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Abstract. In this paper, we derive a necessary and sufficiendition, distortion theorem
and coefficient inequalities are determined for vatént functions with negative
coefficients that are-starlike of order3 and q-convex of order3. We also establish
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belonging to the clas§, (5) .
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1. Introduction
Let S denote the class of functions of form

f(z)=z+>az" (1.1)
n=2
Which are analytic and univalent in the open ditk
U={z:zOC and |z|<1},
with S'(B) and K(B), 0< B<1, designating the subclasses $f consisting of

functions starlike and convex of ordg. We shall denote by the subclass of
consisting of functions that may be expressedérfoim

f(2)= z—iakz", (a, =0). (1.2)
Further, let )
T.(B)=S,(BnT  (0sp<1) (1.3)
and
C(B =K, (BT (0= B<1). (1.4)
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Jackson[2] initiated) -calculus and developed the concept of théntegral andq -

derivative.
For a functionf OJS given by (1.1) andd < <1, the gq-derivative of f is

defined by

Definition 1.1.
f(2)-f(g2)
0,f(2)= (1-q = 0 (L5)
f'(0), z=0, 0<qg<l1.

Equivalently (1.5), may be written & f (z) =1+ Z:zz[n]q%zn"l, z# 0 where
1_
[n], ==
1-q
Making use ofaqf T. M. Seoudy and M. K. Aouf [4] introduced the slasses
S,(B) and K, (B) defined by

n

. Note that agg —~ 1, [n], - n.

Definition 1.2. Afunction f(z)JA issaidtobe q-starlikeof order B, 0< S <1,if

. 20,f(2)
andonlyif R fq() > [, for all zOU.
y4

We denote bﬁ; (f) the subclass oA consisting of all starlike functions of ordgt in
the unit diskU.

Definition 1.3. Afunction f(z)JA issaidtobe q-convexof order 8, 0< <1, if
0,\20,f(z
andonlyif R 3,(@,1(2) >B,  for al zOU.
d,f(2)
We denote byK,(5) the subclass oA consisting of all convex functions of ordgr

in the unit diskU .
We note thatf OK, () if and only if 20, f O'S, ()

and lim S;(8) =S (B), and lim K,(8) = K(B),

where S (B), K(pB) are the classes of starlike and convex functiohorder B
respectively.

2. Main results
Theorem 2.1. Afunction f(2)=z+) " az"isin S (B),if

> (1K, - Alak1-5. .1
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20 f(z
Proof: It suffices to show that the values ferqJ lie in a circle centered at =1
Z

whose radius i4- £.

S([Kl, ~1)a 2

|Zz?qf(z)_]‘:|Z(3qf(z)—f(Z)|:k:2

@ T t@ | ‘ 1387 ‘

S(K, -Dlalizl Skl -1)|a |

k2 k2 )
1-> laliz” 1-2> lal

This last expression is bounded abovelbyf if

S0, -Dla, k(- [1-3 14,1}

which is equivalent to

2. (Kl,=B)la k1-B. (2.2)
k=2
. . 20,f(2) .
But (2.2) is true by hypothesis. He eefq(—) -1 <1- . This completes the proof.
z

As g - 1, we have following result proved by Herb silverrfdn

Corollary 2.2. Let f(2) = z+Z°k°:2aka. if Z:zz(k_ﬁ)lak l<1-, then
fOS (D).

As q - 1 and 8 =0, we have following result, proved by Goodman [1].

Corollary 23. Let f(2) =2+ _az".if >~ k|a 1, then fOS".
Also special case of Theorem 2.1 whggn» 1 and £ :% proved by Schild [3].
. - 0o k . . .
Theorem 2.4. Afunction f(z) = Z+Zk:2akz isin C,(B) , if
DKl (K], - B)la k1- 8. (2.3)
k=2

Proof: It can be easily seen thd(z) 1C () if and only if 0, f (2) DS[; (). Since

2,f(2)=z+) [kl a2z, we may replace, with [K],a, in the theorem.
As g - 1, we have following result proved by Herb silverifiin
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Corollary 25. Afunction f(2)=z+) " az"isin C(B), if
> k(k-B)la k1-B.

Theorem 2.6. Afunction f(2)=z-)" |a |Z“isin T;(B).if and onlyif

> (1K1, = A)la ks 1- . 2.4

Proof: In view of Theorem 2.1, it suffices to show thdydfpart. Assume that

> L, |z|<1. (2.5)

e{zaqf(z)} Z_ki[k]qlaklzk
R = Re] 2
@ 2NENES

20, f(z
Choose values of on the real axis so thatfq(—()) is real. Upon clearing the
z
denominator in (2.5) and letting — 1 through real values, we obtain
1-> Kl la /3(1—2 |a, I]-
k=2 k=2
Thus Z(::z([k]q - )| a, £1- B, and this completes the proof.
As g - 1, we have following result proved by Herb silvernjgh
Corollary 2.7. Afunction f(2)=z-)"" |a |z isin T"(f),if and only if
Yok=B)la £1-B.

Corollary 2.8. If f DT;(,[S’) then | a, |< [kl]_ﬁﬁ, with equality only for functions of
q
_ k
theform f,(2) = z—%.
[kl,-8

Theorem 2.9. Afunction f(2)=z-) " |a |Z“isin C,(8),if and only f

> 1K1, (1K, - )3, 15, 26)

Proof: The proof follows as that of the Theorem 2.4.
As g - 1, we have following result proved by Herb silverifin
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Corollary 2.10. Afunction f(2)=z-Y"" |a |z isin C(B),ifand onlyif
D Kk=B)|a l<1-p.

Theorem 2.11. If f OT ,then > K], |a, [<1.
Pr oof: Supposezrzz[k]q |a, |=1+¢&,(£>0). Then there exists an integBt such that

N-1

Z:‘Zz[k]q | a, |>1+£. For z in the interval 1 <z<1, we have
2 1+%

N N
aq f (Z) S:I-_Z:[k]q |ak | Zk_l <1l- ZN_lZ[k]q |ak |<1_(1+%jZN—1 <0.
k=2 k=2

sinced, f (0)> 0, there exists a real numbeyg, 0< z, <1, for whichd f(z)=0.
Hence f (z2) JT, and the theorem is proved.
As g - 1, we have following result proved by Herb silvernij&h

Corollary 2.12. If f OT ,then > k|a, [<1.

Theorem 2.13.If f OT, (), then

gy LA s ezl
with equality for f (2) = Z_([]é]_q—ﬂ‘);z’ (z=4r).

Proof: Note that([2], - 8)Y . la €D (K], = B)|a, |1~ B, this last inequality
following from Theorem 2.6. Thus

E@)ler+Y la r sr+r2Y g r+ B r2,
k=2 k=2

r
[2],-8

Similarly,

f(2)zr - r<>r-r? > - r2.
| f(2)] kZ:;|<'ik| ;lakl 2l.- 5

As g - 1, we have following result proved by Herb silverifgn

Corollary 2.14. If f OT (f), then
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r—%rzsﬁ(zﬂs”%rz (|z|=r),
with equality for f (2) = z—%, (z=4r).
Theorem 2.15. If f JC,(/), then
LB e Y B e
N E R MR 7y S
with equality for f (z) = z— 1-pz (z==r).

[2],021, -8

As g - 1, we have following result proved by Herb silverrfdn

Corallary 2.16. If f OC(f), then

_i 2 1_13 2 —
2(2_13)r s|f(z)|sr+2(2_ﬁ)r (Iz|=n),

1-pz°
2(2-p)°
Theorem 2.17. Thedisk | z|<1 is mapped onto a domain that contains the disk
| wl< [2],-1
[2],-8
_ ([, -2, +1)- B
(21,21, - B)

functions f (2) = z—%ﬂﬁ(ﬁ) and f(2) = z—% 0C,(B)-

Proof: The results follow upon letting — 1, in Theorem 2.13 and Theorem 2.15.
As q - 1, we get Theorend in [5].

with equality for f (2) = z-

(z=4r).

by any fDTq* (f), and onto a domain that contains the disk

|w]

, by any f 00C,(5). The theorem is sharp, with extremal

Theorem 2.18.1f f OT_ (), then

1——[2]q(1_'8) r<lo,f(z2)k 1+—[2]q(1_'8) r (| z|=7).
[2l,-8 [2l,-8
| __@-pZ
Equality holds forf (z) = z 2. -5 , (z=4=r).

Proof: We have
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10,f(2) |1+ Y [K], a1 z[T'<1+r Y [K], |2 |. (.7)
k=2 k=2
From Theoren?.6, we have

ST, o K1- 5+ 53 |, k1- g+ A=A _LA=H)

[2l,-8  [2,-8

(2.8)

substitution of (2.8) into (2.7) we obtamqadq f(2)| 1+Wr_ On the other
hand, d
10,1 (D) 1- STk, [8, 12 21-rS K], |3 p1- e A)
21,- 8

and the proof is complete.
As g - 1, we have following result proved by Herb silverifn

Corollary 2.19. If f OT(p), then

1——2(21_'5) r <l ()l 1+—2(21_'§) (2.
Equality holds forf (z) = Z—%, (z=4r).

Theorem 2.20. If f TJC (), then

1—[(2?;_ﬁLrs|aqf(z)|s1+[(2I—_’[i)8r (z|=1).

ﬂ, (Z = ir)
[2],(2], - B)

Equality holds forf (z) = z—

Theorem 2.21. If f OT_ (), then f is g-convexin the disk

[ K-8 )
zl<r(B)=inf| =%, n=2,3,...).
|zI<r(B)=in ([k]q(l—,B)J ( )
: : , : . @-pz
The result is sharp, with the extremal functiomieof the formf, (z) = z— K-7)

for somen.
] zaéf(z)
Proof: It suffices to show that————
aqf(z)

<1 for | z[< r(f). We have
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0

D 1Kl (Kl ~Dla 1z

SK], (K], ~1) |3, [ 2

25f )|

k=2 < k=2 —
0.1 ‘ 1+ 3K, |3, |27 ‘ 1- YK, I llz[
k=2 k=2
2021 (z d ©
thus 2 D o1 it S0,k - Dla, lzE <1~ 3K, I l12F,
aqf(z) k=2 k=2
or
DI la NIz '<1. (2.9)
k=2
According to Theorem 2.6; kzz([(l;]q;;g)laklsl. Hence (2.9) will be true if
[k] |z|'1_[ kg ,B’B (n=2,3,...). (2.10)
Solving (2.10) forz , we obtaln
[Kl,-8 |+
2| ———— n=23,..). 2.11
|z] ([k]f](l— ﬂ)] ( ) (2.11)

Sitting | z|=r (L) in (2.11), the result is follows.

1-8
h 22, f.(2) = d f =z-———— k=2,3,..).
Theorem 2.22. Let f,(z)=z and f,(2) =2 [k]q—ﬁz ( )

Then f DT;(,B) if and only if it can expressed in the form
f(2)=>Af(2), whereA, >0and}° A =1.
k=1

Proof: Suppose j[ha‘[

(=340 = L@+IARED  =Az+ ZA( [k1] ﬂﬂ J

k=2

o ((1-p YK,-B)_&, _
ZAK([k] f’ﬁ}( " j—ZAk—l—Alsl.
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Thus f OT, (B).
1-B
[kl,— B

Conversely, supposé DTq* (B). Since|a, < (k=2,3,...), we may

[Kl, -8

setA, =

andA, =1-%"" A,. Then

(2= AL

And the proof of Theorem 2.22 is complete.
As g - 1, we have following result proved by Herb silverrfidn

Corollary 2.23. Let f,(z)=2z and f,(2) = z—% Z“ (k=2,3,...). Then
f OT (p) if and only if it can expressed intheform f (2) = i/ik f.(2),
k=1
where A, >0 and ) " 4, =1.
3. Partial sums
In this section, we will examine the ratio of a dtion of the form (1.1) to its sequence of

partial sumsf, (z) = z+z::2anz” when the coefficients of are sufficiently small to
satisfy the condition (2.4). We will determine ghéower bounds for

D{ f(z)}ﬂ{fk(z)}ﬂ{aqf(z)} andm{aqfk(z)}
f.(2) f(2 2,f.(2 2,f(2

Theorem 3.1. If f of theform (1.1) and satisfies condition (2.4) , then

D{M}zl—i, (zOU,kON), (3.1)
f.(2) Ce1
and
D{fk(z)}z S (z0U,kDN), 3.2)
f(2)] 1+c,
wherec, = M . The estimates in (3.1) and (3.2) are sharp.

Proof: Suppose thaf satisfies condition (2.4), by Theorem 2.6, we have

fOT,(B) = D¢, la, 1,
n=2

It is easy to verify that,,, >C, >1. Thus,
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Zlanl+ck+12 Ian|<2c la, [<1.

n=k+1
We may write

[ 00
1+ Zn—l +cC . Zn—l
Cest 2 {1_ : j - nz:;aﬂ K kln;laﬂ =1+ A2
(2 1+ 38,2 L+B(2)

n=2

Ck +1

Set
1+ A(2) _1+wW(2)
1+B(2) 1-wW(2)’

] o 3 a2
so that W(2) =%, then w(z) = n=ktd
+ (Z)+ (Z) 2+22anzn 1+Ck+lzanznl
n=k+1

Ck+1z |an|

k+1
and [W(2) & "

2- ZZIanI G Y |

n=k+1

Now |w(z) g 1 if and only if Z:|an | +C.y Z la, <1,

n=2 n=k+1
which is true by (3.3). This readily yields theexsi®n (3.1).
To see that
Zk+l
f(2)=z-
Ck+1

gives sharp results, we observe thatZer re%
1@,z
fi(2) B Cna -

fa _,._ 1

K (Z) G ’

which shows that the bounds in (3.1) are the bassiple for eacin [IN.
In the same way we take

(1+c,.,) f(2 _ Gau
f(2) 1l+cy,

Letting z - 1, we have ———

n=k+1

. 1-w(2)

j 1+ Za.nzn N +Ck+l Z a'n 1+W(Z)
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(3.3)

(3.4)



Hamid Shamsan and S. Latha

1+Ck+1 Z |an|

n=k+1

2- ZZIanI (1+ck+1)ZIa1|

n=k+1

Now |w(z) g 1 if and only if z la, | +(1+c,.,) Z la, k1,

=k+1

which is true by (3.3). This readlly yields theexslmn (3.2).
The estimate in (3.2) is sharp with the extremaicfion f (z) given by (3.4).

This completes the proof of Theorem.

where |W(2)[g

Theorem 3.2.If f If f of theform (1.1) and satisfies condition (2.4), then

D{aqf(z)}zl—[k]qul, (zOU,kON), 1.
aqfk(z) Ck+l
and
D{aqfk(z)}z G (zOU,KON), (3.6)
0,f(2 | [K],*1+c,

wherec, = ([ ] ~A) . The estimates in (3.5) and (3.6) are sharp with éxtremal

function given by (3.4).
Proof: We may write
n -1

) {aqf(z) _[1_[k] +1]}:1+;[”]qa“zn_ [k] _1+AQ)
K+ 2, f.(2) Cest 1+Z[n]qanzn_l 1+ B(z).
CLEAD) 1w B(2)- A2)

1+B(2) 1-W(2)’ 2+B(2)+A(2)’

"[K, +1Z[ g2, 2™

n=k+1

then w(z) = -

2+2;[n]qanz“'l T 3 [,z

n=k+1

and

S S n], |a, |

|W(Z)|< . [k] +1n—k+l

2- ZZ[H] |an|‘m2[] |an|

n=k+1
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Now |W(z)|< 1 if and only if ——1 [k] ") Z[] |an|+2[n] la, 1.

From the condition (2.4), it is suffices to showtth

[k‘;k+1 z[] |an|+2[n1 ENNEN]

This is equivalent to showing that

K S ([k]q +1)c, —nc,
;(Cn -[nly)la, I+n:Zk+1 K], +1 >

To prove the second part of this theorem, we write

Ck+1 n-1
2,12 —(1_[”“1}}:1_(1 K, +J§J e

w(2) = ([K], +1+ Ck+1){

d,f. (2 Cus 1+Z[n]qanzn_l
> [l la, |
yields W2)-1 ( ] i <1,(z0U),

LA 22[] la, | (1+ ]Z[] I3, |

n=k+1

ifand only if 2] 1+——k2_ Z[] la |<2- ZZ[n] la, |.

[k]q +1 n=k+1
The bound in (3.6)is sharp for allLIN with the extremal function (3.4). This completes
the proof.
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