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Abstract. In [7], it is shown that the Diophantine equatiéh+ 7? = Z has no solutions
in non-negative integers. In this paper, invesiiggaall odd powers of 2 with all even
values ofy, we establish that the title equation has only solution whenx = 2 andy

= 2, whereas for all other values no solutions exist.
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1. Introduction

The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hassatytions, or how many solutions.
In most cases, we are reduced to study individgalatons, rather than classes of
equations.

The literature contains a very large nuntfeairticles on non-linear such individual
equations involving primes and powers of all kindsnong them are for example [1, 2,
4, 7].

The general equation

p+a =2
has many forms. For the equatiof 47 = Z it has been shown [7] that it has no
solutions in positive integers. The equation
2+ 7 =7 (1)
when v = X is even yields 4+ 7 =Z asin [7]. In this paper, equation (1) with
odd valuesv = X + 1 and even valueg = 2nh is discussed. This is done in Section 2
utilizing the following conjecture.

In 1844 Catalan conjectured: The onlysoh in integersr >0, s >0,
a >1,b >1 ofthe equation
rf—-g =1
isr=b=3 ands=a = 2.
The conjecture was proven by P. &ildscu [5] in 2002.

2. Themain result
In this section, we consider the equation

22x+1+ 72n :ZZ
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for all integersx>1 andn>1 wherez is an odd positive integer. We determine all
the solutions and no-solution cases for the eguafitiis is contained in the following
Theorem 2.1.

Theorem 2.1. Let x>1 and n>1 be integers. Then the equation
=7 2)
has:
(@ No solutions wherx = 1.
(b) Exactly one solution wher = 2.
() No solutions for allx > 2.
Proof: (a) Suppose thatx =1 in equation (2). We have
2+7™=7 or t-Tz+7)=8.

Sincen>1, it clearly follows that the above right-harguation is impossible.

Hence, wherx = 1 equation (2) has no solutions.

(b) Suppose thatx = 2. Whenn = 1, then
2+7F=¢ €)

is a solution of equation (2).
We now show that solution (3) is the onljusion of equation (2) whex = 2.

Suppose that there exists a vatuet > 1 with oddz > 9 satisfying
277 =7 or 2=@-Nz+7D. (4)
Since z—7 > 1 whereasz+ 7 > 49, it follows that equation (4) is impdssi
Our supposition that whexn = 2 there exist values=t>1 and z>9
which satisfy the equation is therefore false.
Hence, solution (3) is the only solutighen x = 2.
The solution is unique.

() Suppose thak > 2. Equation (2) implies
2M=Z P = @-T(z+ 7).
Let «, B be positive integers. Denote
z2-7=2, z+7 =2, a<p, a+p=2x+1 (5)
From (5) itfollows that 27"= 2-2* = 2(2/“-1). Since 7 and 2“—1 are both
odd, thereforen = 1. Hence
2.7 =1 (6)
In (5), the valuea = 1 yields f = Z and sincex > 2 it follows that § > 4. The
valuen = 1 in (6) implies that 2' = 8, and hencgg = 4 which is impossible.
Therefore n> 1 in (6). By Catalan's Conjecture it nowldals that (6) has no
solutions.
Thus, wherx > 2 equation (2) has no solutions.
This concludes the proof of Theorem 2.1. O

3. Conclusion

In this paper we have established that the equafh + 7" = Z has a unique solution
whenx = 2,n = 1,z = 9. Supposethay = 1 isfixed in 2+ ? = Z. Ithas
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been shown [3] that for all values>1, 2 + 7 =7 has a unique solution when =
1, namely 2 + 7 =23 The following two questions concerning’ 2 7 = Z may now
be raised.

Question 1. If v = 1, does there exist an odd valpe> 1 satisfying 2 +7= 7 ?
The valuesy = 3,5, 7,9 yield a negative answer.

Question 2. If v >1 isodd, does there exist an odd vajue 1 satisfying 2+ 7
=Z?

Each of the valuesy = 3, 5, 7 with the three respective values= 3, 5, 7 vyields a
negative answer.

We presume that the answers to Quesli@msl 2 are negative.
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