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Abstract. In this article, some new strong connectivity concepts in weighted graphs are
studied. In many applications related with weighted graph networks, some connections do
not contribute much to the network and hence some weak edges in the corresponding
model can beignored. Some new strong parameters namely strong independence number
and strong covering number of a weighted graph are introduced and their relations are
discussed.
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1. Introduction

Weighted graph theory, considered as added wings of graph theory, is flying high now asa
part of applied Mathematics, as it gained its importance in various fields like
interconnection networks, information theory, database theory etc. Intersection graphs
introduced by Pal [9] also exhibit an important relation between communication system
and graph theory. Connectivity is one main concept underlying applications of weighted
graphs and graphs. Minimum and maximum spanning tree problems, strong cycles and
paths, all play major roles in related applications. Severa authors including Bondy and
Fan[2, 3], Bondy et al.[1] and Mathew and Sunitha [13, 14, 15] had put forward severa
connectivity concepts in weighted graphs inspired from the spark given by Dirac [6] and
Grotschel [8]. Similar definitionsin fuzzy graph are also extracted by Sunithaand Mathew
[16]. The concepts introduced by these authors include partia cutvertices, partial bridges
and partial blocks. Mathew and Sunitha have characterized partial cutvertices and partial
bridges recently [12].

In this article we intend to throw light on some new adjacency properties of
weighted graphs. The inspiration behind introducing these propertiesis that, the reduction
of flow between some pairs of verticesis something which occurs more frequently than the
total disconnection in the flow or disconnection of the entire network. Since weighted
graphs is an extension of graphs, the concepts introduced here are aso extensions of the
classic connectivity concepts.
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2 Basic concepts

A weighted graph G is a graph in which every edge e is assigned a non-negative
number w(e), called the weight of e. The set of al the neighboursof avertex v in G is
denoted by N;(v) or simply N(v), and its cardinality by d;(v) or d(v)[5]. The
weighted degree of v is defined as wdg (V) = Zyenwyw (v, x). When no confusion
occurs, we denote wd; (v) by wd(v). The weight of acycleis defined as the sum of the
weights of its edges. An unweighted graph can be regarded as a weighted graph in which
every edge e isassigned aweight one. Thus, in an unweighted graph, wd(v) = d(v) for
every vertex v, and the weight of a cycle is simply the length of the cycle. An
optimal cycle is a cycle which has maximum weight. A path in a weighted graph G
(weighted path) is a sequence of vertices and edges with aweight assigned to each edge. A
weighted graph G is connected, if every pair of vertices are connected by a weighted
path. Two paths, say P, and P,, are said to be edge digoint if they do not have any
common edge and digjoint if they do not share any common vertex. Two u — v pathsare
said to be internaly digoint, if they have no common vertices other than u and v. A
vertex v issaid to be a cut vertex of G, if its removal from the graph disconnects the
graph G and an edge in G iscdled a cut edge or a bridge if its removal disconnects
G.A maximum spanning tree (MST) of aweighted graph G isaspanning graph of G,
which is atree and the sum of weights of its edges, the largest among al such trees. Some
more definitions are given bel ow.

Apart from the above given basic definitions, there exists a few more concepts
related to connectivity which play an important role in applications of weighted graphs.
Next we present a few of them, which includes strength of connectedness between pair of
vertices, different types of edges, etc. Strength of connectedness and strength of path do
have their own significance in determining distinct capacities in different types of
networks.

Let G beaweighted graph. The strength of a path P (respectively, strength of
a cycle C)[12] of n edges e;, for 1 <i < n, denoted by s(P) (respectively, s(C)), is
equal to s(P) = mini<i<p{w(e;)}. The strength of connectedness of a pair of
vertices u,v € V(G), denoted by CONN;(u,v)[12], is defined as CONN;(u,v) =
Max{s(P): Pisau- v pathin G}.

Example2.1. Let G(V, E) beaweighted graph(Fig. 1) with V = {a, b, c,d} and
E={e; =(ab)e, =(bc)e;=(cd)e,=(da)es=(bd)es = (ac)} with
w(e;) = 4,w(ey) =5w(es) =6,w(ey) =2, w(es) = 8,w(eg) = 3.

a 4 b

d 6 c
Figure 1. Strength of connectedness
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In this weighted graph (Fig. 1), CONN;(a,b) = max{4, 3, 3, 2, 2} = 4,
CONNg(b,c) =max{5, 3,6, 2,2} =6, CONN;(b,d) =max{8,5, 2,2, 3} =8.

If G isaweighted graph and H aweighted subgraph of G, then for every pair of
vertices u,v € V, we have CONNy(u,v) < CONNg(u,v). If u and v are in different
components of G, then CONN;(u,v) equals zero. A u — v path in aweighted graph G
is caled a strongest u — v path[12] if s(P) = CONNg;(u,v). A vertex w is caled a
partial cutvertex (p-cutvertex for short)[12] of G if there exists a pair of vertices u, v
in G suchthat u # v # w and CONN;_,,(u,v) < CONN; (u, v). A connected weighted
graph having no p-cutvertex is called a partial block (p-block for short)[12]. An edge
e = (u,v) is cdled a partial bridge (p-bridge for short) if CONN;_.(u,v) <
CONN;(u,v). A p-bridge e is said to be a partial bond (p-bond for short) if
CONN;_.(x,y) < CONN;(x,y) withatleast oneof x or y different fromboth u and v
and is said to be a partial cutbond (p-cutbond for short) if both x and y are different
from u and v. An edge e is said to be a weakest edge of a weighted graph G if
w(e) < w(e') for any other edge e’ of G.

An edge e = (x,y) is strong if its weight is at least equa to the strength of
connectedness between x and y in ¢ and edge e = (x,y) is cdled a-strong if
CONN;_.(x,y) <w(e), B -strong if CONN;_.(x,y) =w(e) and a § -edge if
CONNg_.(x,y) > w(e). A §-edge e is caled a §*-edge if e is not a weakest edge of
G[12].A u—v path P in G iscaledastrong u — v pathif al edgesin P arestrong. In
particular if all edgesof P are a-strong, then Piscalled an a-strong path and if all edges
of P are f-strong, then P is caled a g-strong path. A cycle C in G is caled a strong
cycleif all edgesin C are strong. An edge (x,y) in aweighted graph G is strong if and
only if w(e) = CONN;(x,y). Anedge e inaweighted graph G isapartia bridgeif and
only if e is a-strong. If x and y are any two vertices in a connected weighted graph G,
then there exists a strong path from x to y.

A connected weighted graph G = (V,E) is cdled a weighted partial tree
(partial treein short) [11] if G hasaspanning subgraph F = (V,E") whichisatree, where
for all edges (x,y) of G which are not in F, we have CONN¢(x,y) > w(x,y). When
the graph G is not connected and if the above condition is satisfied by al components of
G,then G iscaled apartial forest.

Consider the following weighted graph (Fig. 2).

a 5 b 1 c
3 5 4 7 2
f 4 e d

Figure 2: Partid tree

In this weighted graph (Fig. 2), by removing the edges
(a,f),(b,e),(b,c) and (c,d) wewill get the spanning tree F. Hence the above weighted
graph isapartial tree.
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Theorem 2.1. [11] A connected weighted graph G is a partial tree if and only if in any
cycle C of G, there exists an edge e = (x,y) such that w(e) < CONNg;_.(x,y), where
G — e isthesubgraph of G obtained by deleting the edge e from G.

Theorem 2.2. [11] If G isaweighted partial tree and is not a tree, then there exists at
least one edge (u, v) for which w(u, v) < CONN;(u, v).

Theorem 2.3.[11] If G isapartial treeand F, the spanning tree in the definition, then
the edges of F arethe partial bridges of G.

A totally weighted graph [10] is a weighted graph G(V,E) with weight
functions o:V - R* and w: E —» R* such that p(x,y) < a(x) Aa(y) for any pair of
vertices x,y of G, where A denotestheminimum. A precisely weighted graph[10Q] is
a totally weighted graph G with weight functions o:V — R* and u: E - R* such that
u(x,y) = a(x) Aa(y) forany pair of vertices x,y of G, where A denotesthe minimum.
A precisely weighted graph has no § —edges.

We shall now discuss some new concepts on connectivity in the following
sessions.

3. Strong independent set and strong covering set

The concepts of independent sets and covers do exist in graphs[7] aswell asin semigraphs
[17]. They can be easily extended to weighted graphs. Since they deal with adjacency of
vertices, their extensions are similar.

Definition 3.1. Let G = (V,E) be a weighted graph. A subset S of VV is said to be a
strong independent set if for any pair of vertices u,v in S, (u,v) isnot a strong edge. A
maximum strong independent set isa subset S of V such that S is a strong independent
set and for any other strong independent set S/, |S’| < |S]. |S|, where S isany maximum
strong independent set, is called strong independence number of G, denoted by B, (G).

Definition 3.2. Let G = (V,E) be a weighted graph. A subset S of V is said to be a
strong covering set of G if every strong edge of G isincident with at least onevertexin S.
A minimum strong covering set of G isasubset S of ¥V suchthat S isa strong covering
set and for any other strong covering set S’ of G,|S'| = |S|. |S|, where S is any
minimum strong covering set, is called strong covering number of G, denoted by a4 (G).

Example 3.1. Let G(V,E) be a weighted graph(Fig. 3) with V ={p,q,r,s} and

E={e;={pa)e=(qr)es=(rs)es=(s,p)es=(qs)} wth w(e)=
2,w(ey) = 1,w(ez) =5 w(ey) =3, w(es) = 4.
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p G 9

S r

5
Figure 3: Strong independent set and strong covering set

In the above example al edges except e; and e, are strong. {p, q},{p,r},{q,7}
and {p, q,r} are the strong independent sets. Hence the strong independence number is
three. Since all strong edgesin the above graph areincident with the vertex s, singleton set
{s} itself is a strong covering set and also it is the minimum strong covering set. Hence
strong covering number of G isone.

Notethat if we consider the underlying graph of the above weighted graph, thenits
vertex independence number and vertex covering number are both equal to two. Hence it
differs from the strong independence number and strong covering number of the same
graph with weights given to its edges.

The following are few results in which we have found the strong covering number
and strong i ndependence number of different types of weighted graphs. The obvious proofs
are omitted.

Theorem 3.1. Let C beastrong cycle with p vertices. Then,
1 Bs(C) = |p/2]
2. a5(C) = [p/2]

Theorem 3.2. Let G be a precisdy weighted graph with p vertices. Then,

L B(6) =1

2.a,(G)=p—-1
Proof: G being a precisely weighted graph, is a complete graph with al edges being
strong. Hence the strong independent sets are only the singleton sets.

Since G isacomplete graph with all edges being strong, minimum p — 1 vertices
arerequired to cover al the strong edges and hence a4(G) = p — 1.

Theorem 3.3. In a strongly bipartite graph[4] , each partition is a strong independent set
aswell as a strong covering set.
Proof: Let G beastrongly bipartite graph. Let V; and V, bethe 2 partitionsin which the
end vertices of strong edgeslie. G being strongly bipartite, no two verticesof V; and 1,
make a strong edge. Hence both V; and V, are strong independent sets.

Sinceevery strong edge has one end vertex in V; and theother in V,, taking either
v, or V, will cover al the strong edgesin G. Hence both V; and V, are strong covering
setsof G.

Theorem 3.4. In a partial tree with more than two vertices, the set of pendant vertices of
the unique maximum spanning treein the definition of partial tree form a strong
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independent set.

Proof: Let G be a partial tree and let F be the unique maximum spanning tree in the
definition of G. Let S bethe set of pendant vertices of F and hence no two verticesin S
areadjacentin F. Let u,v beanytwoverticesin S. (u,v) notbeinganedgein F, (u,v)
isnot astrong edge of G by the definition of partial tree. Hence S isastrong independent
Set.

Theorem 3.5. For any connected weighted graph G, as(G) + 5s(G) = p, where p is
total number of verticesin G.

Proof: Since there exists a strong path between any pair of vertices, there exists a strong
edge adjacent to any vertex.

Let B,(G) be the strong independence number of ¢ and let a,(G) be the strong
covering number of G. Let S be the maximum strong independent set such that |S| =
Bs(G). S being maximum strong independent set, no strong edge will have its both end
verticesin S. Also each strong edge will have its one end vertex in V\S. Hence V\S isa
strong covering set of G. By the definition of ay(G), ag(G) < |V\S| =p — Bs(G).
Hence we get

as(G) + Bs(G) <p )

Let T beaminimal strong covering set such that |T| = a4(G). T being astrong
covering set, no strong edge will have both itsend verticesin V\T. Hence V\T isastrong
independent set. By the definition of B,(G), Bs(G) = |[V\T| = p — a4(G). Hence we get

as(G) +Bs(G) = p )

From equations (1) and (2), a,(G) + Bs(G) = p.

Consider Figure 3. In this weighted graph, strong independence number is three
and strong covering number isone. Hence the sum equal sfour, whichisthe total number of
vertices in the weighted graph.

4. Strong edge independent set and strong edge covering set
In this section we discuss the edge analogues of strong independent and covering sets.
They can be considered as extensions of line independent sets and line covering sets.

Definition 4.1. Let G(V, E) beaweighted graph. A collection Q of strong edgesissaidto
be a strong edgeindependent set if no two strong edgesin Q are adjacent. The strong edge
independence number of a weighted graph G, denoted by B:(G), is defined as Bs(G) =
max{|Q|: Q isany strong edge independent set}.

Definition 4.2. A collection of strong edges R is said to be a strong edge covering set of
weighted graph G if every vertex of G isincident with at least one edge of R. The strong
edge covering number of a weighted graph G, denoted by a¢(G), is defined as ag(G) =
min{|R|: R isany strong edge covering set}.

Example4.1. Let G(V,E) beaweighted graphwith V = {a,b,c,d,e} and E = {e; =
(a,b),e; = (b,c),e3 =(c,d), e, =(d,e),es = (e,a),ec = (e,b)} with w(e,) =
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5 w(ey) =8,w(es) =4,w(ey) =7,w(es) =3, w(eg) = 6.

~
[o4]

d 4 c
Figure 4. Strong edge independent set and strong edge covering set

Consider the above weighted graph. The strong edgesin thisweighted graph are e;, e,, e,
and e, . The dtrong edge independent sets in this particular weighted graph are
{es}, {e1, €4} and {e,, e, }. Hence the strong edge independence number of G istwo. Since
there is only one strong edge incident with the vertices a, ¢ and d, all these three edges
need to beincluded in any strong edge covering set and in fact, that is the minimum number
of strong edges which will cover all the vertices. Hence the strong edge covering number of
this weighted graph is three.

Theorem 4.1. For a strong cycle C with p vertices, we have: -
1 Bs(C) = |p/2]
2. as(C) = [p/2]

Theorem 4.2. For a precisely weighted graph G with p vertices, we have: -

1. Bs(G) = Ip/2]

2. a}(C) = [p/2]
Proof: A precisely weighted graph is acomplete graph with al edges being strong. Hence
the maximum number of mutually non-adjacent strong edges is equa to the maximum
number of distinct pair of vertices which can be chosen from p vertices at atime. Hence,
Bs(G) = Ip/2].

Similarly, to cover al the vertices in a precisely weighted graph, we require a
minimum of either p/2 strong edges if p iseven or p/2 + 1 strong edges if p is odd.
Hence, a;(C) = [p/2].

Theorem 4.3. For any weighted graph G, a4(G) + Bs(G) = p, where p is the total
number of verticesin G.
Proof: Let R be a strong edge covering set such that |R| = ai(G). Let R’ be the
subgraph induced by the strong edgesin R. Then R’ cannot contain a path of length three
(as dl the four vertices in the path can be covered by just two edgesand R isaminimum
strong edge covering set). Thus R’ isaunion of, say, k star graphs. Each star graph being
atree we have

as(6) +k=p 3

If we choose one edge from each component, then those k edges form a strong
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edge independent set. B:(G) being the strong edge independence number, k < B4(G).
Hence from equation (3), we get
as(G) + Bs(G) = p (4)

To prove the other inequality, let Q be a strong edge independent set such that
|Q| = Bs(G). Hence Q contains 2B:(G) vertices. Consider the p — 2B¢(G) vertices
which are not incident with any strong edgein Q. Since there exists a strong edge incident
to any vertex in G, we could choose p — 284(G) strong edges which are distinct from
strong edgesin Q. These edges together with edgesin @ form astrong edge covering set
of G. as(G) being the minimum of cardinality of all such sets, we get p — 28:(G) +
Bs(G) = ag(G). Hence

as(G) + Bs(G) <p ()

Hence from equations (4) and (5), we get a4(G) + Bs(G) = p.
Consider the weighted graph in Figure 4. The strong edge independence number is
two and the strong edge covering number is three. Hence the sum equals five, the tota
number of verticesin the weighted graph.

5. Strong matching

A collection of independent edges is considered as a matching[7]. It establishes arelation
between the adjacent pairs of vertices or in fact, non adjacent edges. An analogous
definition which relates the end vertices of a strong edge is being defined in this section.
We make use of strong independent edges in weighted graphs for the anal ogous definition.

Definition 5.1. Let G be a weighted graph. Then any strong edge independent set in G
can be called as a strong matching. A maximum strong edge independent set is known as
maximum strong matching.

Theorem 5.1. Let G be a weighted graph. Let M be a strong matching and let S be a
strong covering set of G. Then |M| < |S|.

Proof: Let |[M| = m and |S| = s. Let ey, e,,... e, betheedgesinstrong matching. Then
any strong covering set of G should contain m distinct vertices each of which are
adjacent with these medges. Hence m < s.

Theorem 5.2. Let G bea strongly bipartite weighted graph. Let M be a maximum strong
matchingin G. Then |M| = a4(G).

Proof: Let V; and V, bethe partitionsin which the end vertices of strong edgesliein G.
Let [M| =m andlet e, e,,..., e, betheedgesin M. Thenany strong edgein G will be
adjacent to one end vertex of ey, e,,..., e,. Hence we can choose distinct vertices
v1,Vs,..., Uy, insuch away that each strong edgein G will be adjacent to either of these
m vertices. Hence S = {v4,v,,..., vy} Will form astrong covering set. S isaminimum
strong covering set as any other covering set S’ with |S’| < |S| is a contradiction to
above stated theorem. Hence m = a,(G).

Remark 5.1. In a drongly bipartite weighted graph, its strong vertex/edge
independence/covering number need not be equal to cardinalities of the partition setsinit.
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Consider the following example.

Figure5: Weighted graph G,

The above graph is a strongly bipartite weighted graph with the partition sets V;
and V,(Figure 6), where V; = {f,g,b,d} and V, = {a,c, e}.

f g b d

\ A S
\ | /I

ya
\;/4 \

Figure6: Strong edgesin G,

€

In G,, themaximal strongindependent setis {f, g,d, ¢, e} andthe minimal strong
covering set is {a,b}. Hence a,(G,) =2 and B4(G,) = 5. Similarly one among the
maximum strong edge independent sets is {(a, d), (b, ¢)} and the minimum strong edge
covering set is {(a,f),(a,9),(a,d),(b,c),(b,e)}. Hence ag(G) =5 and B4(G) = 2.
We can see that none of them is equal to cardinality of any partition set.

6. Conclusion

In this paper, we have discussed the concepts of strong independent sets and strong
covering sets of weighted graph. We have defined and studied strong independence
number and strong covering number for different weighted graphs. Also we have found
that the sum of strong independence number and strong covering number is a constant and
is equal to the total number of vertices in a weighted graph. The edge analogues of the
above concepts and results are also discussed in this paper. More properties and
applications will be discussed in the forthcoming papers.
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