Annals of Pure and Applied Mathematics Vol. 16, No. 1, 2018, 171-176 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 January 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n1a18

Annals of **Pure and Applied Mathematics**

Prime Cordial Labeling of Some Graphs Related to H-Graph

A. Sugumaran¹ and V. Mohan²

Department of Mathematics Government Arts College Thiruvannamalai-606603, Tamil Nadu, India. ¹e-mail: <u>sugumaran3@yahoo.com</u> ²e-mail: <u>vmb5685@gmail.com</u>

Received 21 November 2017; accepted 26 December 2017

Abstract. A prime cordial labeling of a graph G with vertex set V(G) is a bijection f : V(G) → {1, 2, 3, ..., |V(G)|} such that each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph which admits prime cordial labeling is called prime cordial graph. In this paper, we prove that the graphs HOK₁, P(r.H), C(r.H) and S(r.H) are prime cordial.

Keywords: Prime cordial labeling, H-graph, path union, cycle union and open star of graphs.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

We consider only simple, finite, undirected and non-trivial graph G = (V(G), E(G)) with the vertex set V(G) and the edge set E(G). The number of elements of V(G), denoted as |V(G)| while the number of elements of E(G), denoted as |E(G)|. For standard terminology and notations we follow Harary [3]. A graph labeling is an assignment of labels to edges, vertices or both. Cahit. I [1] introduced the concept of cordial labeling in 1987. The concept of cordial labeling was extended to divisor cordial labeling, sum divisor cordial labeling, prime cordial labeling, total cordial labeling, etc., A survey of graph labeling, we refer to Gallian [2].

Vaidya and Shah [10] proved that, some star and bistar related graphs are divisor cordial graphs. Duplication of vertices and edges was introduced by Vaidya and Barasara [9] and they applying this concept to the product cordial graphs. Sugumaran and Rajesh [5] have shown that, Swastik graph S_n , some graph operations related to Swastik graph, Jelly fish J(n, n) and Petersen graph are sum divisor cordial graphs. Sugumaran and Rajesh [6] proved that Theta graphs and some operations of Theta graph are sum divisor cordial graphs. Sundaram et al. [8] introduced the concept of prime cordial labeling. Sugumaran and Prakash [7] proved that one point union of path of Theta graphs, open

A. Sugumaran and V. Mohan

star of Theta graphs and path union of even copies of Theta graph are prime cordial graphs.

Sugumaran and Mohan [4] have proved prime cordial labeling of the graphs such as butterfly graph, W-graph, H-graph and duplication of edges of an H-graph. In section 2, we summarize the necessary definitions and notations which are useful for the present work. In section 3, we proved that the graphs such as HOK_1 , path union of r copies of Hgraph, cycle union of r copies of H-graph and open star of r copies of H-graph are prime cordial graphs. An application of graph labeling is discussed in [11].

2. Definitions

In this section, we will provide a brief summary of definitions, which are necessary for the present investigation.

Definition 2.1. A mapping $f : V(G) \rightarrow \{0, 1\}$ is called *binary vertex labeling* of G and f(v) is called the label of the vertex v of G under f.

Definition 2.2. A binary vertex labeling f of a graph G is called a *cordial labeling* if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where

 $v_{f}(i) =$ number of vertices of G having label i $e_{f}(i) =$ number of edges of G having label i

Definition 2.3. [8]A *prime cordial labeling* of G with vertex set V(G) is a bijection f : V(G) \rightarrow {1, 2, 3, ..., |V(G)|} such that each edge uv is assigned the label 1 if gcd (f(u), f(v)) = 1 and 0 if gcd (f(u), f(v)) > 1, then the number of edges labeled with 1 and the number of edges labeled with 0 differ by at most 1. A graph which admits prime cordial labeling is called prime cordial graph.

Definition 2.4. The graph HOK_1 is obtained by adding a pendant edge to each vertex of an H-graph.

Definition 2.5. The *path union of a graph* G is the graph obtained from a path P_n ($n \ge 2$) by replacing each vertex of the path by graph G and it is denoted by P(n.G).

Definition 2.6. The *cycle union of a graph* G is the graph obtained from a cycle C_n ($n \ge 3$) by replacing each vertex of the cycle by graph G and it is denoted by C(n.G).

Definition 2.7. The *open star of a graph* G is the graph obtained from a star graph $K_{1,n}$ ($n \ge 2$) by replacing each vertex(except the apex vertex) of the star by graph G and it is denoted by S(n.G).

3. Main results

In this section, we proved that some of the graphs related to H-graph are prime cordial graphs.

Theorem 3. 1. The graph HOK₁ admits prime cordial labeling.

Prime Cordial Labeling of Some Graphs Related to H-Graph

Proof: Consider an H graph with 2n vertices. Let $G = HOK_1$. Let $V(H) = \{u_i, v_i: 1 \le i \le n\}$. Let $u'_1, u'_2, u'_3, \dots, u'_n$, be the pendant vertices connected to $u_1, u_2, u_3, \dots, u_n$ respectively and let $v'_1, v'_2, v'_3, \dots, v'_n$, be the pendant vertices connected to $v_1, v_2, v_3, \dots, v_n$ respectively in G. Then |V(G)| = 4n and |E(G)| = 4n - 1. We define the vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, \dots, 4n\}$ as follows.

 $f(u_i) = 4i - 3$; $1 \le i \le n$.

 $f(v_i) = 4i - 2$; $1 \le i \le n$.

 $f(u_i) = 4i - 1$; $1 \le i \le n$.

f $(v'_i) = 4i$; $1 \le i \le n$. In view of the labeling pattern defined above, we have $|e_f(0) - e_f(1)| \le 1$. Hence G is a prime cordial graph.

Example 3. 1. Prime cordial labeling of the graph H₅OK₁ is shown in Figure 1.

Figure 1: Prime cordial labeling of H₅OK₁

Theorem 3.2. The Path union of r copies of H-graph is a prime cordial graph.

Proof: Consider an H-graph with 2n vertices. Let G = P(r.H) be the Path union of r copies of H-graph. In graph G, |V(G)| = 2nr and |E(G)| = 2nr - 1. We denote u_i^k and v_i^k are the i^{th} vertex in the k^{th} copy of the first and second path in the H-graph respectively, where i = 1, 2, 3, ..., n and k = 1, 2, 3, ..., r. Notice that the vertices v_1^k and v_1^{k+1} are connected by an edge in G, where k = 1, 2, 3, ..., r - 1. To define the vertex labeling function $f : V(G) \rightarrow \{1, 2, 3, ..., 2nr\}$ as follows. f $(u_i^k) = 2i - 1$; $(k - 1)n + 1 \le i \le kn, k = 1, 2, 3, ..., r$.

 $1(u_i) = 2i = 1, (k = 1)i + 1 \le i \le ki, k = 1, 2, 3, \dots, 1$

 $f(v_i^k) = 2i$; $(k-1)n + 1 \le i \le kn, k = 1, 2, 3, ..., r.$

If n is even, then we interchange the labels of the vertices $v_{\frac{n}{2}}^{k}$ with $v_{\frac{n}{2}+1}^{k}$, k = 1, 2, 3, ...,r. In view of the labeling pattern defined above, we have $|e_{f}(0) - e_{f}(1)| = 1$. Hence G is a prime cordial graph.

Example 3. 2. Prime cordial labeling of the graph P(3. H₄) is shown in Figure 2.

Figure 2: Prime cordial labeling of graph P(3. H₄)

Theorem 3.3. The Cycle union of r copies of an H-graph is a prime cordial graph.

Proof: Consider an H-graph with 2n vertices. Let G = C(r,H) be the cycle union of r copies of H-graph. In graph G, |V(G)| = 2nr and |E(G)| = 2nr. We denote u_i^k and v_i^k are the i^{th} vertex in the k^{th} copy of the first and second path in the H-graph respectively, where i = 1, 2, 3, ..., n and k = 1, 2, 3, ..., r. Notice that the vertices v_1^k and v_1^{k+1} are connected by an edge and the vertices v_1^r and v_1^1 are connected by an edge in G, where k = 1, 2, 3, ..., r - 1. To define the vertex labeling function $f : V(G) \rightarrow \{1, 2, 3, ..., 2nr\}$ as follows.

f $(u_i^k) = 2i - 1$; $(k - 1)n + 1 \le i \le kn$, k = 1, 2, 3, ..., r. f $(v_i^k) = 2i$; $(k - 1)n + 1 \le i \le kn$, k = 1, 2, 3, ..., r. If n is even, then we interchange the labels of the vertices $v_{\frac{n}{2}}^k$ with $v_{\frac{n}{2}+1}^k$, k = 1, 2, 3, ..., r. In view of the labeling pattern defined above, we have $|e_f(0) - e_f(1)| = 0$. Hence G is a prime cordial graph.

Example 3.3. Prime cordial labeling of the graph $C(4, H_3)$ is shown in Figure 3.

Figure 3: Prime cordial labeling of C(4. H₃)

Theorem 3.4. The Open star of r copies of an H-graph is a prime cordial graph. **Proof:** Consider an H-graph with 2n vertices. Let G = S(r,H) be the open star of r copies of H-graph. In graph G, |V(G)| = 2nr + 1 and |E(G)| = 2nr. We denote u_i^k and v_i^k are the i^{th} vertex in the k^{th} copy of the first and second path of the H-graph respectively, where i = 1, 2, 3, ..., n and k = 1, 2, 3, ..., r. Let w be the apex vertex of G. Also we join the

Prime Cordial Labeling of Some Graphs Related to H-Graph

vertices v_1^k with w by an edge in G, where k = 1, 2, 3, ..., r. We define the vertex labeling function $f: V(G) \rightarrow \{1, 2, 3, ..., 2nr + 1\}$ as follows. $f(u_i^k) = 2i - 1$; $(k - 1)n + 1 \le i \le kn$, k = 1, 2, 3, ..., r. $f(v_i^k) = 2i$; $(k - 1)n + 1 \le i \le kn$, k = 1, 2, 3, ..., r. f(w) = 2nr + 1.

If n is even, we interchange the labels of the vertices $v_{\frac{n}{2}}^{k}$ with $v_{\frac{n}{2}+1}^{k}$, k = 1, 2, 3, ..., r and further we interchange the labels of the vertices w with v_{n}^{r} . In view of the labeling pattern defined above, we have $|e_{f}(0) - e_{f}(1)| = 1$. Hence G is a prime cordial graph.

Example 3. 4. Prime cordial labeling of the graph S(4. H₃) is shown in Figure 4.

Figure 4: Prime cordial labeling of S(4. H₃)

4. Conclusion

H-graph is one of the interesting graphs in graph theory. In this paper we proved that the graphs such as HOK_1 , path union of r copies of H-graph, cycle union of r copies of H-graph and open star of r copies of H-graph are prime cordial graphs. Extending our results to various other graph operations related to H-graph is an interesting open area of research.

Acknowledgement. We are very grateful to the anonymous referees for their valuable suggestions to improve this paper in its present form.

REFERENCES

- 1. I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *Ars Combinatoria*, 23 (1987) 201 207.
- 2. J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 18 (2011), #DS6.
- 3. F.Harary, Graph theory, Narosa Publishing House, (2001).
- 4. A.Sugumaran and V.Mohan, Further results on prime cordial labeling, *Annals of Pure and Applied Mathematics*, 14 (3) (2017) 489 496.

A. Sugumaran and V. Mohan

- 5. A.Sugumaran and K.Rajesh, Some new results on sum divisor cordial graphs, *Annals of Pure and Applied Mathematics*, 14 (1) (2017) 45 52.
- 6. A.Sugumaran and K.Rajesh, Sum divisor cordial labeling of theta graph, *Annals of Pure and Applied Mathematics*, 4 (2) (2017) 313 320.
- A.Sugumaran and P.Vishnu Prakash, Some new results on prime cordial labeling for theta graph, *Journal of Computer and Mathematical Science*, 8 (11) (2017) 630 -634.
- 8. M.Sundaram, R.Ponraj, S.Somasundaram, Prime cordial labeling of graphs, *Journal* of Indian Academy of Mathematics, 27 (2015) 373 390.
- 9. S.K.Vaidya and Barasara, Product cordial graphs in the context of some graph operations, *International Journal of Mathematics and Scientific Computing*, 1 (2011) 1 6.
- 10. S.K.Vaidya and N.H.Shah, Some star and bistar related divisor cordial graphs, *Annals of Pure and Applied Mathematics*, 3 (1) (2013) 67 77.
- A.Saha, M.Pal and T.K.Pal, Selection of programme slots of television channels for giving advertisement: A graph theoretic approach, *Information Sciences*, 177 (12) (2007) 2480-2492.