (W1)is k-cdv, k=110 6. Then
we get a b-coloring by 6-colors. Heng€T(m, n) xR) =6 and §={3,4, 5,6 }.

From case (i), (ii) and (iii), T(m, n) xi® a b-continuous graph for m is odd,
m>5andn, & 1.

4. Conclusion

In this paper, we found the b-chromatic number @h,Tn) xR and proved that it is a b-
continuous graph. This paper can be further exgtolehe Cartesian product of Tadpole
graph and cycle.
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