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Abstract. In this paper, we obtain the existence and uniqueness of solution for fractional
differential equation involving the Caputo fractional derivative with deviating argument.
The uniqueness of solution is obtained by using a Banach fixed point theorem also the
existence of extremal solutions are obtained by a monotone iterative technique and the
method of lower and upper solutions. Finally, some examples illustrate the results.
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1. Introduction
In this paper, we study the following problem for nonlinear initial value problem (IVP)
involving Caputo fractional differential equation with deviating argument:

{C Dg x(t) = f (t, x(t), x(0(1))), te I =[0,T], "
X(0) =%, X'(0)=0,

where f (t, x(t), x(0(t))) e C([0, TIxR? R), 6C(J,J), ) <t, ted, °DZ is

called the Caputo fractional derivative of order ¢ (1< <2).

Since f (t, X(t), X(Q(t))) is continuous, IVP (1) is equivalent to the following Volterra
fractional integral equation

X(t) = X, + % [[ (=5 £ (5. x(). x(6(5))) . o)

Where I' denotes the gamma function, recently, the theory of fractional differential
equation has a lot of importance recently because of its applications (see [8, 20]). In the
recent investigations, many researchers studied the existence and unigqueness of solution
of nonlinear fractional differential equations (see [2, 3, 4, 5, 12, 15, 17] and references
therein). Also, there was an important development in fractional differential equation see
[7, 9, 14, 19, 22] and the papers of [6, 12, 16, 18]. Very recently, was discussed some
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basic theory for nonlinear IVP of fractional differential equation involving the Riemann-
Liouville differential operator of order &« (0 < <1) (see [10, 11] and the references
therein). However, discussion on initial value problems of fractional differential equation
with deviating argument is rare. We know that it is important build a comparison result
relative to lower and upper solutions of Caputo which we using in the monotone iterative
technique for initial value problem of order o (1< a <2).

The paper is organized as follows: In Section 2, we present some definitions and
fundamental facts of fractional calculus theory. In Section 3, we will prove the
uniqueness of solution for nonlinear 1VP (1) by using Banach fixed point theorem. In
Section 4, by the utility of the monotone iterative technique and the method of lower and
upper solutions, we prove that nonlinear IVP (1) has extremal solutions. Lastly, we
illustrate our results with suitable examples.

2. Preliminaries
Let C(J,R) ={x : x(t) is continuous on C(J,R)} with the norm|x]. = maJx|x(t)|.
te

Obviously, C(J,IR) is Banach space. For the convenience of the readers, we first present

some useful definitions and fundamental facts of fractional calculus theory, which can be
found in [7, 19].

Definition 2.1. Caputo's derivative for a function f(t) eC"(J,R) can be written as
1 f f ™ (s)ds
r(n—a)® {t-s)**"’

SO f () =(11Df ) =
where D :it and n=[a]+1, [«] denotes the integer part of real number o > 0.

Definition 2.2. Fora > 0, the integral
12 £ (1) —Lf(t—s)“-lf(s)ds
0+ 1—‘(a) o '

is called the Riemann-Liouville fractional integral operator of order « .

Lemma 2.1. [7] Let x(t) € C"[0,1] andx € (n—1,n], ne N. Then for t €[0,1],
n-1 4k

12.°DEX(1) = X(1) - 3 = X(0).

o K!

3. Uniqueness of solution
In this section, we discuss uniqueness of solution for nonlinear IVP (1) for Caputo
fractional differential equation with deviating argument under the following condition:

(H,) There exist nonnegative constants L, L, such that
(v, Vv,) = F(tu,u) S LV, —u |+ LV, —u,|, Vted, v,,u eR, i=12
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Lemma 3.1. Let f e C(J XRZ,R), x € C(J,R) is the solution of the nonlinear IVP
(1), if and only if x(t) isa solution of integral equation

X(t) = X, +— j (t—s)“ (s, X(5), X(6(s)))ds. 3)

Proof: Assume that x(t) satlsfles IVP (1). From the first equation of I\VVP (1) and
Lemma 2.1, we have

X(t) = X, +ﬁ [ -9 (5, x(5), x(0(s))) .

Conversely, assume that x(t) satisfies (3). Applying the operator g D to both sides of
(3), we have

CDIx(t) = f(t, x(t), x(O(t))).
In addition, we have X(0) = X,, X'(0) =0. The proof is complete.

Theorem 3.1. Assume that (H,) hold, f eC(J sz,R). Then the nonlinear IVP (1)
has a unique solution.
Proof: Define the operator A : C(J R) ->C(J,R) by

(AX)(t) = x0+— j (t—s)* £(s,x(s), x(6(5)))ds.

It is easy to check that the operator (Ax)(t) € C(J,R). Next we show that A isa
contraction operator C(J,R). For convenience, let
L)t
I'l+a)
Forany X,y € C(J,R), we have
|Ax— Ay, = rngI(AX)(t) ~(AN )

(4)

rngT [} (€= (s, (), x(0(s))- £ (5. ¥(5), y(Os)) ) ds

<@WI (t—5)*LJx(8) - Y(5)| + L |x(8(s)) - y(@(s))Jds

< ey ™ L9 b+ Lyl Jos
(L)
- I(a)

—(Lf? L))||x yl, maxt” [[@-n)dy

[x=y|.m j (t—s)“ds

C ted
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S {LHLZJ(r(a)Ta}”X_y”
INa) \Tl+a) ¢
(L+L )T,

According to (4) and using Banach fixed point theorem, the nonlinear IVP (1) has a
unique solution. The proof is complete.

Lemma 3.2. Let M,N >0 are constants, h e C(J,IR). The linear initial value problem:

©Dg x(t) — Mx(t) — Nx(@(t)) = h(t), L<a < 2, t €[0,T], )
X(0) =x,, X'(0)=0,
has a unique solution
X(t) = X, + L j (t— ) [Mx(s) + Nx(6(s)) + h(s)]ds. (6)
I'(a)

Proof: By Theorem 3.1, the linear I\VVP (5) is equivalent to solving a fixed point problem
with operator A, defined by

AX( = X, +—— [[ (t=5)[M (S)X(5) + N(S)X(0(s)) + h(s)]s.
I'a)

Forany heC, ,(J). Then the operator A, has a unique fixed point.

Remark 1.
i.  Putting N =0, inthe above linear IVP (5), we have the result obtained by Devi
[1], Mcrae [13], Sambandham et al., [21];
ii.  Putting N =0 and h(t) =0, in the above linear IVP (5), we get the solution of
the corresponding homogenous IVP (5) by Yakar [23];
iii. ~ When o =1, the problem (5) reduces to the following
X'(t) = Mx(t) + Nx(4(t)) +h(t), t e J,
X(0) =%,, X'(0)=0,
has a unique solution which satisfies Eq.(6);

iv.  Putting M =0 and N =0, in the above linear IVP (5), the initial value problem
(5) has a unique solution

1 t a-1
x(t):x0+m jo (t—s)“h(s)ds.

4. The monotone iterative technique

In this section, we mainly prove the existence of extremal solutions of the nonlinear I\VP
(1) by monotone iterative technique combined with the method of lower and upper
solutions. We need the following Lemma and definition.
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Lemma 4.1. Suppose that M, N >0 are constants and the inequality
(M +N)T“
I'l+a)
holds, and p € C(J,R) satisfies

<1, (7)

p(t) < p(0)+— [, =) [Mp(s) + Np(a(s)]ds, t < J,

p(0) <0,
then p(t) <0 forall teJ.
Proof: Suppose that p(t) <0, Vt e J is not true. So there exists at least one
t, € J such that p(t,) > 0. Without loss of generality, we assume

p(t.) = max{p(t)} = p, >0.

(8)

We obtain that
p(t) < p<0)+— j (t—)**[Mp(s) + Np(6(s))]ds

—5)**[Mp(s) + Np(&(s))]ds

1"()

F( ) —s)“* (s)ds+—J' (t—s)“" p(6(s))ds.

Let t =t,, we have

So
(M + N)Ta
I'l+ea)
This is a contradiction. Hence p(t) <0 for all t € J . The proof is complete.

>1.

Definition 4.1. We say that &, € C(J,R) is called a lower solution of IVP (1) if
{ao (1) < @0 (0) + sy fy (L —9)“™ F (5,20 (5), 2 (6(5))) s, t e I,
,(0)<a,, ;(0)<0.
We say that S, € C(J,R) is called a upper solution of IVP (1) if
{ Bo®) = By(0) + 5 [y (=) (s, By (5), By (6(s)))ds, ted,
B (0) 2 3, f3,(0) 20.

185



D. B. Dhaigude and B. H. Rizgan

In the following discussion, we need the following assumptions:
(H,) Functions «, and f, are ordered lower and upper solutions of nonlinear IVP (1)
such that
o, () < S, @), ted.
(H;) There exist constants M, N >0 such that
f(t,v,v,)— f(tu,u,)>M (v1 —u)+N(v, —u,),
where o, (t) <u, <V, < B (t), o, (0(1)) <u, < S, (6()), teld.

Let [, By )= {2 €C(I,R): (1) < z(t) < B (1), t e J, ao(0)<z<0><ﬂo(0)}

Theorem 4.1. Let (H,)-(H;) and inequality (7) hold. Then there exist two monotone
sequences {an } {,Bn}c [, 3,] both converge uniformly to the extremal solutions of
nonlinear IVP (1) in [e,, ] .

Proof: This proof consists of the following three steps.

Step 1: Construct two the sequences {an} and {,Bn}. Forany 1 €[e,, £,] such

that77 € C(J, R), we consider the following linear initial value problem:
©Dg x(t) - Mx(t) - Nx(0(t)) = f (t,72(8), n(6(t))) - M7 (t) - N (1)), t e J,
X(0) =x,, x'(0)=0.
In the present context h(t) = f (t,77(t),7(8(t)))— Mn(t) — N7(8(t)) and is to be
replaced in (5) by this new value. By Lemma 3.2, the linear IVP (9) has a unique solution

X(t) = X, + L f (t—s)“[M(s)x(s) + N(s)x(6(s)) + h(s)]ds, (10)
I'a)

Suppose that X, (t) and X, (t) be two solutions of linear IVP (9). Let
p(t) = x (t) — X, (t) . Applying Lemma 4.1 again one can prove that p(t) <0, and
thus x,(t) < x,(t) . As the same argument is valid for X,(t) —x,(t) , we conclude
that x, (t) = X, (t) . This proves uniqueness.

Now, we define amapping A : [y, £,] > [, £,] by X = An, where X is
the unique solution of linear IVP (9) It is easy to check that the operator A is monotone
nondecreasing on [e,, 5,], let n, u €[, f,] such thatz < z2. Suppose that z, = Az

and z, = Au. Setting p(t) = z,(t) — z,(t) , we obtain
f(s,72(5),7(6(5))) - f (s, 24(5), 4(6(5)))
p(t) = p(0) +— j (t-5)"" =M (7(5) - z.(5)) - N(7(6(5)) - 2,(6(s))) |ds
+ M (u(5) — 2,(5))+ N(1(6(5)) - 2,(6(5)))

< p(0>+— [[ €=)"*(Mp(s) + Np(6(s)))ds.

9)

186



Monotone Iterative Technique for Caputo Fractional Differential Equations ...

Besides,
P(0) = 2,(0) ~ 2,(0) = 2, ~ 2, <0.
By Lemma 4.1, we get p(t) <0, implies that Anp < Ay forall teJ. It meansthat A
is monotone nondecreasing on [e,, £,]. Obviously, we can easily get that A isa
continuous map. It is now easy to define sequences {,} and {$3,} such that
a,=Aa, ,, B,=AL,,, Nn=12,..
Step 2: The sequences {, } and {3, } converge uniformly to ”, 8" respectively. In
fact {,} and {f,} satisfy the following relation:
o, <oy < La <" << B LSS BB (11)
Setting p(t) = &, (t) —al(t) and «, (t) is the lower solution of IVP (1), we obtain
o(0) < p(0)+_ j (t—5)* { f(s,20(5), @, (6(5))) - f(s,ao<s),ao(e(s»)} is
+M (e (8) — i, (5))+ N{ato (6(5)) — 2, (6(5)))

< p(0>+m [} €=5)“*(Mp(s) + Np(6(s)) ds.

Besides,

P(0) = 2,(0) — ,(0) < &ty — et = 0.
By Lemma 4.1, we get p(t) <0, implies that o, (t) < e, (t) forall t € J. Similarly, we
can show that g, < f3, forallt € J. Applying the operator A to both sides of ¢, <,
BBy, o <p and a, < f,, we can easily get (11). Obviously, the sequences {an}
and {ﬂn} are uniformly bounded and equicontinuous on J . Then by using the Ascoli-
Arzela criterion, we can conclude that the sequences {an} and {,Bn} converge uniformly

on J with lime, =", lim g, =" uniformlyon J .
n—o0

n—o

Step 3: Prove thater™, B are extremal solutions of nonlinear IVP (1) and «”, B are
solutions of nonlinear IVP (1) on [«,, £,] because of the continuity of operator A. Let
z €[y, fB,] be any solution of nonlinear IVP (1). That is,
{z(t) =2(0) + 5 [y (t—9)“ ™ (s, 2(s), 2(6(s)) ) ds,
z(0)=1z,, z'(0)=0.
Suppose that there exists a positive integer n such that «, (t) < z(t) < S, (t) on J. Let
p(t) =, (t)—z(t), we obtain
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(s (5) e 06)- F(s.2(5), 20(s)) )
- p(0 _g) d
PO = PO+ (-9 ( M (e () — ty 1 (8))~ Nl (9(5)) — a2 (OS]

p(t) < p(0)+— j (t—5)*"*(Mp(s)+ Np(6(s)))ds.

Besides,
p(0)=¢,,(0)-20)=¢, —z, <0.
By Lemma 4.1, we get p(t) <0, implies «,,, (t) < z(t) forallt € J . Similarly, we
obtain that z(t) < g,.,(t) on J.
Since o, (t) < z(t) < S, (t) on J, by induction we get that «,,(t) < z(t) < S,(t) on J

for all n. Therefore, a” (t) < z(t) < B*(t) on [0, T] by taking h — oo The proof is
complete.

5. Examples
Example 5.1. Consider the following problem:
{C DE.X(t) = & x(t) + £ x(t?), te[0,1], 1< <2,
x(0) =1, x'(0)=0.
wherer =3, T =1, O(t) =t and f(t, x(t), X(t?))= % X(t) + & X(t?). Obviously,
f(t, X(t), x(tz)) satisfies Lipschitz condition and there exist constants L, =,
L, =% such that

|6 X, X)) - £ & Y, y(E*) < 3—1O|x<t) - y()| %\x(ﬂ —y(t)|ifted,

So that condition (H,) of Theorem 3.1 hold, the problem (12) has a unique solution.

(12)

Consider the same equation as (12), taking X,(t) =0, y,(t) = 5t % + 6, and then we
have Y,(0) =5. Moreover,

V(1) =5t s 5(i(5s§ +6) +i(5s*% + 6)2jds

On the other hand, it is easy to check that X, <Y, and (H,)of Theorem 4.1 holds.
Andlet M =45, N =, we get that

FLXOXE) - F YO 2 35 O -yOT+ k) - ye)]

where X, <U, <V, < y,, X, (t?) <u, <v, <y, (t*). So (H,) is satisfied. Furthermore,
we get that
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M+NTe 2,
Il+a) 15Jz

It is easy to see that (7) holds. Thus, all conditions of Theorem 4.1 are satisfied.
Therefore, problem (12) has extremal solutions.

Example 5.2. Consider the following problem:
{CDoéx(t) 2 x(t)+ S x(E), te[0,1], 1<a <2,
x(0) =1, x'(0) =0.
Wherea =2 ,T =1, O(t) = (1) and f(t,x(t),x(Et))= 5 x(t) + & x(3 ). ObV|oust,
f(t, x(t), x(31)) satisfies Lipschitz condition and there exist constants L, =
L, =45 such that

f(t x(t), X( D) - f(t y(), Y( 1) <—IX(t) Y(t)|+—X(—t) Y( t)

So that condition (H,) of Theorem 3.1 holds, the problem (13) has a unique solution.

(13)

60’

ifteld.

Example 5.3. Consider the following problem:
° Dy X(t) = L x(t) + L x(3t2), te[0,1], 1<a <2,
{ x(0) =1, x'(0) =0.
Obviously, @ =2, T =1, 6(t) = (3t%) and f(t, x(t), X(3t?) )= L2 X(t) + L2 X(312).
Taking X, (t) =0, y,(t) 17y 6, then we have x,(0) =0, y,(0) =1. Moreover,

_t R RO ) LS ey
Yo(t)=tZ +6>t +F(;)j0(t ( (577 +6)+ T (2(5 +6) Bds

So that condition (H,) of Theorem 4.1 holds. On the other hand, it is easy to check
that (H,) of Theorem 4.1 holds, therefore

(6, x(0), X(3t2) - £ (&, y(©), y(lt»>—[x(t) yt)]+ [x(lt) y@Etd),

where X, <u, <V, <y,, X (3t?) <u, <v, <y, (3t?) .
We see thatM =5, N =, which satisfied inequality (7). All conditions of Theorem
4.1 are satisfied. So problem (14) has extremal solutions.
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