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Abstract. A prime cordial labeling of a graph G with vertex set V(G) is a bijection f : 
V(G)	→ {1, 2, 3, … , |
(�)|} such that each edge uv is assigned the label 1 if gcd(f(u), 
f(v)) = 1and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled with 0 and the 
number of edges labeled with 1 differ by at most 1. A graph which admits prime cordial 
labeling is called prime cordial graph. In this paper, we prove that the graphs HʘK1, 
P(r.H), C(r.H) and S(r.H) are prime cordial. 
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1. Introduction 
We consider only simple, finite, undirected and non-trivial graph G = (V(G), E(G)) with 
the vertex set V(G) and the edge set E(G). The number of elements of V(G), denoted as 
|V(G)| while the number of elements of E(G), denoted as |E(G)|. For standard 
terminology and notations we follow Harary [3]. A graph labeling is an assignment of 
labels to edges, vertices or both. Cahit. I [1] introduced the concept of cordial labeling in 
1987. The concept of cordial labeling was extended to divisor cordial labeling, sum 
divisor cordial labeling, prime cordial labeling, total cordial labeling, etc., A survey of 
graph labeling, we refer to Gallian [2].  
      Vaidya and Shah [10] proved that, some star and bistar related graphs are divisor 
cordial graphs. Duplication of vertices  and edges was introduced by Vaidya and Barasara 
[9] and they applying this concept to the product cordial graphs. Sugumaran and Rajesh 
[5] have shown that, Swastik graph Sn, some graph operations related to Swastik graph, 
Jelly fish J(n, n) and Petersen graph are sum divisor  cordial graphs. Sugumaran and 
Rajesh [6] proved that Theta graphs and some operations of Theta graph are sum divisor 
cordial graphs. Sundaram et al. [8] introduced the concept of prime cordial labeling. 
Sugumaran and Prakash [7] proved that one point union of path of Theta graphs, open 
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star of Theta graphs and path union of even copies of Theta graph are prime cordial 
graphs.                                                                                        
       Sugumaran and Mohan [4] have proved prime cordial labeling of the graphs such as 
butterfly graph, W-graph, H-graph and duplication of edges of an H-graph. In section 2, 
we summarize the necessary definitions and notations which are useful for the present 
work. In section 3, we proved that the graphs such as HʘK1, path union of r copies of H-
graph, cycle union of r copies of H-graph and open star of r copies of H-graph are prime 
cordial graphs. An application of graph labeling is discussed in [11]. 
 
2. Definitions 
In this section, we will provide a brief summary of definitions, which are necessary for 
the present investigation. 
 
Definition 2.1. A mapping f : V(G) → {0, 1} is called binary vertex labeling of G and f(v) 
is called the label of the vertex v of G under f. 
 
Definition 2.2. A binary vertex labeling f of a graph G is called a cordial labeling if |vf(0) 
- vf(1)| ≤ 1 and |ef(0) - ef(1)| ≤ 1, where 

vf(i) = number of vertices of G having label i 
                                          ef(i) = number of edges of G having label i 
 
Definition 2.3. [8]A prime cordial labeling of G with vertex set V(G) is a bijection f : 
V(G) → {1, 2, 3, … , |
(�)|} such that each edge uv is assigned the label 1 if gcd (f(u), 
f(v)) = 1 and 0 if gcd (f(u), f(v)) > 1, then the number of edges labeled with 1 and the 
number of edges labeled with 0 differ by at most 1. A graph which admits prime cordial 
labeling is called prime cordial graph. 
 
Definition 2.4. The graph HʘK1 is obtained by adding a pendant edge to each vertex of 
an H-graph. 
 
Definition 2.5. The path union of a graph G is the graph obtained from a path Pn (n≥ 2) 
by replacing each vertex of the path by graph G and it is denoted by P(n.G). 
 
Definition 2.6. The cycle union of a graph G is the graph obtained from a cycle Cn (n≥
3) by replacing each vertex of the cycle by graph G and it is denoted by C(n.G). 
 
Definition 2.7. The open star of a graph G is the graph obtained from a star graph K1, n 

(n≥ 2) by replacing each vertex(except the apex vertex) of the star by graph G and it is 
denoted by S(n.G). 
 
3. Main results 
In this section, we proved that some of the graphs related to H-graph are prime cordial 
graphs. 
 
Theorem 3. 1. The graph HʘK1 admits prime cordial labeling. 



Prime Cordial Labeling of Some Graphs Related to H-Graph 

173 
 

Proof: Consider an H graph with 2n vertices. Let G = HʘK1. Let V(H) = {�� , ��: 1 
≤ �	 ≤ �}. Let ��

′ , ��
′ , ��

′ , … , ��
′ ,	be the pendant vertices connected to 

��, ��, ��, , … , ��	respectively and let ��
′ , ��

′ , ��
′ , … , ��

′ ,	be the pendant vertices connected 
to ��, ��, ��, … , �� respectively in G. Then |V(G)| = 4n and |E(G)| = 4n – 1. We define the 
vertex labeling function f : V(G)	→ {1, 2, 3, … , 4�} as follows. 
f (��) = 4i – 3  ;  1 ≤ �	 ≤ �. 
f (��) = 4i – 2  ;  1 ≤ �	 ≤ �. 
f (��

′ ) = 4i – 1  ;  1 ≤ �	 ≤ �.  
f (��

′) = 4i       ;  1 ≤ �	 ≤ �. In view of the labeling pattern defined above, we have |e f (0) 
- e f (1)| ≤ 1. Hence G is a prime cordial graph. 
 
Example 3. 1. Prime cordial labeling of the graph H5ʘK1 is shown in Figure 1. 

 
Figure 1: Prime cordial labeling of H5ʘK1 

Theorem 3.2. The Path union of r copies of H-graph is a prime cordial graph. 
Proof: Consider an H-graph with 2n vertices. Let G = P(r.H) be the Path union of r 
copies of    H-graph. In graph G, |V(G)| = 2nr and |E(G)| = 2nr – 1. We denote ��

�	and   
��
� are the ��� vertex in the  �� copy of the first and second path in the H-graph 

respectively, where i = 1, 2, 3, … , n and k = 1, 2, 3, … , r. Notice that the vertices ��
� 

and ��
�!� are connected by an edge in G, where k = 1, 2, 3, … , r – 1. To define the 

vertex labeling function f : V(G)	→ {1, 2, 3, … , 2�"} as follows. 
f (��

�) = 2i – 1 ; (k – 1)n + 1 ≤ �	 ≤  �, k = 1, 2, 3, … , r.    
f (��

�) = 2i       ; (k – 1)n + 1 ≤ �	 ≤  �, k = 1, 2, 3, … , r.  
If n is even, then we interchange the labels of the vertices  �#

$

� with �#
$
%&

� , k = 1, 2, 3, … , 

r. In view of the labeling pattern defined above, we have |e f (0) - e f (1)| = 1. Hence G is a 
prime cordial graph. 
 
Example 3. 2. Prime cordial labeling of the graph P(3. H4) is shown in Figure 2. 



 

Figure

Theorem 3.3. The Cycle union of r copies of an H
Proof: Consider an H-graph with 2n vertices. Let G = C(r.H) be the cycle union of r 
copies of  H-graph. In graph G, |V(G)| = 2nr and |E(G)| = 2nr. We denote 
the ��� vertex in the  ��

where i = 1, 2, 3, … , n and 
connected by an edge and the vertices 
= 1, 2, 3, … , r – 1. To define the 
follows. 
f (��

�) = 2i – 1 ; (k – 1)n + 
f (��

�) = 2i       ; (k – 1)n + 
If n is even, then we interchange the labels of the vertices  

r. In view of the labeling pattern defined above, we have |e
prime cordial graph. 
 
Example  3.3.  Prime cordial labeling of

Figure

Theorem  3.4. The Open star of 
Proof: Consider an H-graph with 2n vertices. Let G = S(r.H) be the open star of r copies 
of  H-graph. In graph G, |V(G)| = 2nr + 1 and |E(G)| = 2nr. We denote 
��� vertex in the  �� copy of 
i = 1, 2, 3, … , n and     k = 1, 2, 3, … , r. Let w be the apex vertex of G.
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Figure 2: Prime cordial labeling of graph P(3. H4) 

Cycle union of r copies of an H-graph is a prime cordial graph.
graph with 2n vertices. Let G = C(r.H) be the cycle union of r 

graph. In graph G, |V(G)| = 2nr and |E(G)| = 2nr. We denote 
� copy of the first and second path in the H-graph respectively, 

where i = 1, 2, 3, … , n and    k = 1, 2, 3, … , r. Notice that the vertices 
connected by an edge and the vertices ��

( and ��
� are connected by an edge in G,

. To define the vertex labeling function f : V(G)	→ �1

1)n + 1 � �	 �  �, k = 1, 2, 3, … , r.    
1)n + 1 � �	 �  �, k = 1, 2, 3, … , r.  

we interchange the labels of the vertices  �#
$

� with �#
$
%&

� , k = 1, 2, 3, … , 

In view of the labeling pattern defined above, we have |e f (0) - e f (1)| '

Prime cordial labeling of the graph C(4. H3) is shown in Figure 3.

 
Figure 3: Prime cordial labeling of C(4. H3) 

Open star of r copies of an H-graph is a prime cordial graph.
graph with 2n vertices. Let G = S(r.H) be the open star of r copies 

graph. In graph G, |V(G)| = 2nr + 1 and |E(G)| = 2nr. We denote ��
�

copy of the first and second path of the H-graph respectively, where 
k = 1, 2, 3, … , r. Let w be the apex vertex of G. 

 

graph is a prime cordial graph. 
graph with 2n vertices. Let G = C(r.H) be the cycle union of r 

graph. In graph G, |V(G)| = 2nr and |E(G)| = 2nr. We denote ��
�	and   ��

� are 
graph respectively, 

k = 1, 2, 3, … , r. Notice that the vertices ��
� and ��

�!� are 
nnected by an edge in G, where k 

1, 2, 3, … , 2�"� as 

, k = 1, 2, 3, … , 

' 0. Hence G is a 

) is shown in Figure 3. 

graph is a prime cordial graph. 
graph with 2n vertices. Let G = S(r.H) be the open star of r copies 

�	and   ��
� are the 

respectively, where 
 Also we join the 
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vertices  ��
� with w by an edge in G, where k = 1, 2, 3, … , r. We define the vertex 

labeling function f : V(G)	→ {1, 2, 3, … , 2�" + 1} as follows. 
f (��

�) = 2i – 1  ; (k – 1)n + 1 ≤ �	 ≤  �, k = 1, 2, 3, … , r.    
f (��

�) = 2i        ; (k – 1)n + 1 ≤ �	 ≤  �, k = 1, 2, 3, … , r.  
f (w) = 2nr + 1. 

If n is even, we interchange the labels of the vertices  �#
$

� with �#
$
%&

� , k = 1, 2, 3, 

… , r and further we interchange the labels of the vertices w with ��
(. In view of the 

labeling pattern defined above, we have |e f (0) - e f (1)| = 1. Hence G is a prime cordial 
graph. 
 
Example 3. 4. Prime cordial labeling of the graph S(4. H3) is shown in Figure 4. 

 
Figure 4: Prime cordial labeling of S(4. H3) 

4. Conclusion  
H-graph is one of the interesting graphs in graph theory. In this paper we proved that the 
graphs such as HʘK1, path union of r copies of H-graph, cycle union of r copies of H-
graph and open star of r copies of H-grah are prime cordial graphs. Extending our results 
to various other graph operations related to H-graph is an interesting open area of 
research. 
 
Acknowledgement. We are very grateful to the anonymous referees for their valuable 
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