Annals of Pure and Applied Mathematics Vol. 16, No. 1, 2018, 21-30 ISSN: 2279-087X (P), 2279-0888(online) Published on 1 January 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n1a3

Annals of **Pure and Applied Mathematics**

On Decompositions of (r*g*)* Closed Set in Topological Spaces

N.Meenakumari¹ and T.Indira²

PG and Research Department of Mathematics Seethalakshmi Ramaswami College (Autonomous) Trichirapalli-620002, Tamilnadu. India ¹email:meenamega25@gmail.com; ²email:drtindirachandru@gmail.com

Received 20 November 17; accepted 10 December 2017

Abstract. The aim of this paper is to obtain decompositions of $(r^*g^*)^*$ closed set. The concept of $(r^*g^*)^*$ locally closed sets and $(r^*g^*)^*$ locally continuous functions are introduced and some of their properties are investigated. Furthermore the notions of P* sets, P** sets, Q** sets, W* sets and A* sets are introduced and are used to obtain the decompositions of $(r^*g^*)^*$ closed sets.

Keywords: $(r^*g^*)^*$ closed set, $(r^*g^*)^*$ closure, $(r^*g^*)^*$ continuous functions, $(r^*g^*)^*$ irresolute functions, $(r^*g^*)^*$ open sets.

AMS Mathematics Subject Classification (2010): 54A05

1. Introduction

Levin [10] introduced the concept of generalized closed set in topological spaces. The concept of locally closed sets in a topological space was introduced by Bourbaki [4]. Ganster and Reilly [5] further studied the properties of locally closed sets and defined the LC–continuity and LC-irresoluteness. Balachandran et al. [3] introduced the concept of generalized locally closed sets and GLC – continuous functions and investigated some of their properties. Arockiarani, Balachandran and Ganster [2] introduced regular generalized locally closed sets and RGL- continuous functions. The Authors [12] have already introduced (r*g*)* closed sets and investigated some of their properties. The aim of this paper is to introduce (r*g*)* locally closed set and (r*g*)* locally continuous function and investigate some of their properties. Furthermore the notions of P* sets, P** sets, Q** sets, W* sets and A* sets are used to obtain the decompositions of (r*g*)* closed sets.

2. Preliminaries

Definition 2.1. A subset A of a Topological space X is called

1) A generalized closed set (g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

- 2) A regular generalized closed set (rg-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open.
- A(r*g*)* closed set [12] if cl(A) ⊆U whenever A⊆U and U is r*g*- open. The complement of (r*g*)* closed set is (r*g*)* open.
- 4) A locally closed set [5] if $A = S \cap F$ where S is open and F is closed.
- 5) A generalized locally closed set [3] if $A = S \cap F$ where S is g-open and F is g-closed.
- 6) A glc*-set [3] if $A = S \cap F$ where S is g-open and F is closed.
- 7) A glc**-set [3] if $A = S \cap F$ where S is open and F is g- closed.
- 8) A regular generalized locally closed set [2] is $S = G \cap F$ where G is rg-open and F is rg-closed in (X, \mathfrak{I}) .
- 9) A rglc* [2] if there exists a rg-open set G and a closed set F of (X,ℑ) such that S=G ∩ F.
- 10) A rglc**[2] if there exists an open set G and a rg-closed set F such that $B = G \cap F$.

Definition 2.2. A subset S of a topological space is called a

- 1. t set [17] if int(S)=int(cl(S)).
- 2. $t^{*}set[7]$ if cl(S) = cl(int(S)).
- 3. α^* set if [15] int(S)=int(cl(int(S))).
- 4. C set [16] if $S = G \cap F$ where G is open and F is a t set.
- 5. Cr set [16] if $S=L \cap M$ where L is rg open and M is a t set.
- 6. Cr*set [16] if S=L \cap M where L is rg open and M is a α^* set.
- 7. A set if [18] $S = G \cap F$ where G is open and F is a regular closed set.

Definition 2.3. Let X be a Topological space. Let A be a subset of X. $(r^*g^*)^*$ closure [14] of A is defined as the intersection of all $(r^*g^*)^*$ closed sets containing A.

Definition 2.3. A function $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is called

- (i) g- continuous [10] if $f^{1}(V)$ is g closed in (X, \mathfrak{F}) for every closed set V of (Y, σ).
- (ii) $(r^*g^*)^*$ -continuous [13] if the inverse image of every closed set in (Y, σ) is $(r^*g^*)^*$ -closed in (X,\mathfrak{F})
- (iii) $(r^*g^*)^*$ -irresolute map [13] if $f^{-1}(V)$ is a $(r^*g^*)^*$ -closed set in (X, \mathfrak{I}) for every $(r^*g^*)^*$ closed set V of (Y, σ) .
- (iv) LC-continuous [5] if $f^{-1}(V)$ is a locally closed set in (X, \mathfrak{I}) for every open set V of (Y, σ).
- (v) G LC-continuous [3] if $f^{-1}(V)$ is a gl-closed set in (X, \mathfrak{I}) for every open V of (Y, σ).
- (vi) Rgl continuous [2] if $f^{-1}(V)$ is a rgl closed set in (X, \mathfrak{I}) for every open V of (Y, σ).

3. (r*g*)* locally closed sets

Definition 3.1. A Subset S of (X, \mathfrak{F}) is called $(r^*g^*)^*$ Locally closed if $S = A \cap B$ where A is $(r^*g^*)^*$ open and B is $(r^*g^*)^*$ closed.

Example 3.2. Let $X = \{a, b, c\}$. Let $\Im = (\phi, X, \{a\}, \{b\}, \{a, b\}\}$.

Closed sets are { φX , {c},{b,c},{a,c}} (r*g*)* closed sets are { φ , X, {c},{b,c},{a,c}} (r*g*)* open sets are { φ , X, {a,b} {a},{b}} Now {a} = {a,b} \cap {a,c} where {a,b} is (r*g*)*open and {a,c} (r*g*)* closed and hence {a} is a (r*g*)*locally closed set. Here {a},{b},{c},{a,b},{b,c},{a,c} are (r*g*)* Locally closed sets.

Definition 3.3. A Subset S of (X, \Im) is called $(r^*g^*)^*$ Locally * closed if S = A \cap B where A is $(r^*g^*)^*$ open and B is closed.

Example 3.4. In Example 3.2 $\{b\}=\{a,b\}\cap\{b,c\}$ is $(r^*g^*)^*$ Locally * closed.

Definition 3.5. A subset S of (X, \Im) is called $(r^*g^*)^*$ locally** closed if S = A \cap B where A is open and B is $(r^*g^*)^*$ closed.

Example 3.6. In Example 3.2 $\{a\}=\{a,b\}\cap \{a,c\}$ is $(r^*g^*)^*$ locally **closed.

Remark 3.7. Every closed set is $(r^*g^*)^*$ locally closed set.

Theorem 3.8.

- (i) Every Locally closed sets is $(r^*g^*)^*$ locally closed.
- (ii) Every g^* locally closed set is $(r^*g^*)^*$ locally closed
- (iii) Every $(r^*g^*)^*$ locally closed set is gpr locally closed
- (iv) Every $(r^*g^*)^*$ locally closed set is rwg locally closed

(v) Every $(r^*g^*)^*$ locally closed set is rg locally closed

Proof:

(i) Let $S=A \cap B$ where A is open and B is closed in X. But every open set is $(r^*g^*)^*$ open and every closed set is $(r^*g^*)^*$ closed and hence S is $(r^*g^*)^*$ locally closed set.

(ii) Proof follows from the fact that every g^* closed set is $(r^*g^*)^*$ closed set [12].

(iii) Proof follows from the fact that every $(r^*g^*)^*$ closed set is gpr closed set [12].

(iv) Proof follows from the fact that every $(r^*g^*)^*$ closed set is rwg closed set [12].

(v) Proof follows from the fact that every $(r^*g^*)^*$ closed set is rg closed set [12].

The converse of the above statements need not true as seen from the following example.

Example 3.9.

(i) Let $X = \{a, b, c\}$. Let $\mathfrak{I} = \{\phi, X, \{c\}, \{b, c\}\}$ Closed sets are $\{\phi, X, \{a\}, \{a, b\}\}$ (r*g*)* closed sets are $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ (r*g*)* open sets are $\{\phi, X, \{b, c\}, \{c\}, \{b\}\}$ Here $\{a, c\}$ is (r*g*)*locally closed set but not locally closed set.

(ii) Let X={a,b,c}, $\mathfrak{I} = \{\varphi, X, \{a\}\}$ Closed sets are { $\varphi, X, \{a\}$ } Here {b} is not a g* locally closed set but it is a $(r^*g^*)^*$ closed set. (iii) let X={a,b,c,d}, $\mathfrak{I} = (\varphi, X, \{a\}, \{a,c\}, \{a,d\}, \{a,c,d\}\}$ Closed sets are { $\varphi, X, \{b,c,d\}, \{b,d\}, \{b,c\}, \{b\}\}$ Here {c,d} is gpr closed set but not $(r^*g^*)^*$ closed set. (iv) In the above example {a,c,d} is rwg closed set but not $(r^*g^*)^*$ closed set. (v) In the above example {c,d} is rg closed set but not $(r^*g^*)^*$ closed set.

Remark 3.10.

 $(r^*g^*)^*$ locally closed sets are independent of semilocally closed sets, α locally closed sets, wg locally closed sets and the following examples support our statement.

Example 3.11.

Let $X = \{a,b,c,d\}$, $\Im = \{\phi, X, \{a,b\} \{c,d\}\}$. Here $\{a\}$ is $(r^*g^*)^*$ locally closed but not semi locally closed set.

Let X={a,b,c,d}, $\Im = \{ \phi, X, \{a\}, \{a,c\}, \{a,d\}, \{a,c,d\}$. Here {c,d} is semi locally closed set but not $(r^*g^*)^*$ locally closed set.

Example 3.12. Let $X = \{a,b,c,d\}$, $\Im = \{\phi, X, \{a,c\}, \{a,d\}, \{a,c,d\}\}$ Here $\{a,c\}$ in not α locally closed set but $\{a,c\}$ is $(r^*g^*)^*$ locally closed set Here $\{c,d\}$ is α locally closed set but $\{c,d\}$ is not $(r^*g^*)^*$ locally closed.

Example 3.13. From the above example, $\{c,d\}$ is wg locally closed set but $\{c,d\}$ is not $(r^*g^*)^*$ locally closed set.

Let X={a,b,c,d}, $\Im = \{ \phi, X, \{a,b,c\}, \{a,c,d\}, \{a,c\}, \{a\}, \{c\}\}\}$. Here {a,d} is $(r^*g^*)^*$ closed set but not wg locally closed set.

Theorem 3.14. Every locally closed set is $(r^*g^*)^*$ locally* closed. The converse need not be true as seen from the following example.

Example 3.15. In example 3.8 $\{a,c\}$ is $(r^*g^*)^*$ locally*closed but not locally closed.

Theorem 3.16. Every locally closed set is $(r^*g^*)^*$ locally** closed. The converse need not be true as seen from the following example. In example 3.9 {a,c} is $(r^*g^*)^*$ locally** closed but not locally closed.

Theorem 3.17. If A is $(r^*g^*)^*$ locally closed in X and B is $(r^*g^*)^*$ open then A \cap B is $(r^*g^*)^*$ locally closed in X. **Proof:** Since A is $(r^*g^*)^*$ locally closed A=P \cap Q where P is $(r^*g^*)^*$ Closed and Q is $(r^*g^*)^*$ open. Now A \cap B = $(P \cap Q) \cap$ B =P $\cap (Q \cap B)$. Since $(Q \cap B)$ is $(r^*g^*)^*$ open and P is $(r^*g^*)^*$ closed A \cap B is $(r^*g^*)^*$ locally closed.

Theorem 3.18. A subset S of (X, \Im) is $(r^*g^*)^*$ Locally closed (X - S) is the union of a $(r^*g^*)^*$ open and a $(r^*g^*)^*$ closed set.

Proof: If S is $(r^*g^*)^*$ locally closed then $S = P \cap Q$ where P is $(r^*g^*)^*$ closed And Q is $(r^*g^*)^*$ open . Now X - S = X - $(P \cap Q) = (P \cap Q)^c = P^c \cup Q^c$ Now P^c is $(r^*g^*)^*$ open& Q^c is $(r^*g^*)^*$ closed. Hence the result.

Result 3.19. The complement of a $(r^*g^*)^*$ locally closed set need not be locally closed.

Example 3.20. Let $X = \{a,b,c\}, \Im = \{\varphi, X, \{c\}, \{b,c\}.$ Closed sets are $\{\varphi, X, \{a,b\}, \{a\}\}$ Here $\{b\}$ is $(r^*g^*)^*$ locally closed .But its complement $\{a,c\}$ is not locally closed.

Theorem 3.21. Let A and B are subsets of (X, \mathfrak{F}) . If A is $(r^*g^*)^*$ locally**closed and B is open then A \cap B is $(r^*g^*)^*$ locally**closed. **Proof:** Let A be $(r^*g^*)^*$ locally**closed in (X, \mathfrak{F}) . Then there exists an open set P and $(r^*g^*)^*$ closed set Q such that A=P \cap Q. Now A \cap B = $(P \cap Q) \cap B = (P \cap B) \cap Q$ which is $(r^*g^*)^*$ locally**closed set.

Theorem 3.22. If A is $(r^*g^*)^*$ locally closed subset of (X, \mathfrak{I}) and B is $(r^*g^*)^*$ closed then A \cap B is $(r^*g^*)^*$ locally closed.

Proof: Let A be $(r^*g^*)^*$ locally* closed. Then A=P \cap Q where P is $(r^*g^*)^*$ open and Q is closed. Now A \cap B = (P \cap Q) \cap B=P \cap (B \cap Q). Hence A \cap B is $(r^*g^*)^*$ locally closed.

Theorem 3.23. If A is $(r^*g^*)^*$ locally*closed subset of (X,\Im) and B is $(r^*g^*)^*$ open then A \cap B is $(r^*g^*)^*$ locally closed.

Proof: Let A be $(r^*g^*)^*$ locally closed. Then $A=P \cap Q$ where P is $(r^*g^*)^*$ open and Q is $(r^*g^*)^*$ closed. Now $A \cap B = (P \cap Q) \cap B = (P \cap B) \cap Q$. Hence $A \cap B$ is $(r^*g^*)^*$ locally closed.

4. (r*g*)* locally continuous functions

Definition 4.1. A function $f :(X, \mathfrak{F}) \to (Y, \sigma)$ is called $(r^*g^*)^*$ locally continuous , if $f^1(V)$ is $(r^*g^*)^*$ locally closed in (X, \mathfrak{F}) for every open set V in (Y, σ) .

Example 4.2. Let $X = \{a,b,c\}$ and $\mathfrak{I} = \{X, \varphi, \{c\}, \{b,c\}\}$. Closed sets are $\{X, \varphi, \{a,b\}, \{a\}\}$. $(r^*g^*)^*$ Closed sets are $\{X, \varphi, \{a\}, \{a,b\}, \{a,c\}\}$. $(r^*g^*)^*$ locally closed set are $\{X, \varphi, \{b,c\}, \{c\}, \{b\}\}$. $(r^*g^*)^*$ locally closed set are $\{X, \varphi, \{a\}, \{a,b\}, \{a,c\}, \{b,c\}, \{c\}, \{b\}\}$. Let $Y = \{a,b,c\} \sigma = \{Y, \varphi, \{b\}\}$ Define $f: (X, \mathfrak{I}) \rightarrow (Y, \sigma)$ defined by f(a) = a, f(b) = c f(c) = b. Now $\{b\} \in \sigma$ and $f^1(\{b\}) = \{c\}$ which $is(r^*g^*)^*$ locally closed $in(X, \mathfrak{I})$. Hence f is $(r^*g^*)^*$ locally continuous function.

Definition 4.3. A function $f(X,\mathfrak{J}) \to (Y, \sigma)$ is said to be a $(r^*g^*)^*$ locally irresolute function if $f^{-1}(V)$ is a $(r^*g^*)^*$ locallyclosed set in (X,\mathfrak{J}) for every $(r^*g^*)^*$ locally closed set V of (Y, σ) .

Example 4.4. Let X={a,b,c} $\Im = \{\varphi, X, \{a\}\}$. Closed sets = { $\phi, X, \{b,c\}\}$ (r*g*)* closed sets are { $\phi, X, \{b\}, \{a,b\} \{c\}, \{a,c\} \}$ (r*g*)*open sets are { $\phi, X, \{a\}, \{b\}, \{a,b\} \{c\}, \{a,c\} \}$ (r*g*)*locally closed sets are { $\phi, X, \{a\}, \{b\}, \{a,b\} \{c\}, \{a,c\} \}$ Y={a,b,c}, $\sigma = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Closed set of Y = { $\phi, X, \{b,c\}, \{a,c\}, \{c\}\}$ (r*g*)* closed set of Y are { $\phi, Y, \{c\}, \{b,c\}, \{a,c\} \}$ (r*g*)*open sets of Y are { $\phi, Y, \{c\}, \{b,c\}, \{a,c\} \}$ (r*g*)*locally closed sets are { $\phi, Y, \{a\}, \{b\}, \{a,b\}\}$ (r*g*)*locally closed sets are { $\phi, Y, \{a\}, \{b\}, \{a,b\}\}$ Here Let f : (X, \Im) \rightarrow (Y, σ) be defined by f(c)=c,f(b)=a,f(a)=b f¹({a})={b}, f¹(b)={a}, f¹({c})={c} f¹({a,b})={a,b}, f¹({b,c})={a,c}, f¹({a,c})={b,c} which are (r*g*)* locally closed in (X, \Im). Hence f is a (r*g*)*locally closed irresolute map.

Theorem 4.5. Every locally continuous function is $(r^*g^*)^*$ locally continuous. **Proof:** Let $f: (X, \mathfrak{T}) \to (Y, \sigma)$ be a locally continuous map. Let F be an open set in (Y, σ) . Then $f^{-1}(F)$ is locally closed in (X, \mathfrak{T}) . Since every locally closed set is $(r^*g^*)^*$ locally closed, $f^{-1}(F)$ is $(r^*g^*)^*$ locally-closed set. Therefore f is $(r^*g^*)^*$ locally continuous. The converse need not be true as seen from the following example.

Example 4.6. Let $X = \{a,b,c\} \mathfrak{I} = \{\phi,X, \{c\},\{b,c\}\}.$ Closed set of $X = \{\phi,X,\{a,b\},\{a\}\}$ Locally closed sets are $\{\phi,X,\{a\},\{c\},\{a,c\}\}$ $(r^*g^*)^*$ closed sets are $\{\phi,X,\{a\},\{a,b\},\{a,c\}\}$ $(r^*g^*)^*$ locally closed sets are $\{\phi,X,\{a\},\{b\},\{a,c\}\}$ $(r^*g^*)^*$ locally closed sets are $\{\phi,X,\{a\},\{b\},\{a,c\}\}$ Let $Y = \{a,b,c\}, \quad \sigma = \{\phi,Y,\{b\}\}.$ Closed set of $Y = \{\phi,Y,\{a,c\}\}$ Locally closed sets are $\{\phi,Y,\{b\},\{a,c\}.$ Define f by f(c)=a,f(b)=b,f(a)=c.Now $\{b\}$ is open in $(Y, \sigma).f^1\{b\}=\{b\}$ which is $(r^*g^*)^*$ locally closed set. Therefore f is $(r^*g^*)^*$ locally continuous. But $f^1\{b\}=\{b\}$ is not locally closed in $(X,\mathfrak{I}).$ Hence f is not locally continuous.

Similarly we can prove the following results.

Theorem 4.7.

- (i) Every g^* locally continuous function is $(r^*g^*)^*$ locally continuous.
- (ii) Every $(r^*g^*)^*$ locally continuous function set is gpr locally continuous function
- (iii) Every (r*g*)* locally continuous function set is rwg locally continuous function
- (iv) Every (r*g*)* locally continuous function set is rg locally continuous function.

Definition 4.8. A function $f : (X, \mathfrak{J}) \to (Y, \sigma)$ is called $(r^*g^*)^*$ locally *continuous, if $f^1(V)$ is $(r^*g^*)^*$ locally* closed in (X, \mathfrak{J}) for every $V \in \sigma$.

Example 4.9. In example 4.6 the function f is $(r^*g^*)^*$ locally*continuous function.

Definition 4.10. A map $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is said to be a $(r^*g^*)^*$ locally* irresolute map if $f^{-1}(V)$ is a $(r^*g^*)^*$ locally*closed set in (X,\mathfrak{I}) for every $(r^*g^*)^*$ locally*closed set V of (Y, σ) .

Example 4.11. In example 4.4 f is $(r^*g^*)^*$ locally*irresolute. **Definition 4.12.** A function $f : (X, \mathfrak{F}) \to (Y, \sigma)$ is $(r^*g^*)^*$ locally ** continuous, if $f^1(V)$ is $(r^*g^*)^*$ locally** closed in (X,\mathfrak{F}) for every V open in (Y, σ) .

In example 4.6 the function f is $(r^*g^*)^*$ locally**closed continuous

Definition 4.13. A function $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is said to be a $(r^*g^*)^*$ locally**irresolute function if $f^{-1}(V)$ is a $(r^*g^*)^*$ locally**closed set in (X, \mathfrak{I}) for every $(r^*g^*)^*$ locally**closed set V of (Y, σ) .

Example 4.14. The function f defined in example 4.4 is a $(r^*g^*)^*$ locally** irresolute.

Theorem 4.15. Let $f: (X, \mathfrak{I}) \to (Y, \sigma)$ be a function. If f is locally continuous, then it is $(r^*g^*)^*$ locally*continuous and $(r^*g^*)^*$ locally*continuous.

Proof: Let f: $(X,\mathfrak{T}) \to (Y, \sigma)$ be a locally continuous function. Let $F \in \sigma$. Then $f^{-1}(F)$ is locally closed in (X, \mathfrak{T}) . Since every locally closed set is $(r^*g^*)^*$ locally*closed, $f^{-1}(F)$ is $(r^*g^*)^*$ locally* closed set. Therefore f is $(r^*g^*)^*$ locally*continuous. Also since every locally closed set is $(r^*g^*)^*$ locally**closed, $f^{-1}(F)$ is $(r^*g^*)^*$ locally**closed set. Hence f is $(r^*g^*)^*$ locally **continuous.

The converse need not be true as seen from the following example.

Example 4.16. Let $X = \{a,b,c\}$ and $\mathfrak{I} = \{X, \varphi, \{c\}, \{b,c\}\}$. Closed sets are $\{X, \varphi, \{a,b\}, \{a\}\}$ Locally closed sets of X are $\{X, \varphi, \{b\}, \{a,c\}\}$. $(r^*g^*)^*$ Closed sets of X are $\{X, \varphi, \{a\}, \{a,c\}\}$ $(r^*g^*)^*$ locally closed set of X are $\{X, \varphi, \{a\}, \{a,b\}, \{a,c\}, \{b,c\}, \{c\}, \{b\}\}$ $(r^*g^*)^*$ locally closed set of X are $\{X, \varphi, \{a\}, \{a,b\}, \{a,c\}, \{b,c\}, \{c\}, \{b\}\}$ $(r^*g^*)^*$ locally* closed set of X are $\{X, \varphi, \{a\}, \{a,b\}, \{a,c\}, \{b,c\}, \{c\}, \{b\}\}$ $(r^*g^*)^*$ locally** closed set of X are $\{X, \varphi, \{a\}, \{a,b\}, \{a,c\}, \{b,c\}, \{c\}\}$ Let $Y = \{a,b,c\}, \sigma = \{\phi,Y, \{a\}\}$ Closed set $= \{\phi,Y, \{b,c\}\}$ Define a mapping f: $(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ by f(a)=a, f(b)=c, f(c)=b. Here $f^1\{a\}=\{a\}$ is $(r^*g^*)^*$ locally*closed and $(r^*g^*)^*$ locally**closed but not a locally closed set. Hence f is $(r^*g^*)^*$ locally*closed continuous and $(r^*g^*)^*$ locally**continuous but not locally continuous.

Theorem 4.17. Let $f: (X, \mathfrak{I}) \to (Y, \sigma)$ be a function. If f is $(r^*g^*)^*$ locally* continuous, then it is $(r^*g^*)^*$ locally continuous. **Proof:** Let f be $(r^*g^*)^*$ locally*continuous. Let $V \in \sigma$. Then $f^1(V)$ is $(r^*g^*)^*$ locally*closed ... $f^1(V) = F \cap G$ where F is $(r^*g^*)^*$ open and G is

 \therefore f¹(V) is (r*g*)*locally closed. Hence f is (r*g*)*locally continuous.

The converse need not be true as seen from the following example.

Example 4.18. In example 4.16Let $Y = \{a,b,c\}, \sigma = \{\phi,Y, \{b,c\}\}.$ Closed set = { $\phi,Y, \{a\}$ }Define f by f(a)=b, f(c)=c f(b) =a. f¹{b,c}={a,c} is (r*g*)*locally closed and hence f is (r*g*)*locally continuous but f¹{b,c}={a,c} is not (r*g*)*locally*closed. Therefore f is not (r*g*)* locally* continuous.

Similarly, we can prove the following theorem.

Theorem 4.19. Let $f : (X, \mathfrak{I}) \to (Y, \sigma)$ be a map. If f is $(r^*g^*)^*$ locally** continuous, then it is $(r^*g^*)^*$ locally continuous.

The converse need not be true as seen from the following example.

In example 4.16 let $Y = \{a,b,c\}, \sigma = \{\phi,Y, \{b,\}\}$. Closed set $= \{\phi,Y, \{ac\}\}$ define f by f(b)=b, f (c)=a, f (a) =c. Now f¹{b}={b} is (r*g*)*locally closed and hence f is (r*g*)* locally continuous. But f¹{b}={b} is not (r*g*)* locally* closed in X. Therefore f is not (r*g*)*locally** continuous.

Theorem 4.20. Let $f : (X, \mathfrak{I}) \to (Y, \sigma)$ be a map. If f is $(r^*g^*)^*$ locally* irresolute, then it is $(r^*g^*)^*$ locally continuous.

Proof: Let $V \in \sigma$. Then $V = V \cap Y$. Hence V is $(r^*g^*)^*$ locally closed in Y. Since f is $(r^*g^*)^*$ locally*irresolute, $f^1(V)$ is $(r^*g^*)^*$ locally*closed. Now $f^1(V) = F \cap G$, where F is $(r^*g^*)^*$ open and G is closed. But every closed set is $(r^*g^*)^*$ closed $\stackrel{\circ}{\sim} f^1(V)$ is (r^*g^*) locally closed. Hence f is $(r^*g^*)^*$ locally continuous.

The converse need not be true as seen from the following example.

In example 4.16, let $Y = \{a,b,c\}, \sigma = \{\phi,Y, \{a,b\}\}$. Closed set $= \{\phi,Y, \{c\}\}$. Let f be defined by f(a)=a, f(c)=b, f(b)=c. Now $f^1\{a,b\}=\{a,c\}$ is $(r^*g^*)^*$ locally closed but not $(r^*g^*)^*$ locally*closed. Hence f is $(r^*g^*)^*$ locally continuous but not $(r^*g^*)^*$ locally* irresolute.

Remark 4.21. Composition of two $(r^*g^*)^*$ locally continuous function need not be $(r^*g^*)^*$ locally continuous. Let $X=Y=\{a,b,c,d\}$. Let $f:(X, \mathfrak{I}) \rightarrow (Y, \sigma)$ where $\mathfrak{I}=\{\phi, X, \{a,c\}, \{a,d\}, \{a\}, \{a,c,d\}\}$. $\sigma = \{\phi, X, \{a,b\}, \{c,d\}\}$. Let f be defined by f(a) = a, f(d) = c, f(c)=b, f(b) = d $f^1(a,b) = \{a,c\}, f^1(c,d) = \{d,b\}$ $f^1(a,b)$ is $(r^*g^*)^*$ locally closed. $f^1\{(c,d)\}$ is $(r^*g^*)^*$ locally closed. Hence

 $f: X \rightarrow Y$ is $(r^*g^*)^*$ locally continuous

let g : (Y, σ) \rightarrow (Z, η) where η = { ϕ ,X, {a,b}} be defined by g (c) = b, g(a) = c, g(d) = d, g(b)=a.

 $g^{-1}(\{a,b\})=\{b,c\}$ is $(r^*g^*)^*$ locally closed and hence g is $(r^*g^*)^*$ locally continuous but (g o f)⁻¹ ($\{a,b\}$) = f⁻¹ ($\{-1, \{a,b\}$) = f⁻¹ ($\{b,c\}$) = {c,d} is not (r^*g^*)* locally closed. Hence g o f is not (r^*g^*)* locally continuous.

The following theorem gives the condition under which the composition of two functions is $(r^*g^*)^*$ locally continuous.

Theorem 4.22. Let $f: (X, \mathfrak{J}) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two function. Then

- 1) gof is (r*g*)*locally continuous if g is(r*g*)*locally continuous and f is (r*g*)* locally irresolute
- 2) gof is $(r^*g^*)^*$ locally irresolute if both f and g are $(r^*g^*)^*$ locally irresolute.
- 3) gof is $(r^*g^*)^*$ locally* continuous if g is $(r^*g^*)^*$ locally* continuous and f is $(r^*g^*)^*$ locally*irresolute.

5. Another decomposition of (r*g*)* closed sets

The following definitions are introduced to obtain decompositions of (r*g*)*closed set.

Definitions 5.1. A subset A of a topological space X is called a

- 1) P*set if A=L \cap M where L is $(r^*g^*)^*$ open and M is a t set.
- 2) P** set if A=L \cap M where L is (r*g*)* open and M is a t* set.
- 3) Q** set if A=L \cap M where L is $(r^*g^*)^*$ open and M is a C set.
- 4) W* set if A=L \cap M where L is $(r^*g^*)^*$ open and M is an α^* set.
- 5) A* set if $A=L \cap M$ where L is $(r^*g^*)^*$ open and M is a regular closed set.

Propositions 5.2.

- 1. Every C set is a P* set
- 1) Every P* set is Cr set.
- 2) Every W* set is Cr*set.
- 3) Every A set is A*set.
- 4) Every A* set is P**set.
- 5) Every t set is P *set.
- 6) Every C set is Q**set.
- 7) Every α^* set is W* set.
- 8) Every $(r^*g^*)^*$ open set is P^* set.
- 9) Every $(r^*g^*)^*$ open set is W^* set.

Remark 5.3. The converses need not be true as seen from the following examples.

Example 1. Let $X = \{a,b,c\}$ $\mathfrak{J} = \{\emptyset, X, \{a\}, \{b,c\}$. Here $\{b\}$ is P* but not C.

Example 2. Let $X=\{a,b,c\} \ \mathfrak{J}=\{\emptyset,X,\{b\},\{a,b\}\}$. Here $\{b,c\}$ is a Cr set but not a P* set.

Example 3. In example 2 {b,c} is Cr* but not W*.

Example 4. In example 2 {b,c} is P** but not A*.

Example 5. In example 2 $\{a\}$ is A* but not A.

Example 6. In example 2 $\{a,b\}$ is P* but not t

Example 7. In example 1 $\{a,b\}$ is Q^{**} but not C.

Example 8. In example 2 {b} is w* but not α^*

Example 9. In example 2 $\{c\}$ is P* but not (r*g*)*open.

Example 10. In example 2 $\{a,c\}$ is W* but not $(r^*g^*)^*$ open.

REFERENCES

- 1. I.Arockiarani and K.Balachandran and M.Ganster, Regular generalized locally closed sets and RGL continuous functions, *Indian J. Pure and Math.*, 28(5) (1997) 661-669.
- 2. K.Balachandran, P.Sundaram and H.Maki, Generalized locally closed set and GLC continuous functions, *Indian J. Pure and Math.*, 27(3) (1996) 235-244.
- 3. N.Bourbaki, General Topology, Part I. Addision-Wesley, Reading Mass, 1966.
- 4. M.Ganster and I.L.Reilly, Locally closed sets and LC–continuous, *Internat. J. Math. Sci.*, 12 (1989) 417-24.
- 5. G.Navalagi, Properties of GS-closed sets and SG closed sets in topology, *Int. J. of Communication in Topology*, 1(1) (2013) 31-40.
- 6. T.Indira and K.Rekha, On locally **b-closed sets, *Proceedings of the Heber International Conference on Applications of Mathematics and Statistics* (2012).
- 7. T.Indira and K.Rekha, Applications of *b-open sets and **b open sets in topological spaces, *Annals of Pure and Applied Mathematics*, 1(1) (2012) 44–56.
- 8. T.Indira and S.Geetha,*-gα closed sets in topological spaces, *Annals of Pure and Applied Mathematics*, 4(2) (2013) 138-144.
- 9. N.Levine, Generalized closed sets in topology, *Rend. Circ. Math. Palermo*, 19(2) (1970) 89-96.
- **10.** N.Meenakumari and T.Indira, r*g* closed sets in topological spaces, *Annals of Pure and Applied Mathematics*, 6(2) (2014) 125-132.
- **11.** N.Meenakumari and T.Indira, On (r*g*)* closed sets in topological spaces, *International J. Science and Research*, 4(12) (2015) 23-34.
- 12. N.Meenakumari and T.Indira, On(r*g*)* continuous maps in topological spaces, *International Journal of Development Research*, 6(4) (2016) 7402- 7408.
- 13. N.Meenakumari and T.Indira, Few applications of $(r^*g^*)^*$ closed sets in topological spaces, *International Journal of Mathematics and computer Research*, 4(5) (2016) 12-32.
- 14. O.Njasted, On some classes of nearly open sets, *Pacific J. Math*, 15 (1965) 961 970.
- 15. M.Rajamani, Studies on decomposition of generalized continuous maps in topological spaces, Ph.D. Thesis Bharathiar University, Coimbatore, (2001).
- 16. J.A.Tong, Decomposition of continuity, Acta Math Hunger, 48 (1986) 11-15.
- 17. J.Tong, Weak almost continuous mapping and weak nearly compact spaces, *Boll. Un. Mat.*, 6 (1982) 385-391.