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Abstract. A b-coloring by k colors of a graph G is a proper vertex coloring of G using k 
colors such that in each color class, there exists a vertex adjacent to at least one vertex in 
every other color class and the b-chromatic number χb(G) of G is the largest integer k 
such that there is a b-coloring by k colors. A graph G is b-continuous if G has a b-
coloring by k colors for every integer k satisfying χ(G) ≤ k ≤ χb(G). The b-spectrum Sb(G) 
of G is the set of all integers k for which G has a b-coloring by k colors. The graph T(m, 
n) is the graph obtained by joining a vertex of the cycle Cm to a pendant vertex of the path 
Pn by an edge. In this paper, we find the b-chromatic number of the Cartesian product of 
the Tadpole graph T(m, n) and path Pr for any r ≥ 1. Also, the b-continuity properties of 
these graphs are discussed. 

Keywords: b-coloring, b-chromatic number, b-continuity, Tadpole graph, b-spectrum, 
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1. Introduction 
All graphs considered in this paper are finite, simple, and undirected. For those 
terminologies not defined in this paper, the reader may refer to [3]. A proper k-coloring 
of a graph G is an assignment of k-colors to the vertices of G such that no two adjacent 
vertices are assigned the same color. Equivalently a proper k-coloring of G is a partition 
of the vertex set V(G) into k independent sets V1, V2, …, Vk. The sets Vi (1 ≤ i ≤ k) are 
called color classes with color i. The chromatic number χ(G) is the minimum k for which 
G admits a proper k-coloring. Later, new types of vertex coloring were introduced and 
one such coloring is b-coloring. The concept of b-coloring was introduced by Irving and 
Manlove in 1991 [4]. A b-coloring by k-colors of G is a proper k-coloring such that in 
each color class, there exists a vertex adjacent to at least one vertex in every other color 
class. Such a vertex is called a color dominating vertex. Hence, if G has a b-coloring by k 
colors, then it has at least k color dominating vertices. Consequently, G has at least k 
vertices of degree at least k – 1. The b-chromatic number of G, denoted by χb(G), is the 
largest integer k such that G has a b-coloring by k colors. To determine the upper bound 
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of χb(G), the term t-degree of G, denoted by t(G) was defined as t(G) = max{i :1 ≤ i ≤ 
)(GV , G has at least i vertices of degree at least i – 1}. Hence, the inequality χb(G) ≤ 

t(G) follows. In 2003, Faik [2] introduced the concept of b-continuity. It was defined as if 
for each integer k satisfying χ(G) ≤ k ≤ χb(G), G has a b-coloring by k-colors, then G is 
said to be b-continuous. Later the b-spectrum Sb(G) of G was defined as the set of all 
integers k for which G has a b-coloring by k colors. i.e. Sb(G) = {k: G has a b-coloring by 
k colors}. If Sb(G) contains all the integers from χ(G) to χb(G), then G is b-continuous.   

A Tadpole graph T(m, n) [8] is the graph obtained by joining a cycle Cm, m ≥ 3 
to a path Pn, n ≥ 1 with a bridge.  

Graphs T(5, 1) and T(3, 4) are shown in figure 1. 
 

 
 

 
 

(a)    T(5, 1)                                          (b)    T(3, 4) 
               Figure 1: 
 

Definition 1.1 The Cartesian product G1 × G2 of two graphs G1 and G2 is the graph with 
vertex set V1×V2, and any two distinct vertices (u1, v1) and (u2, v2) are adjacent in G1 × G2 
whenever (i) u1 = u2 and v1v2 ∈ E2 or (ii) u1u2∈ E1  and v1 = v2. 
 
Cartesian product K2 × P3 is shown in figure 2. 

 
 

 
 
(a)  K2                           (b)   P3                               (c)    K2 × P3 

Figure 2: 
 
Structural properties of Cartesian product 1.2 

i. If u ∈ V(G1) and v∈ V(G2), then {u} × V(G2) ≅ G2 and V(G1) × {v} ≅ G1.  

ii.  In G1 × G2 , there are )( 1GV   copies of G2 and )( 2GV   copies of G1.   

iii.  G1 × K1 ≅ G1 and K1 × G2 ≅ G2. 
 

In this paper, we find the b-chromatic number of T(m, n) × Pr, the Cartesian product 
of a Tadpole graph and a path for all m ≥ 3 and n, r ≥ 1. Also we prove that these graphs 
are b-continuous. 

 Graph T(4, 3) × P2 is shown in figure 3. 
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Figure 3: 
2.  Preliminaries 
In this section, some properties of the Tadpole graph T(m, n) and some basic results on 
T(m, n) are given.  

 
Observation 2.1. [4, 5] 
i) If G admits a b-coloring with k-colors, then G must have at least k vertices of 

degree at least k – 1.  
ii)  Any proper coloring with χ colors is a b-coloring.  
iii)  If G contains an induced path or cycle on at least 5 vertices, then  
iv) χb(G) is at least 3.  
v) If G contains an induced Kn, then χb(G) ≥ n.  
vi) For a graph G, χ(G) ≤ χb(G) ≤ t(G). 
vii)  χ(G), χb(G) ∈ Sb(G) and from the definition of Sb(G), the minimum 
viii)  value of Sb(G) is the chromatic number of G and maximum value of  
ix) Sb(G) is the b-chromatic number of G. 

 
Observation 2.2. For m ≥ 3 and n ≥ 1, 

i. T(m, n) has  m + n  vertices and  m + n  edges. 
ii. T(m, n) has exactly one vertex of degree 3, one vertex of degree 1 and   

m + n – 2  vertices of degree 2. 

iii.  




=
oddismif

evenismif
nmT

,3

,2
)),((χ  

 
Theorem 2.3. [8] For m ≥ 3 and n ≥ 1, 

i. t(T(m, n)) = 3 
ii. 2 ≤ χb(T(m, n)) ≤ 3. 
iii.  Tadpole graph T(m, n) is a b-continuous graph. 

 
3. Main results 
In this section we prove that the Cartesian product of Tadpole graph and a path is b-
continuous. To prove the theorem we use few notations and terminologies.  
 
Notations and Terminologies 3.1 
Throughout this paper, the following notations and terminologies are observed. 
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i. c is a function which assigns colors to the vertices of a graph in discussion. 
Hence, if u is any vertex of a graph, then c(u) denotes its color.  

ii. In figures, the color dominating vertices are circled.  
iii.  We refer to a color dominating vertex as cdv. In particular, if u is a color 

dominating vertex of color i, then it is referred to as i-cdv. 
iv. In T(m, n) × Pr , {v1, v2, …, vm} represents the vertex set V(Cm) and {u1, u2, …, 

un} represents vertex set V(Pn) of T(m, n) and {w1, w2, …, wr} represents the 
vertex set V(Pr). Further Pn is joined to Cm at v1 by the edge u1v1.  

 
With the above notations we observe the following. 
 

Observation 3.2. 
i. V(T(m, n) × Pr) ={(v i , wk) : i = 1 to m, k= 1 to r} ∪ {(u j , wk) : j = 1 to n,   

k = 1 to r} 
ii. V(T(m, n)) × {wk} ≅ T(m, n) for each k = 1 to r. 
iii.  {v i} × Pr≅ Pr  for each i = 1 to m and {uj} × Pr≅ Pr  for each j = 1 to n.  

 
Observation 3.3. For m ≥ 3, n ≥ 1 and r ≥ 2 

i. rPnmTV ×),((  =  ( m + n) r 

ii. rPnmTE ×),((  = (2r - 1)( m + n ) 

iii.  




=×
oddismif

evenismif
PnmT r ,3

,2
)),((χ  

 
Observation 3.4. In T(m, n) × Pr,  for m ≥ 3, n ≥ 1 and r ≥ 2 

i. there are exactly 2 vertices of degree 2, 
ii. there are exactly 2(m – 1) + 2(n – 1) + (r – 2) vertices of  degree 3, 
iii.  there are exactly 2 + (m – 1)( r – 2 ) + ( n – 1 )( r – 2) vertices of degree 4 
iv. there are exactly (r – 2) vertices of degree 5. 

 
Observation 3.5. Form ≥ 3 and n ≥ 1 

i. t(T(m, n) × Pr) = 4 ,  r = 2 
ii. t(T(m, n) × Pr) = 5 , 3 ≤ r ≤ 7 
iii.  t(T(m, n) × Pr) = 6 ,  r ≥ 8 

 
From observation 2.1(v), 3.3(iii) and 3.5, the b-chromatic number of χb(T(m, n)×Pr lies 
between 2 and 6. Also from observation 2.1(ii), to prove T(m, n) × Pr is b-continuous it is 
enough to prove that T(m, n) × Pr has a b-coloring by k colors for each k satisfying 
χ(T(m, n) × Pr)<k≤t(T(m, n)×Pr). From 1.2(iii), T(m, n)×P1 ≅ T(m, n) and from theorem 
2.3(iii), T(m, n) is a b-continuous graph. Thus, T(m, n) × Pr is b-continuous for r = 1 and 
hence we prove theorems to find Sb(T(m, n) × Pr) for various values of m, n and r ≥ 2.  
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Theorem 3.6. If m is even, m ≥ 4 and n ≥ 1, then   

Sb(T(m, n) ×Pr) = 

{ }
{ }

{ }







≥
≤≤

=

8,6,5,4,3,2

73,5,4,3,2

2,4,3,2

rif

rif

rif

   ,                       

χb(T(m, n) ×Pr) = 








≥
≤≤

=

8,6

73,5

2,4

rif

rif

rif

 

and T(m, n) ×Pr is a b-continuous graph.  
Proof: Since m is even, from observation 3.3(iii), χ(T(m, n) ×Pr)  = 2. Hence,  
T(m, n) ×Pr)  has a b-coloring with 2 colors.  
 
Case (i) r = 2 
By observations 2.1(v) and 3.5(i),   
                             2 ≤ χb(T(m, n) ×Pr) ≤ 4                                              
We prove that T(m, n) ×Pr  has a b-coloring by 3-colors and 4-colors. Let c(v1, wk) = k, k 
= 1, 2. Assign colors 2, 3 to the each pair of vertices (vi, w1) and (vi, w2) for even i (2 ≤ i 
≤ m), and to (uj, w1) and (uj, w2) for even j (2 ≤ j ≤ n). If we assign colors 3 and 1 to the 
each pair of vertices (vi, w1) and (vi w2), for odd  i (3 ≤ i ≤ m-1), and to (uj, w1) and 
(uj,w2), for odd j (1 ≤ j ≤ n). Then (v1, w1) is 1-cdv, (v1, w2) is a 2-cdv and (v2, w2) is a 3-
cdv. Then we get a b-coloring by 3-colors. 

Next we prove that T(m, n) × Pr  has a b-coloring by 4-colors. Since there are 
exactly 2 vertices of degree 4, assign any two colors, namely 1, 2 to those vertices. Let 
c(v1, wk) = k, k = 1, 2 and c(v2, wk) = k + 2, k = 1, 2. Let c(vm, w1) = 4 and c(vm, w2) = 3. 
Assign colors 2, 1 to the each pair of vertices (vi, w1) and (vi, w2) for odd i (3 ≤ i ≤ m – 1) 
and to (uj, w1) and (uj, w2) for odd j (1 ≤ j ≤ n). If we assign colors 1 and 2 to the each 
pair of vertices (vi+1, w1) and (vi+1 w2) for odd  i (3 ≤ i ≤ m – 3), and to     (uj, w1)and (uj, 
w2) for even j, (1 ≤ j ≤ n), then (v1, wk) is k-cdv  and (v2, wk) is a    (k+ 2)-cdv, k = 1, 2. 
Then we get a b-coloring by 4-colors.  

From the above results, T(m, n) × Pr  has a b-coloring by 2-colors, 3-colors and 4-
colors. Hence χb(T(m, n) × Pr) = 4 and Sb = {2, 3, 4}.  
 
Case (ii) 3 ≤ r ≤ 7 
By observations 2.1(v) and 3.5(ii),   
                                    2 ≤ χb(T(m, n) ×Pr) ≤ 5                                        
We prove that T(m, n) ×Pr  has a b-coloring by 3-colors, 4-colors and 5-colors. Since 
T(m, n) ×P2 is an induced sub graph of T(m, n) ×Pr, we apply the same color scheme as 
given in case (i)to T(m, n) ×Pr . In addition, for each odd k,  3 ≤ k ≤ r, c(vi, wk) = c(vi, 
w1), for all i = 1 to m, and c(uj, wk) = c(uj, w1), for all j = 1 to n. 

Similarly, for each even k, 3 ≤ k ≤ r, c(vi, wk) = c(vi, w2), for all i = 1 to m, and  
c(uj, wk) = c(uj, w1), for all j = 1 to n. Then we get a b-coloring by 3-colors and 4-colors.  
Next we prove that T(m, n) ×Pr  has a b-coloring by 5-colors. For k, 1 ≤ k ≤ r, assign 
colors 5, 1, 3 to the vertices (v1, wk), colors 4, 2, 5 to the vertices  (v2, wk) and colors 2, 4, 
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5 to the vertices (vm, wk), in cyclic order. For each odd i, 3 ≤ i ≤ m - 1, assign colors 5, 3, 
1 to the vertices (vi, wk), and for each even i, 3 ≤ i ≤ m -1 colors 2, 4, 5 to the vertices (vi, 
wk) in cyclic order. 

Similarly, for each odd j, 1 ≤ j ≤ n, assign colors 3, 2, 1 to the vertices (uj, wk), 
and for each even j, 1 ≤ j ≤ n, c(uj, wk) = c(v1, wk), for all k = 1 to r in cyclic order. 
Therefore (v1, w2), (v2, w2), (v3, w2), (vm, w2) and (v1, w1) are 1, 2, 3, 4 and 5 color 
dominating vertices respectively. Then we get a b-coloring by 5-colors.  
From the above results, T(m, n) ×Pr  has a b-coloring by 2-colors, 3-colors, 4-colors and 
5-colors. Hence χb(T(m, n) ×Pr) = 5 and Sb = {2, 3, 4, 5}.  
 
Case (iii) r ≥ 8 
By observations 2.1(v) and 3.5(iii),   
                                       2 ≤ χb(T(m, n) × Pr) ≤ 6                                 
Let us show that T(m, n) ×Pr  has a b-coloring by 3-colors, 4-colors, 5-colors and 6-
colors. Since T(m, n) ×Pr  (3 ≤ r ≤ 7) is an induced sub graph of T(m, n) ×Pr (r ≥ 8), we 
apply the same color scheme as given in case (ii) to T(m, n) ×Pr , r ≥ 8. Then we get a b-
coloring by 3-colors, 4-colors and 5-colors  
Next we prove that T(m, n) ×Pr  has a b-coloring by 6-colors.For each k = 1 to r, assign 
colors 6, 1, 2, 3, 4, 5 to the vertices (v1, wk), colors 3, 4, 5, 6, 1, 2 to the vertices (vm, wk) 
and 4, 5, 6, 1, 2, 3 to the vertices (v2, wk), colors 2, 3, 4, 5, 6, 1 to the vertices (u1, wk), 1 ≤ 
k ≤  r in cyclic order. For each odd i, 2 ≤ i ≤ m - 1, c(vi, wk) = c(v1, wk), for each even i, 4 
≤ i ≤ m - 2, c(vi, wk) = c(v2, wk) and for each odd j, 3 ≤ j ≤  n, c(uj, wk) = c(u1, wk) and for 
each even j, 2 ≤ j ≤  n, c(uj, wk) = c(v1, wk), for all k = 1 to r,. Therefore (v1, wk+1) is k-cdv 
for k = 1 to 6. Then we get a b-coloring by 6-colors.  

From the above results, T(m, n) ×Pr  has a b-coloring by 2-colors, 3-colors, 4-
colors, 5-colors and 6-colors. Hence χb(T(m, n) ×Pr) = 6 and Sb = {2, 3, 4, 5, 6}.  
 From case (i), (ii) and (iii), T(m, n) ×Pr is a b-continuous graph for m is even,  
m ≥ 4 and n, r ≥ 1. 
  
Theorem 3.7. For m = 3,    

Sb(T(m, n) ×Pr) = 

{ }
{ }

{ }
{ }

{ }












≥≥
≥≤≤
≥=
==
≥=

1,8,6,5,4,3

1,74,5,4,3

2,3,5,4,3

1,3,4,3

1,2,4,3

nrif

nrif

nrif

nrif

nrif

,                          

 

χb(T(m, n) ×Pr) = 














≥≥
≥≤≤
≥=
==
≥=

1,8,6
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2,3,5

1,3,4

1,2,4
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nrif

nrif
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nrif
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and T(m, n) × Pr is a b-continuous graph. 
Proof: Since m = 3, from observation 3.3(iii),  χ(T(m, n) ×Pr)  = 3. Hence, T(m, n) ×Pr)  
has a b-coloring with 3 colors. 
 
Case (i) r = 2 and n ≥ 1 
By observations 2.1(v)  and 3.5(i),  
                                           3 ≤ χb(T(m, n) ×Pr) ≤ 4                              
Since T(m, n) ×P2 contains K3 as an induced sub graph, assign distinct colors to the 
vertices of K3. Let c(v1, wk) = k, c(v2, wk) = k+2, k = 1, 2, c(v3, w1) = 2, c(v3, w2) = 1, 
c(u1, w1) = 4 and (u1, w2) = 3. Then each (v1, wk) is a k-color dominating vertex, and (v2, 
wk) is a (k+2)-color dominating vertex, k = 1, 2. For each even j, c(uj, wk) = c(v1, wk)  and 
for each odd j, c(uj, wk) = c(u1, wk), (2 ≤ j ≤ n),  for all k = 1 to r. Then we get a b-
coloring by 4 colors. Hence χb(T(m, n)×Pr) = 4 and Sb ={3, 4 }. 
 
Case (ii) r = 3 and n = 1 
By observations 2.1(v) and 3.5(ii),   
                               3 ≤ χb(T(m, n) ×Pr) ≤ 5                                              
Since T(m, n) ×P2 is an induced sub graph of T(m, n) ×Pr, we apply the same color 
scheme as given in case (i) to T(m, n) ×Pr . We can get the color dominating vertices. In 
addition, let each i, 1 ≤ i ≤ 3, c(vi, w3) = c(vi, w1) and c(u1, w3) = c(u1, w1). Then we get a 
b-coloring by 4-colors which is shown in figure 4. 
 

 
Figure 4: 

Next we prove that T(m, n) ×Pr  has no b-coloring by 5-colors. 
By observation 3.4, there is exactly one vertex of degree 5 and 5 vertices of degree 4. 
From the five vertices of degree at least 4, we must get five color dominating vertices. 
Assign distinct colors namely 1, 2, 3, 4, 5 to these vertices. Let c(vi, w2) = i, 1 ≤ i ≤ 3; 
c(v1, w1) = 4, and c(v1, w3) = 5. Then (v1, w2) is a 1-cdv. To get 3-cdv, let c(v3, w3) = 4 
and c(v3, w1) = 5. Then (v3, w2) is a 3-cdv. To get 2-cdv, assign colors 4 and 5 to the 
vertices (v2, w3) and c(v2, w1). But this is impossible. From the above discussion, we 
cannot get a b-coloring by 5-colors. Hence χb(T(m, n) ×Pr) = 4 and Sb = {3, 4 }. 
 
Case (iii) r = 3 and n ≥ 2 
By observations 2.1(v) and 3.5(ii),   
                              3 ≤ χb(T(m, n) ×Pr) ≤ 5.    
We prove that T(m, n) ×Pr  has a b-coloring by 4-colors and 5-colors. Since  T(m, 1) ×Pr 

is an induced sub graph of T(m, n) ×Pr, we apply the same color scheme as in case (ii) to 
T(m, n) ×Pr. In addition, for even j, c(uj, wk) = c(v1, wk) and for odd j, c(uj, wk) = c(u1, 
wk), (2 ≤ j ≤ n) for all k = 1 to 3. Hence we get a b-coloring by 4 colors.  
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Next we prove that T(m, n) ×Pr  has a b-coloring by 5-colors. Since there are 6 
vertices of degree at least 4, we assign colors 1, 2, 3, 4 and 5 to any five of these vertices. 
Let c(vi, w2) = i, i = 1, 2, 3;  c(u1, w2) = 4 and c(v1, w3) = 5, then (v1, w3) is 1-cdv. Since 
c(v2, w2) = 2 and (v2, w2) is adjacent to the vertices of colors 1, 3,  assign colors 4 and 5 
properly to the adjacent vertices (which are not yet colored) of (v2, w2). Therefore, c(v2, 
w3) = 4, c(v2, w1) = 5. Then (v2, w2) is 2-cdv. To get (v2, w3) is 3-cdv, we must assign 
color 4 and 5 to (v3, w3)  and (v3, w1). Since (v3, w3) is adjacent to the vertices of colors 4 
and 5, c(v3, w3) ≠ 4 and 5, Therefore (v3, w2) cannot be 3-cdv. Hence assign color c(v3, 
w2) to (v1, w1). Since c(v1, w1) = 3 and (v1, w1) is adjacent to the vertices of colors 1 and 
5, assign colors 2 and 4 properly to the adjacent vertices (which are not yet colored) of 
(v1, w1). Let c(v3, w1) = 4 and c(u1, w1) = 2, then (v1, w1) is 3-cdv. Since c(v1, w3) = 5 and 
(v1, w3) is adjacent to the vertices of colors 1 and 4, assign colors 2 and 3 properly to the 
adjacent vertices (which are not yet colored) of (v1, w3). Therefore c(v3, w3) = 2, c(u1, w3) 
= 3. Hence (v1, w3) is 5-cdv. By observation 3.4, T(m, n) ×Pr has one more vertex of 
degree 4, namely (u1, w2). Therefore, we use the vertex (u1, w2), to get 4-cdv. Since c(u1, 
w2) = 4 and (u1, w2) is adjacent to the vertices of colors 1, 2 and 3, assign color 5 to      
(u2, w2). Hence (u1, w2) is 4-cdv.Let c(u2, w1) = 3 and c(u2, w3) = 2. In addition for each 
odd j, c(uj, wk) = c(u1, wk)  and for each even j, c(uj, wk) = c(u2, wk), (3 ≤ j ≤ n) for all k = 
1 to 3. Then we get a b-coloring by 5-colors. Hence χb(T(m, n) × Pr) = 5 and Sb = {3, 4, 
5}. 
 
Case (iv) 4 ≤ r ≤ 7 and n ≥ 1 
By observations 2.1(v) and 3.5(iii),  
                        3 ≤ χb(T(m, n) ×Pr) ≤ 5                                                   
We prove that T(m, n) ×Pr  has a b-coloring by 4-colors and 5-colors. Assign colors 1, 2, 
3, 4 to the vertices (v1, wk), colors 2, 3, 4, 1 to the vertices (v2, wk), colors 3, 4, 1, 2 to the 
vertices (v3, wk) and colors 4, 3, 2, 1 to the vertices (u1, wk) for all k = 1 to r in cyclic 
order. For each odd j, c(uj, wk) = c(u1, wk), and for each even j, c(uj, wk) = c(v1, wk), (2 ≤ j 
≤ n) for all k = 1 to r. Then (v1, wk) is k-cdv, k = 1 to 4 and also we get a b-coloring by 4-
colors. 

Next we prove that T(m, n) ×Pr  has a b-coloring by 5-colors. Assign colors 1, 2, 
3, 4 to the vertices (v1, wk), colors 3, 4, 5, 1 to the vertices (v2, wk), colors 5,  1, 2, 3 to 
(v3, wk) and colors 4, 5, 1, 2 to the vertices (u1, wk) for all k = 1 to r in cyclic order. For 
each even j, c(uj, wk) = c(v1, wk), and for each odd j, c(uj, wk) = c(u1, wk), (2 ≤ j ≤ n) for 
all k = 1 to r. Then (v1, wk) is k-cdv, k = 1 to 3, (v2, w2) is 4-cdv and (v2, w3) is 5-cdv 
Thus we get a b-coloring by 5-colors. Hence χb(T(m, n) ×Pr) = 5 and Sb = {3, 4, 5 }. 
 
Case (v) r ≥ 8 and n ≥ 1 
By observations 2.1(v) and 3.5(iii),   
                       3 ≤ χb(T(m, n) ×Pr) ≤ 6                                               
In this case we prove that T(m, n) ×Pr  has a b-coloring by 4-colors, 5-colors and 6-colors. 
Since T(m, n) ×Pr , (4 ≤ r ≤ 7) is an induced sub graph of T(m, n) ×Pr, (r ≥ 8),  we apply 
the same color scheme as in case(iv) to T(m, n) ×Pr  (r ≥ 8). Then we get a b-coloring by 
4-colors and 5-colors. 

Next we prove that T(m, n) ×Pr  has a b-coloring by 6-colors. If we assign colors 
6, 1, 2, 3, 4, 5 to the vertices (v1, wk), colors 2, 3, 4, 5, 6, 1 to the vertices (v2, wk), colors 
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3, 4, 5, 6, 1, 2 to (v3, wk) and colors 4, 5, 6, 1, 2, 3 to the vertices (u1, wk) for all k = 1 to r 
in cyclic order, then (v1, wk) is (k – 1)-cdv for k = 2 to 7. For each even j, c(uj, wk) = c(v1, 
wk) and for each odd j, c(uj, wk) = c(u1, wk), (2 ≤ j ≤ n) for all k = 1 to r. Then we get a b-
coloring by 6-colors. Hence χb(T(m, n) ×Pr) = 6 and Sb = {3, 4, 5, 6 }.  

From case (i), (ii), (iii), (iv) and (v), T(m, n) ×Pr is a b-continuous graph for  
m = 3 and n, r ≥ 1. 
 
Theorem 3.8. If m is odd, m ≥ 5 and n ≥ 1, then   

Sb(T(m, n) ×Pr) = 

{ }
{ }

{ }







≥
≤≤

=

8,6,5,4,3

73,54,3

2,4,3

rif

rif

rif

 ,                         

χb(T(m, n) ×Pr) = 








≥
≤≤

=

8,6

73,5

2,4

rif

rif

rif

 

and T(m, n) × Pr is a b-continuous graph. 
Proof: Since m is odd, from observation 3.3(iii), χ(T(m, n) ×Pr)  = 3. Hence,  
T(m, n) ×Pr)  has a b-coloring with 3 colors. 
 
Case (i) r = 2  
By observations 2.1(v) and 3.5(i),   
                            3 ≤ χb(T(m, n)xPr) ≤ 4                                             
Now we prove that T(m, n) ×Pr  has a b-coloring by 4-colors. Assign colors 1, 3 to (v1, 
wk), colors 2, 4 to (v2, wk), colors 3, 1 to (v3, wk) for all k = 1, 2 in order. Let c(u1, w1) = 
4, c(u1, w2) = 2. Then (vi, w1) is  i-cdv and (vi, w2) is a (i + 2)-cdv, for all i = 1, 2. For 
each even i, c(vi, w1) = 2 , c(vi, w2) = 4 and for each odd i, c(vi, w1) = 5 , c(vi, w2) = 1 (4 ≤ 
i ≤ m). Also, for each even j, c(uj, wk) = c(v1, wk) and  for each odd j, c(uj, wk) = c(u1, wk), 
(2 ≤ j ≤ n) for k = 1, 2. Then we get a b-coloring by 4 colors. Hence χb(T(m, n) ×Pr) = 4 
and Sb = {3, 4}. 
 
Case (ii) 3 ≤ r ≤ 7 
By observations 2.1(v) and 3.5(ii),  
                          3 ≤ χb(T(m, n) × Pr) ≤ 5                                             
Since T(m, n) ×P2 is an induced sub graph of T(m, n) ×Pr, , 3 ≤ r ≤ 7, we get four color 
dominating vertices. In addition, for each odd k, c(vi, wk) = c(vi, w1) and c(uj, wk) = c(uj, 
w1), for each even k,  c(vi, wk) = c(vi, w2) and c(uj, wk) = c(uj, w2), (3 ≤ k ≤ r) for all i = 1 
to m and for all j = 1 to n. Then we get a b-coloring by 4-colors.  

Let c(v1, wk) = k, k = 1 to 3. Assign colors 3, 4, 5 to (vm, wk), colors 4, 5, 1 to (v2, 
wk). In addition, for each even i, assign colors 5, 1, 4 to (vi, wk) and for each odd i, assign 
colors 2, 3, 5 to (vi, wk) (3 ≤ i ≤ m - 1) for all k = 1 to 3 in order. Also assign colors 5, 1, 4 
to (u1, wk) for all k = 1 to 3 in order.  

For each even j, c(uj,wk) = c(v1, wk) and  for each odd j, c(uj, wk) = c(u1, wk), (2 ≤ 
j ≤ n)  for all k = 1 to 3. Each c(v1, wk) = k, k = 1 to 3, is k-cdv. Also (vm, w2) is 4-cdv and 
(v2, w2) is 5-cdv. In addition, for each odd k, c(vi, wk) = c(vi, w3), and for each even k, 
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c(vi, wk) = c(vi, w2), (4 ≤ k ≤ r)  for all i = 1 to m. Then we get a b-coloring by 5-colors. 
Hence χb(T(m, n) × Pr) = 5 and Sb = {3, 4, 5}. 
 
Case (iii) r ≥ 8  
By observations 2.1(v) and 3.5(iii),   
                               3 ≤ χb(T(m, n) ×Pr) ≤ 6                                        
We show that T(m, n) × Pr  has a b-coloring by 4-colors, 5-colors and 6-colors. Since 
T(m, n) ×Pr , 3 ≤ r ≤ 7, is an induced sub graph of T(m, n) ×Pr,  r ≥ 8, we apply the same 
color scheme as given in case (ii) to T(m, n) ×Pr , r ≥ 8. Then we get a b-coloring by 4-
colors and 5-colors. Next we prove that T(m, n) ×Pr  has a b-coloring by 6-colors. Assign 
colors 6, 1, 2, 3, 4, 5 to the vertices (v1, wk), colors 2, 3, 4, 5, 6, 1 to the vertices    (u1, 
wk), colors 3, 4, 5, 6, 1, 2 to (vm, wk) and colors 4, 5, 6, 1, 2, 3 to the vertices (v2, wk) for 
all k = 1 to r in cyclic order. For each odd i, c(vi, wk) = c(vm, wk), and for each even i, 
c(vi, wk) = c(v2, wk), (3 ≤ i ≤ m – 1) for all k = 1 to r. (v1 wk+1) is k-cdv, k = 1 to 6. Then 
we get a b-coloring by 6-colors. Hence χb(T(m, n) ×Pr) = 6 and Sb = {3, 4, 5, 6 }. 
 From case (i), (ii) and (iii), T(m, n) ×Pr is a b-continuous graph for m is odd,  
m ≥ 5 and n, r ≥ 1. 
 
4. Conclusion 
In this paper, we found the b-chromatic number of T(m, n) ×Pr and proved that it is a b-
continuous graph. This paper can be further extended to the Cartesian product of Tadpole 
graph and cycle.  
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