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Abstract. The objective of the present paper is to study results that are defined using 
notions of generalized Janowski functions and ),( kj -symmetrical functions. In 
particular, we derive integral representations and study the covering theorem also the 
quotient of analytical representations of starlikeness and convexity with respect to kj , -

symmetric points, we will study the expression 
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1. Introduction 
Let A  denote the class of functions of form  

,=)(
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n
n

n

zazzf ∑
∞

+                                                                                          (1.1) 

 which are analytic in the open unit disk { }1|<:|= zz CU ∈ , and S  denote the subclass 

of A  consisting of all function which are univalent in U . 
For f  and g  be analytic in U , we say that the function f  is subordinate to g  

in U , if there exists an analytic function w  in U  such that 1|<)(| zw  with 0=(0)w , 

and ))((=)( zwgzf , and we denote this by )()( zgzf ≺ . If g  is univalent in U , then 

the subordination is equivalent to (0)=(0) gf  and )()( UU gf ⊂ . The convolution or 

Hadamard product of two analytic functions A∈gf ,  where f  is defined by (1.1) and 
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Using the principle of the subordination we define the class P  of functions with positive  
 
Definition 1.1. [2] Let P  denote the class of analytic functions of the form 

n
n

n

zpzp ∑
∞

+
1=

1=)(  defined on U  and satisfying 1=(0)p , 0>)(zRep , U∈z .  

 Any function p  in P  has the representation 
)(1

)(1
=)(

zw

zw
zp

−
+

, where Ω∈w  

and  
 1}.|<)(|0,=(0):{= zwww A∈Ω                                               (1.2) 

 
The class of functions with positive real part P  plays a crucial role in geometric 

function theory. Its significance can be seen from the fact that simple subclasses like 

class of starlike *S , class of convex functions C , class of starlike functions with respect 
to symmetric points have been defined by using the concept of class of functions with 
positive real part.  

Like in [1], let ],[ BAP , with 1<1 ≤≤− AB , denote the class of analytic 

function p  defined on U  with the representation 
)(1

)(1
=)(

zBw

zAw
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+
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, U∈z , where 

Ω∈w . Remark that ],[ BAp P∈  if and only if 
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+
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1

1
)( ≺ . 

In [13] the class ],,[ αBAP  of generalized Janowski functions was introduced. 

For arbitrary numbers ,,, αBA  with 1<1 ≤≤− AB , 1,<0 α≤  a function p  analytic 

in U  with 1=(0)p  is in the class ],,[ αBAP  if and only if 
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In our work we define the class ],,,[ βαBAP  of generalized Janowski functions 

was introduced. For arbitrary numbers βα ,,,BA  with 1<1 ≤≤− AB , 1,<,0 βα≤  

and 1<βα +  a function p  analytic in U  with 1=(0)p  is in the class ],,,[ βαBAP  if 
and only if  

 .  ,
)(])[(11

)(])[(11
=)(

])[(11

])[(11
)( Ω∈

+−+
+−+⇔

+−+
+−+

w
zwAB

zwBA
zp

zAB

zBA
zp

ββ
αα

ββ
αα

≺  

A function f  is belongs to the class ],,,[* βαBAS  if ],,,[
)(

)( βαBA
zf

zfz
P∈

′
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In order to define a new class of generalized Janowski symmetrical functions 
defined in the open unit disk U , we first recall the notion of k -fold symmetric functions 
defined in k -fold symmetric domain, where k  is any positive integer. A domain D  is 

said to be k -fold symmetric if a rotation of D  about the origin through an angle 
k

π2
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carries D  onto itself. A function f  is said to be k -fold symmetric in D  if for every z  

in D  we have  
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The family of all k -fold symmetric functions is denoted by kS , and for 2=k  we get 
class of odd univalent functions. In 1995, Liczberski and Polubinski [19] constructed the 
theory of ),( kj -symmetrical functions for 1),0,1,2,= −kj …  and …2,3,=(k . If D  

is k -fold symmetric domain and j  any integer, then a function CD →:f  is called 

),( kj -symmetrical if for each D∈z , ).(=)( zfzf jεε  We note that the ),( kj -

symmetrical functions is a generalization of the notions of even, odd, and k -symmetrical 
functions 

The theory of ),( kj -symmetrical functions has many interesting applications; 
for instance, in the investigation of the set of fixed points of mappings, for the estimation 
of the absolute value of some integrals, and for obtaining some results of the type of 
Cartan’s uniqueness theorem for holomorphic mappings, see [19]. 

Denote the family of all ),( kj -symmetrical functions by ),( kjS . We observe that  
(0,2)S , (1,2)S  and )(1,kS  are the classes of even, odd and k -symmetric functions 

respectively. We have the following decomposition theorem: 
 
Theorem 1. [19, Page 16] For every mapping CU֏:f , and a k -fold symmetric set 

U , there exists exactly one sequence of ),( kj -symmetrical functions kjf ,  such that  
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where  
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Al Sarari and Latha [3] introduced and studied the classes ),(),( BAkjS  and 

),(),( BAkjK  which are starlike and convex with respect to ),( kj -symmetric points. For 

more details about the classes with ),( kj -symmetrical functions see [9, 10, 14]. 
 

Definition 1.2.  A function A∈f  is said to belongs to the class ],,,[),( βαBAkjS , with 

1<1 ≤≤− AB , 1,<,0 βα≤  and 1<βα +  if  
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where kjf ,  are defined by (1.3).  
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We note that special values of α,,,, BAkj  and β  yield the following classes: 

For 0== βα  we get the class introduced and studied by Alsarari and Latha [3] 

For 1=j  and 0== βα  the class studied by Ohsang K and Yaungjae [5].  

For BAkj −===  and 0=β  the class introduced by Polatoglu, Bolcal, Sen and 
Yavuz, [13]. 

For 0=1,=== αBAj −  and 0=β  the class is studied by Sakaguchi [16], 

etc. The second and third authors studied some classes with ),( kj -symmetrical functions 
[3, 9, 10, 14]. In this paper we will study the covering theorem also the quotient of 
analytical representations of starlikeness and convexity with respect to kj , -symmetric 
points, we will study the expression  
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We need the following lemmas to prove our main results: 
 

Lemma 1.3. [4] Let Ω  be a subset of the complex plan C  and let the function 

CC →×U2:ψ  satisfy Ω∈/);,( zNeMe ii θθψ  for all real θ , MN ≥  and for all 

Uz∈ , if the function )(zp  is analytic in U , 0=(0)p  and Ω∈′ ));(),(( zzpzzpψ  for 

all Uz∈  then Mzp |<)(| , .Uz∈   
 
2. Main results 
Theorem 2.1.  Let ],,,[),( βαBAf kjS∈ , with 1<1 ≤≤− AB , 1,<,0 βα≤  and 

1<βα + . Then 
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 where Ω∈)(zw
�

.   

Proof: Suppose that ],,,[),( βαBAf kjS∈ .  
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 for some Ω∈)(zw
�

. Substituting z  by zνε  in (2.3), it follows  
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 Letting 1,0,1,2,= −k…ν  in (2.4) respectively, and summing them we have  
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 that is  
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 Integrating get (2.1)   
 

Theorem 2.2. Let ],,,[),( βαBAf kjS∈ , with 1<1 ≤≤− AB , 1,<,0 βα≤  and 
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for U∈z  and some Ω∈)(zw .  

Proof: Suppose that ],,,[),( βαBAf kjS∈ .  

,
])[(11

])[(11

)(

)(

, zAB

zBA

zf

zfz

kj ββ
αα

+−+
+−+′

≺                                                                      (2.8) 

 we have  

 ,
)(])[(11

)(])[(11
)(=)( , zwAB

zwBA
zfzfz kj ββ

αα
+−+
+−+′  

and by Theorem 2.1 we have  

.
)(])[(11

)(])[(11

))(])[(1(1

)(1
))(1(=)(

0

1

0= zwAB

zwBA
dt

twABt

tw

k
BAexpzf

zvk

v ββ
αα

ββ
βα

ε

+−+
+−+

















+−+

−−−′ ∫∑
−

�

�

                                                                                                            (2.9) 
 Integrating get (2.7). 
 
Theorem 2.3. Let 10,1,2,...,=2, , −≥∈ kjkf A  are a natural numbers,  
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1<,1,0<1 βα≤≤≤ AB  and 1<βα + . Also, let 1\= ΩΩ C , where  
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we note that both functions are analytic in U  and 0=(0)=1(0) qp − , using Lemma 1.3 

with 1=N  and   
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 Equation (2.10) is equivalent to the following subordinations,  
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Theorem 2.4.  Let 10,1,2,...,=2, , −≥∈ kjkf A  are a natural numbers, 
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For 0==1),<(0  21= βαγγ ≤−A  and 1= −B  in Theorem 2.4 we get the 
following corollary.  
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Further, if 
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 Putting 0=γ  in Corollary 2.5 we obtain the following result.  
 
Corollary 2.6. Let 2 , ≥∈ kf A  is a natural number, 1.>   1,0,1,2,..,= µandkj −  
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