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Abstract. In this article, some new strong ������������ concepts in weighted graphs are 
studied. In many applications related with weighted graph networks, some connections do 
not contribute much to the network and hence some weak edges in the corresponding 
model can be ignored. Some new strong parameters namely strong independence number 
and strong covering number of a weighted graph are introduced and their relations are 
discussed. 
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1. Introduction 

Weighted graph theory, considered as added wings of graph theory, is flying high now as a 
part of applied Mathematics, as it gained its importance in various fields like 
interconnection networks, information theory, database theory etc. Intersection graphs 
introduced by Pal [9] also exhibit an important relation between communication system 
and graph theory. Connectivity is one main concept underlying applications of weighted 
graphs and graphs. Minimum and maximum spanning tree problems, strong cycles and 
paths, all play major roles in related applications. Several authors including Bondy and 
Fan[2, 3], Bondy ��	
�.[1] and Mathew and Sunitha [13, 14, 15] had put forward several 
connectivity concepts in weighted graphs inspired from the spark given by Dirac [6] and 
Grotschel [8]. Similar definitions in fuzzy graph are also extracted by Sunitha and Mathew 
[16]. The concepts introduced by these authors include partial cutvertices, partial bridges 
and partial blocks. Mathew and Sunitha have characterized partial cutvertices and partial 
bridges recently [12]. 

 In this article we intend to throw light on some new adjacency properties of 
weighted graphs. The inspiration behind introducing these properties is that, the reduction 
of flow between some pairs of vertices is something which occurs more frequently than the 
total disconnection in the flow or disconnection of the entire network. Since weighted 
graphs is an extension of graphs, the concepts introduced here are also extensions of the 
classic connectivity concepts. 
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2  Basic concepts 
A 
���ℎ���	��
�ℎ	�  is a graph in which every edge �  is assigned a non-negative 
number 
(�), called the 
���ℎ� of �. The set of all the neighbours of a vertex � in � is 
denoted by ��(�)  or simply �(�) , and its cardinality by ��(�)  or �(�) [5]. The 

���ℎ���	������ of �  is defined as 
��(�) = Σ�∈�(�)
(�, �). When no confusion 
occurs, we denote 
��(�) by 
�(�). The weight of a cycle is defined as the sum of the 
weights of its edges. An unweighted graph can be regarded as a weighted graph in which 
every edge � is assigned a weight one. Thus, in an unweighted graph, 
�(�) = �(�) for 
every vertex � , and the weight of a cycle is simply the length of the cycle. An 
���� 
�	����� is a cycle which has maximum weight. A �
�ℎ in a weighted graph � 
(weighted path) is a sequence of vertices and edges with a weight assigned to each edge. A 
weighted graph G is ���������, if every pair of vertices are connected by a weighted 
path. Two paths, say !" and !#, are said to be edge disjoint if they do not have any 
common edge and disjoint if they do not share any common vertex. Two $ − � paths are 
said to be internally disjoint, if they have no common vertices other than $ and �. A 
vertex � is said to be a �$�	������ of �, if its removal from the graph disconnects the 
graph � and an edge in � is called a �$�	���� or a &����� if its removal disconnects 
�. A  
�� $ 	'�
�����	���� (MST) of a weighted graph � is a spanning graph of �, 
which is a tree and the sum of weights of its edges, the largest among all such trees. Some 
more definitions are given below. 

Apart from the above given basic definitions, there exists a few more concepts 
related to connectivity which play an important role in applications of weighted graphs. 
Next we present a few of them, which includes strength of connectedness between pair of 
vertices, different types of edges, etc. Strength of connectedness and strength of path do 
have their own significance in determining distinct capacities in different types of 
networks. 

Let � be a weighted graph. The '������ℎ	�(	
	�
�ℎ	! (respectively, strength of 
a cycle ))[12] of �	edges �* , for 1 ≤ 	� ≤ 	�, denoted by '(!) (respectively, '())), is 
equal to '(!) =  ��"-	*-	.{
(�*)} . The '������ℎ	�(	�����������''  of a pair of 
vertices $, � ∈ 1(�) , denoted by )2���($, �) [12], is defined as )2���($, �)  = 
Max{s(P): P is a u - v path in G}. 

 
Example 2.1. Let �(1, 3) be a weighted graph(Fig. 1) with 1 = {
, &, �, �} and 
3 = {�" = (
, &), �# = (&, �), �4 = (�, �), �5 = (�, 
), �6 = (&, �), �7 = (
, �)} with 

(�") = 4,
(�#) = 5,
(�4) = 6,
(�5) = 2, 
(�6) = 8,
(�7) = 3.  

 

                           
 

Figure 1: Strength of connectedness 
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In this weighted graph (Fig. 1), )2���(
, &)  = max{4, 3, 3, 2, 2} = 4, 

)2���(&, �) = max{5, 3, 6, 2, 2} = 6, )2���(&, �) = max{8, 5, 2, 2, 3} = 8. 
If � is a weighted graph and > a weighted subgraph of �, then for every pair of 

vertices $, � ∈ 1, we have )2��?($, �) ≤ )2���($, �). If $ and � are in different 
components of �, then )2���($, �) equals zero. A $ − � path in a weighted graph � 
is called a '������'�	$ − �	�
�ℎ[12] if '(!) = )2���($, �). A vertex 
 is called a 
�
���
�	�$������� (p-cutvertex for short)[12] of � if there exists a pair of vertices $, � 
in � such that $ ≠ � ≠ 
 and )2���AB($, �) < )2���($, �). A connected weighted 
graph having no p-cutvertex is called a �
���
�	&���D (p-block for short)[12]. An edge 
� = ($, �)  is called a �
���
�	&�����  (p-bridge for short) if )2���AE($, �) <
)2���($, �) . A p-bridge �  is said to be a �
���
�	&���  (p-bond for short) if 
)2���AE(�, �) < )2���(�, �) with at least one of � or �	different from both $ and � 
and is said to be a �
���
�	�$�&��� (p-cutbond for short) if both � and � are different 
from $  and � . An edge �  is said to be a weakest edge of a weighted graph �  if 

(�) ≤ 
(�F) for any other edge �F of �. 

An edge � = (�, �) is '����� if its weight is at least equal to the strength of 
connectedness between �  and �  in �  and edge � = (�, �)  is called G - '�����  if 
)2���AE(�, �) < 
(�) , H - '�����  if )2���AE(�, �) = 
(�)  and a I -edge if 
)2���AE(�, �) > 
(�). A I-edge � is called a I∗-edge if � is not a weakest edge of 
�[12]. A $ − � path ! in � is called a strong $ − � path if all edges in ! are strong. In 
particular if all edges of ! are G-strong, then P is called an G-strong path and if all edges 
of ! are H-strong, then ! is called a H-strong path. A cycle ) in � is called a strong 
cycle if all edges in ) are strong. An edge (�, �) in a weighted graph � is strong if and 
only if 
(�) = )2���(�, �). An edge � in a weighted graph � is a partial bridge if and 
only if � is G-strong. If � and � are any two vertices in a connected weighted graph �, 
then there exists a strong path from � to �. 

A connected weighted graph � = (1, 3)  is called a 
���ℎ���	�
���
�	���� 
(partial tree in short) [11] if G has a spanning subgraph L = (1, 3F) which is a tree , where 
for all edges (�, �) of � which are not in L, we have )2���(�, �) > 
(�, �). When 
the graph � is not connected and if the above condition is satisfied by all components of 
�, then � is called a partial forest. 

Consider the following weighted graph (Fig. 2). 
 

                          

Figure 2: Partial tree 
 
In this weighted graph (Fig. 2), by removing the edges 

(
, (), (&, �), (&, �)	
��	(�, �) we will get the spanning tree L. Hence the above weighted 
graph is a partial tree. 
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Theorem 2.1. [11] A connected weighted graph � is a partial tree if and only if in any 
cycle ) of �, there exists an edge � = (�, �) such that 
(�) < )2���AE(�, �), where 
� − � is the subgraph of � obtained by deleting the edge � from �.  

 
Theorem 2.2. [11] If � is a weighted partial tree and is not a tree, then there exists at 
least one edge ($, �) for which 
($, �) < )2���($, �).  

 
Theorem 2.3. [11] If � is a partial tree and L, the spanning tree in the definition, then 
the edges of L are the partial bridges of �.  

 
A ���
���	
���ℎ���	��
�ℎ [10] is a weighted graph �(1, 3)  with weight 

functions M: 1 → PQ  and R: 3 → PQ  such that R(�, �) ≤ M(�) ∧ M(�) for any pair of 
vertices �, � of �, where ∧ denotes the minimum. A �����'���	
���ℎ���	��
�ℎ[10] is 
a totally weighted graph � with weight functions M: 1 → PQ and R: 3 → PQ such that 
R(�, �) = M(�) ∧ M(�) for any pair of vertices �, � of �, where ∧ denotes the minimum. 
A precisely weighted graph has no I −edges. 

 
We shall now discuss some new concepts on connectivity in the following 

sessions. 
 

3. Strong independent set and strong covering set  
The concepts of independent sets and covers do exist in graphs [7] as well as in semigraphs 
[17]. They can be easily extended to weighted graphs. Since they deal with adjacency of 
vertices, their extensions are similar. 

 
Definition 3.1. Let � = (1, 3) be a weighted graph. A subset T of 1 is said to be a 
strong independent set if for any pair of vertices $, � in T, ($, �) is not a strong edge. A 
maximum strong independent set is a subset T of 1 such that T is a strong independent 
set and for any other strong independent set TF, |TF| ≤ 	|T|. |T|, where T is any maximum 
strong independent set, is called strong independence number of �, denoted by HV(�).  

 
Definition 3.2. Let � = (1, 3) be a weighted graph. A subset T of 1 is said to be a 
strong covering set of � if every strong edge of � is incident with at least one vertex in T. 
A minimum strong covering set of � is a subset T of 1 such that T is a strong covering 
set and for any other strong covering set TF  of �, |TF| ≥ 	|T| . |T| , where T  is any 
minimum strong covering set, is called strong covering number of �, denoted by GV(�).  

 
Example 3.1. Let �(1, 3)  be a weighted graph(Fig. 3) with 1 = {�, X, �, '}  and 
3 = {�" = (�, X), �# = (X, �), �4 = (�, '), �5 = (', �), �6 = (X, ')}  with 
(�") =
2,
(�#) = 1,
(�4) = 5, 
(�5) = 3,
(�6) = 4.  
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Figure 3: Strong independent set and strong covering set 

 
In the above example all edges except �" and �# are strong. {�, X}, {�, �}, {X, �} 

and {�, X, �} are the strong independent sets. Hence the strong independence number is 
three. Since all strong edges in the above graph are incident with the vertex ', singleton set 
{'} itself is a strong covering set and also it is the minimum strong covering set. Hence 
strong covering number of � is one. 

Note that if we consider the underlying graph of the above weighted graph, then its 
vertex independence number and vertex covering number are both equal to two. Hence it 
differs from the strong independence number and strong covering number of the same 
graph with weights given to its edges. 

The following are few results in which we have found the strong covering number 
and strong independence number of different types of weighted graphs. The obvious proofs 
are omitted. 

 
Theorem 3.1. Let ) be a strong cycle with � vertices. Then, 

1. HV()) = ⌊�/2⌋ 
2. GV()) = ⌈�/2⌉ 
 

Theorem 3.2. Let G be a precisely weighted graph with p vertices. Then, 
1. HV(�) = 1 
2. GV(�) = � − 1 

Proof: � being a precisely weighted graph, is a complete graph with all edges being 
strong. Hence the strong independent sets are only the singleton sets. 

Since � is a complete graph with all edges being strong, minimum � − 1 vertices 
are required to cover all the strong edges and hence GV(�) = � − 1. 

 
Theorem 3.3. In a strongly bipartite graph[4], each partition is a strong independent set 
as well as a strong covering set.  
Proof: Let � be a strongly bipartite graph. Let 1" and 1# be the 2 partitions in which the 
end vertices of strong edges lie. � being strongly bipartite, no two vertices of 1" and 1# 
make a strong edge. Hence both 1" and 1# are strong independent sets. 

Since every strong edge has one end vertex in 1" and the other in 1#, taking either 
1" or 1# will cover all the strong edges in �. Hence both 1" and 1# are strong covering 
sets of �.  

 
Theorem 3.4. In a partial tree with more than two vertices, the set of pendant vertices of 
the unique maximum spanning tree in the definition of partial tree form a strong 
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independent set.  
Proof: Let � be a partial tree and let L be the unique maximum spanning tree in the 
definition of �. Let T be the set of pendant vertices of L and hence no two vertices in T 
are adjacent in L. Let $, � be any two vertices in T. ($, �) not being an edge in L, ($, �) 
is not a strong edge of � by the definition of partial tree. Hence T is a strong independent 
set.  

 
Theorem 3.5. For any connected weighted graph �, GV(�) + HV(�) = �, where � is 
total number of vertices in �. 
Proof: Since there exists a strong path between any pair of vertices, there exists a strong 
edge adjacent to any vertex. 

Let HV(�) be the strong independence number of � and let GV(�) be the strong 
covering number of �. Let T be the maximum strong independent set such that |T| =
HV(�). T being maximum strong independent set, no strong edge will have its both end 
vertices in T. Also each strong edge will have its one end vertex in 1\T. Hence 1\T is a 
strong covering set of � . By the definition of GV(�) , GV(�) ≤ |1\T| = � − HV(�) . 
Hence we get  

     GV(�) + HV(�) ≤ �                                                     (1) 
 

Let ` be a minimal strong covering set such that |`| = GV(�). ` being a strong 
covering set, no strong edge will have both its end vertices in 1\`. Hence 1\` is a strong 
independent set. By the definition of HV(�), HV(�) ≥ |1\`| = � − GV(�). Hence we get  

  GV(�) + HV(�) ≥ �                                                        (2) 
       

From equations (1) and (2), GV(�) + HV(�) = �. 
 
Consider Figure 3. In this weighted graph, strong independence number is three 

and strong covering number is one. Hence the sum equals four, which is the total number of 
vertices in the weighted graph. 

 
4. Strong edge independent set and strong edge covering set 
In this section we discuss the edge analogues of strong independent and covering sets. 
They can be considered as extensions of line independent sets and line covering sets. 

 
Definition 4.1. Let �(1, 3) be a weighted graph. A collection a of strong edges is said to 
be a strong edge independent set if no two strong edges in a are adjacent. The strong edge 
independence number of a weighted graph �, denoted by HV

F(�), is defined as HV
F(�) = 

max{|a|: a is any strong edge independent set}.  
 

Definition 4.2. A collection of strong edges P is said to be a strong edge covering set of 
weighted graph � if every vertex of � is incident with at least one edge of P. The strong 
edge covering number of a weighted graph �, denoted by GV

F(�), is defined as GV
F(�) = 

min{|P|: P is any strong edge covering set}.  
 

Example 4.1. Let �(1, 3) be a weighted graph with 1 = {
, &, �, �, �} and 3 = {�" =
(
, &), �# = (&, �), �4 = (�, �), �5 = (�, �), �6 = (�, 
), �7 = (�, &)} with 
(�") =
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5,
(�#) = 8,
(�4) = 4, 
(�5) = 7,
(�6) = 3,
(�7) = 6.  
 

                               
 

Figure 4: Strong edge independent set and strong edge covering set 
 

 Consider the above weighted graph. The strong edges in this weighted graph are �", �#, �5 
and �7 . The strong edge independent sets in this particular weighted graph are 
{�7}, {�", �5} and {�#, �5}. Hence the strong edge independence number of G is two. Since 
there is only one strong edge incident with the vertices 
, � and �, all these three edges 
need to be included in any strong edge covering set and in fact, that is the minimum number 
of strong edges which will cover all the vertices. Hence the strong edge covering number of 
this weighted graph is three. 

 
Theorem 4.1. For a strong cycle ) with � vertices, we have:- 

1. HV
F()) = ⌊�/2⌋ 

2. GV
F()) = ⌈�/2⌉ 

 
Theorem 4.2. For a precisely weighted graph � with � vertices, we have:- 

1. HV
F(�) = ⌊�/2⌋ 

2. GV
F()) = ⌈�/2⌉ 

Proof: A precisely weighted graph is a complete graph with all edges being strong. Hence 
the maximum number of mutually non-adjacent strong edges is equal to the maximum 
number of distinct pair of vertices which can be chosen from � vertices at a time. Hence, 
HV
F(�) = ⌊�/2⌋. 

Similarly, to cover all the vertices in a precisely weighted graph, we require a 
minimum of either �/2 strong edges if � is even or �/2 + 1 strong edges if � is odd. 
Hence, GV

F()) = ⌈�/2⌉. 
 

Theorem 4.3. For any weighted graph � , GV
F(�) + HV

F(�) = � , where � is the total 
number of vertices in �.  
Proof: Let P  be a strong edge covering set such that |P| = GV

F(�) . Let PF  be the 
subgraph induced by the strong edges in P. Then PF cannot contain a path of length three 
(as all the four vertices in the path can be covered by just two edges and P is a minimum 
strong edge covering set). Thus PF is a union of, say, D star graphs. Each star graph being 
a tree we have  

GV
F(�) + D = �                                                               (3) 

 
If we choose one edge from each component, then those D edges form a strong 
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edge independent set. HV
F(�) being the strong edge independence number, D ≤ HV

F(�). 
Hence from equation (3), we get  

GV
F(�) + HV

F(�) ≥ �                                                          (4) 
 

To prove the other inequality, let a be a strong edge independent set such that 
|a| = HV

F(�) . Hence a  contains 2HV
F(�)  vertices. Consider the � − 2HV

F(�)  vertices 
which are not incident with any strong edge in a. Since there exists a strong edge incident 
to any vertex in �, we could choose � − 2HV

F(�) strong edges which are distinct from 
strong edges in a. These edges together with edges in a form a strong edge covering set 
of �. GV

F(�) being the minimum of cardinality of all such sets, we get � − 2HV
F(�) +

HV
F(�) ≥ GV

F(�). Hence                     
GV
F(�) + HV

F(�) ≤ �                                                          (5) 
 

 Hence from equations (4) and (5), we get GV
F(�) + HV

F(�) = �.  
Consider the weighted graph in Figure 4. The strong edge independence number is 

two and the strong edge covering number is three. Hence the sum equals five, the total 
number of vertices in the weighted graph. 

 
5. Strong matching 
A collection of independent edges is considered as a matching[7]. It establishes a relation 
between the adjacent pairs of vertices or in fact, non adjacent edges. An analogous 
definition which relates the end vertices of a strong edge is being defined in this section. 
We make use of strong independent edges in weighted graphs for the analogous definition. 

 
Definition 5.1. Let � be a weighted graph. Then any strong edge independent set in � 
can be called as a strong matching. A maximum strong edge independent set is known as 
maximum strong matching.  

 
Theorem 5.1. Let � be a weighted graph. Let c be a strong matching and let T be a 
strong covering set of �. Then |c| ≤ |T|.  
Proof: Let |c| =   and |T| = '. Let �", �#, . . . �d be the edges in strong matching. Then 
any strong covering set of �  should contain   distinct vertices each of which are 
adjacent with these m edges. Hence  ≤ '.  

 
Theorem 5.2. Let � be a strongly bipartite weighted graph. Let c be a maximum strong 
matching in �. Then |c| = GV(�). 
Proof: Let 1" and 1# be the partitions in which the end vertices of strong edges lie in �. 
Let |c| =   and let �", �#, . . . , �d be the edges in c. Then any strong edge in � will be 
adjacent to one end vertex of �", �#, . . .,  �d . Hence we can choose distinct vertices 
�", �#, . . . , �d in such a way that each strong edge in � will be adjacent to either of these 
  vertices. Hence T = {�", �#, . . . , �d} will form a strong covering set. T is a minimum 
strong covering set as any other covering set TF with |TF| < |T| is a contradiction to 
above stated theorem. Hence  = GV(�). 

 
Remark  5.1. In a strongly bipartite weighted graph, its strong vertex/edge 
independence/covering number need not be equal to cardinalities of the partition sets in it. 
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Consider the following example.  
 

                            
Figure 5: Weighted graph �" 

 
The above graph is a strongly bipartite weighted graph with the partition sets 1" 

and 1#(Figure 6), where 1" = {(, �, &, �} and 1# = {
, �, �}. 
 

                         
Figure 6: Strong edges in �" 

 
In �", the maximal strong independent set is {(, �, �, �, �} and the minimal strong 

covering set is {
, &}. Hence GV(�") = 2  and HV(�") = 5 . Similarly one among the 
maximum strong edge independent sets is {(
, �), (&, �)} and the minimum strong edge 
covering set is {(
, (), (
, �), (
, �), (&, �), (&, �)} . Hence GV

F(�) = 5 and HV
F(�) = 2 . 

We can see that none of them is equal to cardinality of any partition set. 
 

6. Conclusion 
In this paper, we have discussed the concepts of strong independent sets and strong 
covering sets of weighted graph. We have defined and studied strong independence 
number and strong covering number for different weighted graphs. Also we have found 
that the sum of strong independence number and strong covering number is a constant and 
is equal to the total number of vertices in a weighted graph. The edge analogues of the 
above concepts and results are also discussed in this paper. More properties and 
applications will be discussed in the forthcoming papers. 
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