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1. Introduction 
The notion of irreducible open set was first introduced by Gierz et al. in [3]. A lot of 
research work has been executed using the concept of irreducible open sets. Irreducible 
open set becomes useful tools in various domains like frames and locales, lattice theory etc 
[5,6,8]. The concept of generalised closed sets was initiated by Levine in [7]. A set A  is 
called generalised closed if whenever A  is contained in an open set its closure is also 
contained in that open set. In [15] we studied prime open set in a topological space inspired 
by the definition of G.Gierz and we introduce generalised p-closed sets shortly called 
g-p.closed sets. Also we studied some separation axioms using p-open sets and g-p.open 
sets and proved that all this separation axioms are equivalent in a prime symmetric space 
[15]. Again in [14] we use p-open sets to study some basic topological notions like 
continuity, compactness etc and thus introduce p-continuity, p-compactness etc. 

In section 2 of present work we recall some of the basic definitions and results we 
obtained using the concept of p-open sets. In section 3 our main aim is to study the 
behaviour of generalised p-closed sets and p-1/2T  spaces. We obtained equivalent 

condition for a set to be g-p.closed and also we introduce generalised p-continuous 
functions. We studied the behaviour of g-p.closed sets under p-continuous, p-closed 
functions. Then in section 4 we proved equivalent condition for a space to be p-1/2T  and 

we obtain that all p-1/2T  spaces are 1/2T . Moreover we proved that corresponding to any 
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topological space there exist a finer p-1/2T  topological space.  

 
2. Preliminaries 
Definition 2.1.[15] Let ),( TX  be any arbitrary topological space. The open sets in T  

forms a complete lattice with smallest element 0 and largest element 1 ; where φ=0  and 

X=1 . We define an open set G≠  1 in T  to be prime open set if 
GHGKH ⊆⇒⊆∩  or GK ⊆  ; where KH ,  are open sets in T  such that 

φ≠∩ KH . Clearly 0  and 1  are prime in T . Prime open sets are denoted by 
p-opensets. Complements of p-open sets are called p-closed sets. 
 
Definition 2.2. [15]  Let ),( TX  be a topological space and let XA ⊆ , then the 

p-closure of A  with respect to T  is defined as the minimal p-closed super set of A  in 
X  and is denoted as p- )(Acl . 

 
Proposition 2.3. [15]  Let ),( TX  be a topological space, then for every p-open set 

XA ⊆  there always exists a unique p-closed set containing A . 
 
Definition 2.4. [15]  Let ),( TX  be a topological space and let XA ⊆ , then the 

p-interior of A  with respect to T  is defined as the maximal p-open subset of A  in X  
and is denoted as p-int(A). 
 
Proposition 2.5. [15]  Let ),( TX  be a topological space, then for every p-closed set 

XA ⊆  there always exists a unique p-open set contained in A . 
 
Theorem 2.6. [15]  Let ),( TX  be a topological space and XY ⊆ . U  p-open in X 

implies YU ∩  p-open in Y . 
 
Proposition 2.7. [15]  Let ),( TX  be a topological space, XA ⊆  and Xx ∈ . Then 

∈x p- )(Acl  if and only if every p-open set containing ‘x’ intersects A . 
 
Definition 2.8.[15] Let ),( TX  be a topological space and XA ⊆  then A  is said to 

be generalised p-closed shortly g-p.closed if p- OAcl ⊆)(  whenever OA ⊆  ; O  

p-open in X . 
 
Theorem 2.9. [15]  Let ),( TX  be a topological space and XA ⊆  then A  is 

generalised p-closed if and only if p- AAcl −)(  contains no non-empty p-closed set. 
 
Theorem 2.10.[15]  Let ),( TX  be a topological space and XA ⊆  be such that A  is 

generalised p-closed then A  is g-closed. 
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Theorem 2.11. [15]  Let ),( TX  be a topological space. If A  is g-p.closed and 

⊆⊆ BA p- )(Acl  then B  is g-p.closed 
 
Definition 2.12.[15]  Let ),( TX  be any topological space then X  is p- 1/2T  if every 

g-p.closed set is p-closed. 
 
Theorem 2.13.[15] Let ),( TX  be a p- 1T  topological space then it is always p-1/2T . 

 
Theorem 2.14. [15]  Any topological space is 1T  if and only if it is p- 1T .  
 
Definition 2.14. [14] Let ),(),,( 'TYTX  be two topological spaces and let  

),(),(: 'TYTXf →  be a mapping between this two topological spaces. f  is called 

p-continuous if the inverse image of p-open sets in 'T  are p-open in T .   
 
Definition 2.16. [14]  Let ),(),,( 'TYTX  be two topological spaces and 

),(),(: 'TYTXf →  be a mapping. f  is said to be a p-homeomorphism if f  is 

one-one, onto and both f , 1−f  are p-continuous. 
 

3.Characterisations of generalised p -closed sets, genaralised p -open sets and 
generalised p -continuous functions 

Theorem 3.1. Let ),( TX  be a topological space, then the following conditions are 

equivalent for any subset XA ⊆  
    1.  A  is g-p.closed.  
    2.  For each x  belongs to p- )(Acl , p- { } φ≠∩ Axcl )( .  

    3.  ⊆B p- AAcl −)(  , XB ⊆  implies φ=B .  
 

Proof: We proceed through the following steps : 
Step 1: Proof of (2)(1)⇒  

Suppose px ∈ - )(Acl  and A  is g-p.closed. To prove that p- { } φ≠∩ Axcl )( . On 

contradiction we assume that p-{ } φ=)( Axcl ∩  which implies pA (⊆ - { } cxcl ))( . 

Since A  is g-p.closed and (p- { } cxcl ))(  is p-open we obtain p- pAcl ()( ⊆ - { } cxcl ))(  

implies px ∉ - )(Acl  which is not possible. Hence p-{ } φ≠∩ Axcl )(  always for px ∈
- )(Acl . 

Step 2: To prove (3)(2)⇒  

Assume that p- AAcl −)(  contains a non-empty p-closed set C  and let Cx ∈  ; that is  

 AAclpCx −−⊆∈ )( (1) 

 (1) implies px ∈ - pAcl ⇒)( - { } φ≠∩ Axcl )( . 
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Thus p≠φ - { } Axcl ∩)(  

AC ∩⊆  
p(⊆ - AAAcl ∩− ))(  by (1) 

φ= . Hence we obtain a contradiction and therefore the only possibility is φ=C  

Thus p- AAcl −)(  contains no non-empty p-closed set. 

Step 3: (1)(3)⇒  holds by Theorem 2.9. 
Hence by steps 1, 2 and 3 ; equivalent conditions for a set to be g-p.closed are 

verified.  
Theorem 3.2.  Let ),( TX  be a topological space and let XA ⊆ , then A  is g-p.closed 

if and only if GPA −=  where P  is a p-closed subset of X  and G  is such that G  
contains no non-empty p-closed subset of X .  
Proof: Assume that A  is g-p.closed to prove that GPA −=  where P  is p-closed and 
G  is such that G  contains no non-empty p-closed subset of X . Now take pP = -

)(Acl  and pG = - AAcl −)(  then P  is a p-closed set and since A  is g-p.closed ; G  

contains no non-empty p-closed set by last theorem . Thus P  and G  are the required 
sets. Now consider pGP =− - pAcl ()( − - ))( AAcl − =A ; that is A  is of the required 
form and hence the necessary part is proved. 

For sufficiency part let XA ⊆  and A  be of the form GPA −=  where P  is 
p-closed and G  contains no non empty p-closed set. We have to prove that A  is 
g-p.closed. Let OA ⊆  where ‘O’ is a p-open subset of X  to prove that p- OAcl ⊆)( . 

P  and cO  are p-closed subsets of X  hence cOP ∩  is a closed subset of X  and 

moreover cOP ∩  is a closed subset of G , then two cases arise either cOP ∩  is 
p-closed or it is not p-closed but closed. If the second case occurs, since the existence of 

atoms which are p-closed is inevitable for a topological space ; cOP ∩  contains at least 

atoms in T . Thus in both cases cOP ∩  contains a non-empty p-closed subset but as 

GOP c ⊆∩  ; G  contains a non-empty p-closed set if cOP ∩  contains. Hence the 

only possibility is that φ=cOP ∩  which implies OP ⊆ . But pPA ⇒⊆ -

OAclpPAcl ⊆−⇒⊆ )()(  and hence A  is g-p.closed.  
 
Definition 3.3. A set XA ⊆  in a topological space ),( TX  is said to be generalised 

p-open shortly g-p.open if and only if cA  is g-p.closed.   
 
Theorem 3.4. Let ),( TX  be a topological space and XA ⊆  be a g-p.open set then it is 
g-open.  

Proof: Given that A  is g-p.open cA⇒  is g-p.closed , but then cA  is g-closed by 
Theorem 2.10. Thus A  is g-open. 
 
Remark 3.5. Converse of above theorem is not true. Consider { }zyxX ,,=  with discrete 

topology. { }yxXA ,= −  is g-open but not g-p.open.   
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Theorem 3.6. Let ),( TX  be a topological space and let XA ⊆ . Then A  is g-p.open if 

and only if pF ⊆ - )(Aint  whenever F  is p-closed and AF ⊆ .  

Proof: Assume that A  is g-p.open which implies cA  is g-p.closed  

p⇒ - OAcl c ⊆)(  whenever OAc ⊆  and O  is p-open. 

pOc [⊆⇒ - ccAcl )](  whenever OAc ⊆  and O  is p-open.  

pOc ⊆⇒ - )(Aint  whenever OAc ⊆  and O  is p-open. By taking cOF =
as the p-closed set , the necessary part is proved.  

Conversely we assume that F  is p-closed and  
pF ⊆ - )(Aint  whenever AF ⊆  

p[⇒ - cc FAint ⊆)](  whenever cc FA ⊆  
cA⇒  is g-p.closed. Thus A  is g-p.open.  

 
Theorem 3.7. Let ),( TX  be a topological space and let XA ⊆  , then A  is g-p.open if 

and only if XO =  whenever O  is p-open and p- OAAint c ⊆∪)( .  

Proof: Suppose A  is g-p.open and p- OAAint c ⊆∪)(  whenever O  is p-open  

pOc [⊆⇒ - ccAAint ])( ∪  

p(= - pAAint c =))( ∩ - .)( cc AAcl −  

Hence p- cc AAcl −)(  contains a non-empty p-closed set but cA  is g-p.closed 

and thus XOOc == ⇒φ . 

For sufficiency part assume that F  is a p-closed set and AF ⊆ . It is enough to 

prove that pF ⊆ - )(Aint  for showing A  is g-p.open. Consider p- pAAint c ⊆∪)( -
cFAint ∪)( . Clearly p- cFAint ∪)(  is open , then there arise two cases :   

    1.  If p- cFAint ∪)(  is prime then by assumption p- XFAint c =)( ∪  and 

hence pF ⊆ - )(Aint  which implies A  is g-p.open.  

    2.  If p- cFAint ∪)(  is not prime then there exists two open sets 1G  and 

2G  containing p- cFAint ∪)( . Now if at least one of 1G  or 2G  is prime then by 

assumption the corresponding set becomes equal to X  which is not possible by definition 
of prime. If both 1G  and 2G  are not prime then again there exists 3G  and 4G  
containing the corresponding non-prime open set and again by the same reasoning as above 
that is not possible. Continuing this argument we reach the conclusion that whenever there 

exists open set containing p- cFAint ∪)(  which is not prime, that will lead to a 

contradiction. Hence the only possibility is that p- cFAint ∪)(  is prime and hence the 
result follows from case 1.  

 
Theorem 3.8. Let ),( TX  be a topological space and XA ⊆ . If A  is g-p.closed then 
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p- AAcl −)(  is g-p.open.  

Proof: Assume that A  is g-p.closed to prove that p- AAcl −)(  is g-p.open. That is to 

prove that pF ⊆ - pFAAcl ⊆⇒−)( - pint( - ))( AAcl −  whenever F  is p-closed. 

But pF ⊆ - AAcl −)(  implies φ=F , since A  is g-p.closed and F  is p-closed . 
Hence result is trivial.  
 
Remark 3.9. Converse of above theorem not true. For example { }321 ,,= xxxX  and let 

the topology on it be the discrete topology. Let { }21,= xxA  , clearly A  is not g-p.closed 

but p- AAcl −)(  is g-p.open.   
 
Proposition 3.10. Let ),( TX  be a topological space and XBA ⊆, . If p-

ABAint ⊆⊆)(  and A  is g-p.open then B  is g-p.open.  

Proof:Given that p- pBAABAint cc ()( ⊆⊆⇒⊆⊆ - pBAAint ccc ⊆⊆⇒))( -

)( cAcl . cA  is g-p.closed cB⇒  is g-p.closed by Theorem 2.11. Hence B  is g-p.open.  
 

Definition 3.11. Let ),( TX , ),( TY ′  be a mapping between two topological spaces X  

and Y . Then f  is said to be p-closed if every p-closed set in X  is mapped on to 

p-closed set in Y .  
 
Theorem 3.12.  Let ),(),,( TYTX ′  be two topological spaces. If A  is a g-p.closed 

subset of X  and YXf →:  be a p-continuous and p-closed function, then )(Af  is 

g-p.closed in Y .  

Proof: Assume that OAf ′⊆)(  where O′  p-open in Y  which implies )(1 OfA ′⊆ −  . 

Since f  is p-continuous and O′  is p-open in Y , )(1 Of ′−  is p-open in X  and again 

since A  is g-p.closed, )()( 1 OfAclp ′⊆− −  implies  

 OAclpf ′⊆− ))(( (2) 

but pf ( - ))(Acl  is a p-closed set and for any set XA ⊆ , pA ⊆ - )(Acl  which 

implies p- pAfcl ⊆))(( - pfcl (( - pfAcl (=)))( - OAcl ′⊆))(  by (2)  

)(Af⇒  is g-p.closed.  
 

Theorem 3.13. Let ),( TX , ),( TY ′  be any two topological spaces and  

),(),(: TYTXf ′→  be a p-continuous, p-closed mapping. If B  is a g-p.closed subset 

of Y  then )(1 Bf −  is a g-p.closed subset of X .  

Proof: Given B  is a g-p.closed subset of Y  we have to prove that )(1 Bf −  is g-p.closed 

in X , that is whenever OBf ⊆− )(1  where O  is a p-open set in X  we have to prove 

that p- OBfcl ⊆− ))(( 1 . For that it is enough to prove that p- φ=))(( 1 cOBfcl ∩− . 
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But pf ( - pOBfcl c ⊆∩− )))(( 1 - BBcl −)( . Since B  is g-p.closed the only 

possibility is that pf ( - φ=)))(( 1 cOBfcl ∩−  which implies p- OBfcl ⊆− ))(( 1  

whenever OBf ⊆− )(1 . Hence )(1 Bf −  is g-p.closed.  
 
Definition 3.14. A map YXf →:  from a topological space X  to another topological 

space Y  is called generalised p-continuous shortly gp-continuous if inverse image of 
every p-closed set in Y  is g-p.closed in X .   
Remark 3.15.  Let YXf →:  from a topological space X  to another topological 

space Y  be a p-continuous function then it is also gp-continuous.   
 
Example 3.16. Let R  be the real line and let I  be the identity mapping from the 
topological space R  with co finite topology to the topological space R  with usual 
topology. Then I  is gp-continuous but not g-continuous.   
 
Example 3.17. Let { }dcbaX ,,,=  and let I  be the identity mapping from ),( DX  to 

),( TX  where D  is the discrete topology on X  and  

{ } { } { } { } { }{ }dbacbababaXT ,,,,,,,,,,,= φ .  

Then I is g-continuous but not gp-continuous.   
 
Remark 3.18. The concepts of g-continuity and gp-continuity are independent of each 
other as the above two examples illustrates.   
 
Remark 3.19. When the domain space is p-1/2T  , the concepts of p-continuity and 

gp-continuity coincides.   
 
Theorem 3.20. Let ),( TX , ),( TY ′  be any two topological spaces and  

),(),(: TYTXf ′→  be a mapping between the two topological spaces. Then the 
following conditions are equivalent :   

    1.  f  is gp-continuous.  

    2.  Inverse image of every p-open set in Y  is g-p.open in X .  
Proof: Assume that YXf →:  is gp-continuous and let G  be a p-open set in Y, then 

GY −  is p-closed set in Y . Since f  is gp-continuous , )(1 GYf −−  is g-p.closed in 

X . Trivially )(=)( 11 GfXGYf −− −− . GY −  is p-closed in Y  which implies 

)(1 GYf −−  is g-p.closed in X . Hence )(1 GfX −−  is g-p.closed in X  and thus 

)(1 Gf −  is g-p.open in X . Conversely we assume that inverse image of every p-open set 

in Y  is g-p.open in X . To prove that f  is gp-continuous. Let H  be a p-closed set in 

Y , then HY −  is p-open in Y  which implies )(1 HYf −−  is g-p.open in X . But 

)(=)( 11 HfXHYf −− −−  ; which implies )(1 Hf −  is g-p.closed in X . Thus f  is 
g-p.continuous.  
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Definition 3.21. Let ),( TX  be a topological space and let XA ⊆  then generalised 

p-closure of A  is defined as the intersection of all g-p.closed supersets of A and is 
denoted as g- )(. Aclp .   
 
Remark 3.22. Since all p-closed sets are g-p.closed ; g- pAclp ⊆)(. - )(Acl  for any 

subset XA ⊆ .   

Example 3.23. Let { }dcbaX ,,,=  and { } { } { } { } { }{ }dbacbababaXT ,,,,,,,,,,,= φ  be 

the topology on X . Consider { }dcA ,=  then p- { }cbdAcl ,,=)(  and { }cda ,, and g-

AAclp =)(.  itself.   
 
Theorem 3.24. If ),(),(: TYTXf ′→  is a gp-continuous function between the 

topological spaces ),( TX  and ),( TY ′  then gf ( - pAclp ⊆))(. - ))(( Afcl  for every 

subset XA ⊆ .  
Proof: Given f  is gp-continuous. Let XA ⊆  to prove that gf ( - pAclp ⊆))(. -

))(( Afcl . Consider p- )(Acl  it is a p-closed set in X  and also p- ))(( Afcl  is a 

p-closed set in Y . Since f  is gp-continuous pf (1− - )))(( Afcl  is a gp-closed set in 

X . Clearly pfA (1−⊆ - )))(( Afcl  which implies g- pfAclp ()(. 1−⊆ - )))(( Afcl  

which in turn implies gf ( - pAclp ⊆))(. - ))(( Afcl .  
 
Remark 3.25. Converse of above proposition need not be true ; for example let 

{ }1,2,3== YX  also let { }{ }1,,= φXT  , { }{ }1,3,,= φYT ′  be topologies on X  and 

Y  respectively. Define ),(),(: TYTXf ′→  by 1=(2)2,=(1) ff  and 3=(3)f . 
Condition of above theorem is satisfied here but the function is not gp-continuous.   
 
Theorem 3.26. Let ),( TX , ),( TY ′  be any two topological spaces and 

),(),(: TYTXf ′→  be a mapping between the two topological spaces. Then the 
following conditions are equivalent :   

    1.  Corresponding to each point Xx ∈  and each p-open set V  containing 
)(xf  there exists a g-p.open set U  containing ‘x’ such that VUf ⊆)(  

    2.  For every XA ⊆  ; gf ( - pAclp ⊆))(. - ))(( Afcl  holds.  

Proof: First we will prove (1) implies (2). Let gfy (∈ - ))(. Aclp . We have to prove that 

py ∈ - ))(( Afcl . Let V  be a p-open set containing ‘y’ then there exists a point Xx ∈  

and a g-p.open set U  containing ‘x’ such that yxf =)(  and VUf ⊆)(  by 
assumption. 

gfy (∈ - ))(. Aclp  

gyf ∈⇒
− )(1 - )(. Aclp  

gx ∈⇒ - )(. Aclp . 
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Since U  is a p-open set containing ‘x’ ; φφ ≠∩⇒≠∩ )()( AfUfAU  

which in turn implies φ≠∩ )(AfV  since VUf ⊆)( . Thus φ≠∩ )(AfV  for every 

p-open set containing ‘y’. Hence py ∈ - ))(( Afcl  by Proposition 2.7 and thus gf ( -

pAclp ⊆))(. - ))(( Afcl . 

Next to prove (1)(2)⇒ . Assume that XA ⊆∀  ; gf ( - pAclp ⊆))(. -

))(( Afcl . Also let Xx ∈  and V  be a p-open set containing )(xf . Take 

)(= 1 cVfA −  then if Ax ∈  , cVAfxf =)()( ∈  which is not possible since V  is a 

p-open set containing )(xf . Hence the only possibility is that Ax ∉ . 
Now consider  

g- gffAclp (()(. 1−⊆ - )))(. Aclp  

pf (1−⊆ - ))(( Afcl  

= pf (1− - ))( cVcl  

AVf c =)(= 1−  

and then the only possibility is that g- AAclp =)(. . Since Ax ∉ , gx ∉ - )(. Aclp  which 

implies there exists a g-p.open set U  containing ‘x’ such that φ=AU ∩  which implies 
cAU ⊆  and hence VAfUf c ⊆⊆ )()(  that is VUf ⊆)( . Hence (1) is proved.  

 
Theorem 3.27. Let ZYX ,,  be any three topological spaces, moreover Y  be a p- 1/2T  

space. Also let YXf →:  and ZYg →:  be gp-continuous. Then ZXgof →:  is 
also gp-continuous.  
Proof: We have to prove that ZXgof →:  is gp-continuous ; that is to prove that 

inverse image of p-closed set in Z  is g-p.closed in X . Let H  be a p-closed set in Z  

then )(1 Hg −  is g-p.closed in Y  and since Y  is p- 1/2T , )(1 Hg −  is p-closed in Y  

which implies ))(( 11 Hgf −−  is g-p.closed in X  provided H  is p-closed in Z . Hence 

gof  is gp-continuous.  
 
Example 3.28. Let { }1,2,3=== ZYX  also { }{ }1,2,,= φXT , { } { }{ }2,3,1,,= φYT ′  

and { }{ }1,3,,= φZT ′′ . Define ),(),(: TYTXf ′→  by 3=(3)2,=(2)3,=(1) fff . 

Clearly both f and g  are gp-continuous but gof  is not gp-continuous.  
 
4.More on p- 1/2T  spaces 

Theorem 4.1. A topological space ),( TX  is p- 1/2T  if and only if each singleton subset is 

either p-open or p-closed .  
Proof: Suppose X  is p- 1/2T  and let Xx ∈ . To prove that { }x  is p-open or p-closed. 

Assume that { }x  is not p-closed , then { }xX −  is not p-open and the only p-open set 

containing it is X  which implies { }xX −  is g-p.closed and since X  is p- 1/2T  , 
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{ }xX −  is p-closed which implies { }x  is p-open. Hence { }x  is either p-open or 

p-closed. For sufficiency we assume that { }x  is either p-open or p-closed. To prove that 

X  is p- 1/2T . Let A  be any g-p.closed subset of X  we have to show that A  is p-closed 

that is to prove that p- AAcl =)(  itself. Let px ∈ - )(Acl . Given that { }x  is p-open or 

p-closed. If { }x  is p-open, { } φ≠∩ Ax  since px ∈ - )(Acl . Hence Ax ∈  and since 

‘x’ is arbitrary p- AAcl ⊆)( . Now assume { }x  is p-closed. Since px ∈ - )(Acl  and A  

is g-p.closed ; p- { } φ≠∩ Axcl )(  by Theorem 3.1 which implies { } φ≠∩ Ax  which in 

turn implies Ax ∈ . Thus p- AAcl ⊆)( . Hence in both cases p- AAcl ⊆)(  implies A  is 

p-closed. Thus X  is p- 1/2T  since A  is arbitrary.  

 
Cocollary 4.2. Any p- 1/2T  topological space is also 1/2T .  

Proof: Since p-closed sets are always closed, the proof is trivial by last theorem.  
 
Theorem 4.3. If ),( TX  is a p- 1/2T  topological space and XY ⊆  , then ),( YTY  is also 

p- 1/2T .  

Proof: Let XYy ⊆∈ . Consider { }y , it is p-open or p-closed in X  since X  is p- 1/2T

then { }y  is p-open or p-closed in Y  by Theorem 4.1 .  
 
Theorem 4.4. Let ),( TX  be a p- 1/2T  topological space and YXf →:  is 

p-continuous, p-closed and onto. Then Y  is p- 1/2T .  

Proof: Let YB ⊆  be a g-p.closed set then by Theorem : 3.13 )(1 Bf −  is g-p.closed and 

since X  is p- 1/2T , )(1 Bf −  is p-closed. Hence ))((= 1 BffB −  is p-closed in Y  and 

thus Y  is p- 1/2T .  

 
Corollary 4.5. p-homeomorphic image of p-1/2T  space is p-1/2T .  

Proof: Proof is trivial by last theorem.  
 
Definition 4.6. [16]  Let { }IiTX ii ∈)/,(  be a collection of topological spaces and let 

),=( TXX i∏  be their product space. Then the p-open sets in T are sets of the form 

iU∏  ; where ii XU =  for infinitely many i’s and other iU ’s are all prime open in iT . 

 
Theorem 4.7. Let { }ITX ∈ααα :),(  be a collection of topological spaces and let 

αXX ∏=  be their product topological space. If X  is p- 1/2T  then αX  is p- 1/2T  for 

every I∈α .  
Proof: X  contains a subspace p-homeomorphic to αX  and by using Theorem 4.4 and 
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Corollary 4.5 αX  is p- 1/2T .  

 
Theorem 4.8. Let { }ITX ∈ααα :),(  be a collection of topological spaces and let 

αXX ∏=  be their product topological space. Then X  is p- 1/2T if and only if X is p-T1.  

Proof: Sufficiency part is trivial since p- pTT ⇒⇔ 11 - 1/2T  by Theorem 2.13 and 

Theorem  2.15. For necessary part, consider { }x , it is not open in product space and hence 

not p-open in product topology and since X  is p- 1/2T , { }x  is p-closed always for every 

‘x’ which implies X  is p- 1T .  
 

Corollary 4.9. Let αXX ∏= . Then X  is p- 1/2T  if and only if αX  is p- 1T  for every 

I∈α .  
Proof: Proof is trivial by last result and by p- 11 TT ⇔ .  
 
Remark 4.10.  p- 1/2T  is not an expansive property as the following example illustrates : 

Let { }cbaX ,,=  and { }{ }baXT ,,,= φ , { } { } { }{ }cabaaXU ,,,,,,= φ   

be two topologies on X . Clearly UT ⊂  and ),( TX  is p- 1/2T  but ),( UX  is not.   

 
Remark 4.11. p- 1/2T  is not a contractive property for example let { }baX ,=  and 

{ }{ }aXT ,,= φ , { }{ }bXU ,,= φ  be topologies on X . Then both UT ,  is p- 1/2T  but 

UT ∩  is not p- 1/2T .   

 
Theorem 4.12. Let ),( αα TX  be a collection of p-1/2T  topological spaces and if 

{ }IT ∈αα /  forms a chain with inclusion as the order, then { })/,( ITX ∈∩ αα  is p- 1/2T .  

Proof: We have to prove that { })/,( ITX ∈∩ αα  is p- 1/2T . Let Xx ∈  it is enough to 

prove that { }x  is either p-open or p-closed in { }IT ∈∩ αα / . Assume that { }x  not 

p-open in { }IT ∈∩ αα / . Then two cases arise : 

    1.  { }x  not open in { }IT ∈∩ αα / .  

    2.  { }x  open in { }IT ∈∩ αα /  but not prime in { }IT ∈∩ αα / .  

 If case 1 occurs, then there exists I∈β  such that { } βTx ∉ . Since βT  is p- 1/2T

, { } βTxX ∈−  and is always prime. Now if αβ TT ⊆ , then { } αTxX ∈−  and is always 

prime in αT . And if αβ TT ⊇ , then if { }xX −  not p-open in αT , then { } βα TTx ⊆∈  

which implies { } βTx ∈  which is a contradiction. Hence in both cases , that is if αβ TT ⊆  

and αβ TT ⊇  ; { }xX −  is p-open in αT  for all I∈α . Thus { }x  becomes p-closed in 

{ }IT ∈∩ αα /  and that implies { }IT ∈∩ αα /  is p- 1/2T . 



Vinitha.T and T.P.Johnson 

102 
 

If case  2 occurs, that is if { }x  open in { }IT ∈∩ αα /  but not prime in 

{ }IT ∈∩ αα / . Then there exists U , { }ITV ∈∩∈ αα /  such that { }xVU ⊆∩  and 

{ } Ux ⊂ , { } Vx ⊂  which implies { }x , U , V  open in αT  for every I∈α  implies 

{ }x  not prime in αT  for every I∈α . But since each αT  is p- 1/2T  by Theorem 4.1 

{ }xX −  p-open in αT  for every I∈α  and thus { }x  p-closed in { }IT ∈∩ αα / . Hence 

{ })/,( ITX ∈∩ αα  is p- 1/2T . 

Therefore in both cases { }x  is either p-open or p-closed in { }IT ∈∩ αα /  for 

each Xx ∈  and that implies the result.  
 
Theorem 4.13. Let ),( τX  be any topology on X , then there exists a topology U  on 

X  such that   
    1.  U⊆τ .  

    2.  ),( UX  is p- 1/2T .  

    3.  If ),( γX  is p- 1/2T  where ),( γX  is such that U⊆⊆ γτ , then U=γ  

Proof: Let { }IG ∈ατα /=  be the indexed family of p-1/2T  topologies on X  finer than 

τ . φ≠G  since G  contains atleast the discrete topology. Consider a chain of subsets of 

G  say { }J∈ατα /  then { }J∈∩ ατα /  is p- 1/2T  and { }J∈∩⊆ αττ α / . But then 

{ }J∈∩ ατα /  belongs to G  and by applying dual statement of Zorn’s lemma it contains 

a minimal element U  such that U⊆τ  and U  is p- 1/2T  and by minimality condition 3 

is also satisfied. Hence the theorem is proved.  
 
5. Conclusion 
We have studied the behavior of p-open, g-p.open, g-p.closed sets etc under various 
mappings involving p-open , p-closed and g-p.closed sets. Also proved some equivalent 
conditions for p- 1/2T  spaces, gp-continuous functions, g-p.closed sets and obtained that 

being p- 1/2T  is preserved under p-homeomorphisms. Some more weaker separation 

axioms are yet to be analysed using p-open sets and it is our proposed future work. 
 

Acknowledgement. The first author wishes to thank University Grants Commission, India 
for the award of teacher fellowship under XII plan period and sincerely grateful to the 
referee for valuable suggestions which improved presentation of the work.  

REFERENCES 

1. G.Birkhoff, On combination of topologies, Fund. Math., 26 (1936) 156-166. 
2. George Gratzer, Lattice Theory, University of Manitoba, 1971.  
3. G.Gierz, K.H.Hofmann, K.Keimel, J.D.Lawson, M.Mislove and D.S.Scott, A 

compendium of continuous lattices, Springer-Verlag, Berlin, 1980.  
4. J.Cao, M.Ganster and I.Reilly, On Generalised closed sets,Topology and its 

Applications, 123(1) (2002) 37-46. 



Results on Generalised p-closed Sets 

103 
 

5. Jorge Picardo and Ales Pultr, Frames and Locales Topology without points, 
Birkhauser, 2011. 

6. M.M.Kovar, A note on the topology generated by Scott-open filters. The 3rd 
International Mathematical Workshop. Brno, Czech Republic:, 2004. pp. 1. 

7. N.Levine, Generalised closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19 
(1970) 89-96. 

8. P.T.Johnstone, Stone Spaces, Cambridge University Press, 1986.  
9. R.E.Larson and S.J.Andima, The lattice of topologies:A survey, Rocky Mountain 

Journal of Mathematics, 5(2) (1975) 177-198.  
10. Stephen Willard, General Topology, 1970.  
11. W.Dunham and N.Levine, Further results on generalised closed sets, Kyungpook 

Math. Journal, 20(2) (1980) 169-175.  
12. W.Dunham, A new closure operator for non 1T  topologies, Kyungpook Math. 

Journal, 22(1) (1982) 55-60.  
13. W.Dunham, 1/2T  spaces, Kyungpook Math. Journal, 17(2) (1977) 161-169.  

14. Vinitha.T and T.P.Johnson, p-compactness and C-p.compactness, Global Journal of 
Pure and Applied Mathematics, 13(9) (2017)5539-5550.  

15. Vinitha.T and T.P.Johnson, On Generalised p-closed sets, Accepted for publication in 
International Journal of Pure and Applied Mathematics.  

16. Vinitha.T and T.P.Johnson, Non-prime isolated, p-irreducible, p-door and sub 
p-maximal spaces, Accepted for publication in Bulletin of Kerala Mathematical 
Association. 

 


