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Abstract. In this paper, we obtain the existence and uniqueness of solution for fractional 

differential equation involving the Caputo fractional derivative with deviating argument. 
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1. Introduction 
In this paper, we study the following problem for nonlinear initial value problem (IVP) 

involving Caputo fractional differential equation with deviating argument:  
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where    , ,],0[))((),(, 2 RR TCtxtxtf    ,, JJC  ,)( tt   Jt , 
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  is 

called the Caputo fractional derivative of order   )21(  . 

Since  ))((),(, txtxtf   is continuous, IVP (1) is equivalent to the following Volterra 

fractional integral equation  
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Where  denotes the gamma function, recently, the theory of fractional differential 

equation has a lot of importance recently because of its applications (see [8, 20]). In the 

recent investigations, many researchers studied the existence and uniqueness of solution 

of nonlinear fractional differential equations (see [2, 3, 4, 5, 12, 15, 17] and references 

therein). Also, there was an important development in fractional differential equation see 

[7, 9, 14, 19, 22] and the papers of [6, 12, 16, 18]. Very recently, was discussed some 
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basic theory for nonlinear IVP of fractional differential equation involving the Riemann-

Liouville differential operator of order  )10(   (see [10, 11] and the references 

therein). However, discussion on initial value problems of fractional differential equation 

with deviating argument is rare. We know that it is important build a comparison result 

relative to lower and upper solutions of Caputo which we using in the monotone iterative 

technique for initial value problem of order   ( 21  ).  

      The paper is organized as follows: In Section 2, we present some definitions and 

fundamental facts of fractional calculus theory. In Section 3, we will prove the 

uniqueness of solution for nonlinear IVP (1) by using Banach fixed point theorem. In 

Section 4, by the utility of the monotone iterative technique and the method of lower and 

upper solutions, we prove that nonlinear IVP (1) has extremal solutions. Lastly, we 

illustrate our results with suitable examples. 

 

2. Preliminaries 

 Let )(:{),( txxJC R  is continuous on )},( RJC  with the norm )(max txx
JtC 

 . 

Obviously, ),( RJC  is Banach space. For the convenience of the readers, we first present 

some useful definitions and fundamental facts of fractional calculus theory, which can be 

found in [7, 19]. 

 

 Definition 2.1. Caputo's derivative for a function ),()( RJCtf n  can be written as  
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 where
dt

d
D   and ][,1][  n  denotes the integer part of real number 0 . 

 

Definition 2.2. For 0 , the integral 
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is called the Riemann-Liouville fractional integral operator of order   . 

 

Lemma 2.1. [7] Let ]1,0[)( nCtx   and ],1( nn  , Nn . Then for ],1,0[t    
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3. Uniqueness of solution 

In this section, we discuss uniqueness of solution for nonlinear IVP (1) for Caputo 

fractional differential equation with deviating argument under the following condition: 

 )( 1H  There exist nonnegative constants 21, LL  such that 

.2,1 ,, , ,),,(),,( 2221112121  iuvJtuvLuvLuutfvvtf ii R  
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 Lemma 3.1. Let  RR ,2 JCf ,  ),( RJCx   is the solution of the nonlinear IVP 

(1), if and only if )(tx  is a solution of integral equation 
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Proof:  Assume that )(tx  satisfies IVP (1). From the first equation of IVP (1) and 

Lemma 2.1, we have  
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Conversely, assume that )(tx  satisfies (3). Applying the operator 

t

C D0  to both sides of 

(3), we have 
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In addition, we have ,)0( 0xx  0)0( x . The proof is complete. 

 

Theorem 3.1. Assume that )( 1H  hold,  . ,2 RR JCf  Then the nonlinear IVP (1) 

has a unique solution. 

 Proof: Define the operator ),(),(: RR JCJCA    by  
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It is easy to check that the operator ),())(( RJCtAx  . Next we show that A  is a 

contraction operator ),( RJC .  For convenience, let  
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According to (4) and using Banach fixed point theorem, the nonlinear IVP (1) has a 

unique solution. The proof is complete. 

 

Lemma 3.2. Let 0, NM  are constants, ).,( RJCh  The linear initial value problem: 
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has a unique solution 
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 Proof: By Theorem 3.1, the linear IVP (5) is equivalent to solving a fixed point problem 

with operator hA  defined by  
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For any ).(1 JCh   Then the operator hA  has a unique fixed point. 

 

 Remark 1.   

i. Putting ,0N  in the above linear IVP (5), we have the result obtained by Devi 

[1], Mcrae [13], Sambandham et al., [21]; 

ii. Putting 0N  and ,0)( th  in the above linear IVP (5), we get the solution of 

the corresponding homogenous IVP (5) by Yakar [23]; 

iii. When 1 ,  the problem (5) reduces to the following  
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has a unique solution which satisfies Eq.(6); 

iv. Putting 0M  and 0N , in the above linear IVP (5), the initial value problem 

(5) has a unique solution 
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4. The monotone iterative technique 

In this section, we mainly prove the existence of extremal solutions of the nonlinear IVP 

(1) by monotone iterative technique combined with the method of lower and upper 

solutions. We need the following Lemma and definition. 
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Lemma 4.1. Suppose that ,M 0N  are constants and the inequality  
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then 0)( tp  for all  .Jt   
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This is a contradiction. Hence 0)( tp  for all Jt . The proof is complete. 

 

Definition 4.1. We say that ),(0 RJC  is called a lower solution of IVP (1) if  

 







 



        .0)0( ,)0(

,,))((),(,)()0()(

000

00

1

0)(
1

00



 

 Jtdssssfstt
t

 

We say that ),(0 RJC  is called a upper solution of IVP (1) if  
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In the following discussion, we need the following assumptions: 

 )( 2H   Functions 0  and 0  are ordered lower and upper solutions of nonlinear IVP (1)    

            such that   

),()( 00 tt   .Jt  

 )( 3H   There exist constants 0, NM  such that  
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Theorem 4.1. Let )( 2H - )( 3H  and inequality (7) hold. Then there exist two monotone 
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nonlinear IVP (1) in ],[ 00   . 
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By Lemma 4.1, we get 0)( tp , implies that  AA   for all  .Jt   It means that A  
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Besides,  

.0)0()0()0( 01   zzp nn   

By Lemma 4.1, we get 0)( tp , implies )()(1 tztn   for all Jt . Similarly, we 

obtain that )()( 1 ttz n   on .J   

Since )()()( 00 ttzt    on ,J  by induction we get that )()()( ttzt nn    on J  

for all n . Therefore, )()()( ttzt     on ],0[ T  by taking n . The proof is 

complete. 

 

5. Examples 

Example 5.1. Consider the following problem: 
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







.0)0(,1)0(

,21 ],1,0[),()()( 2
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xx

ttxtxtxDC 
                 (12) 

where 2
3 , 1T , 

2)( tt   and   ).()()(),(, 2
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1

30
12 txtxtxtxtf   Obviously,  

 )(),(, 2txtxtf  satisfies Lipschitz condition and there exist  constants ,
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2 L  such that  
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So that condition )( 1H  of Theorem 3.1 hold, the problem (12) has a unique solution. 

Consider the same equation as (12), taking ,0)(0 tx  ,65)( 2
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On the other hand, it is easy to check that 00 yx   and )( 2H of Theorem 4.1 holds. 

And let ,
30
1M  ,15

1N  we get that 
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 where 0110 yvux  , )()( 2

022

2

0 tyvutx  .  So )( 3H  is satisfied. Furthermore, 

we get that  
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It is easy to see that (7) holds. Thus, all conditions of Theorem 4.1 are satisfied. 

Therefore, problem (12) has extremal solutions. 

 

Example 5.2. Consider the following problem: 
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So that condition )( 1H  of Theorem 3.1 holds, the problem (13) has a unique solution. 

 

 Example 5.3. Consider the following problem:  

                                







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So that condition )( 2H  of Theorem 4.1 holds. On the other hand, it is easy to check 

that )( 3H  of Theorem 4.1 holds, therefore 

   , )()(
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1
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1
))(),(,())(),(,( 2

2
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2
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2
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2
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where 0110 yvux  , )()( 2

2
1

022

2

2
1

0 tyvutx   . 

We see that 30
1M , 15

1N , which satisfied inequality (7). All conditions of Theorem 

4.1 are satisfied. So problem (14) has extremal solutions. 
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