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1. Introduction

Let G = (V(G), E(G)) be a finite, undirected without loops and muig@ edges. The
degreedg(V) is the number of vertices adjacentuvolet A(G) denote the maximum
degree among the vertices@f The reverse vertex degree of a veréx G is defined as
¢, = A(G) — dg(v)+1. The reverse edge connecting the reverse gsuiandv will be
denoted byv. We refer [1] for undefined term and notation.

A molecular graph is a graph whose vertices comedpo the atoms and the
edges to the bonds. Chemical graph theory has portemt effect on the development of
the Chemical Sciences. A single number that canseel to characterize some property
of the graph of molecular is called a topologigadeéx. Numerous topological indices
have been considered in Theoretical Chemistry2ee [

The first reverse Zagreb beta index and secondgevagreb index [3] of a
graphG are respectively defined as

CM,(G)= > (c, +¢,) CM,(G)= > cgc,. 1)

uwiE(G) uiE(G)

These indices were also studied, for example, ,iB]4

We now introduce the first and second reverse hypgreb indices of a grafh
as

HCM,(G) = Y (g +q,)" HCM,(G) = Y (cg)™ 2)

wiE(G) WwOE(G)

Considering the first and second reverse Zagrelzdsdwe introduce the first
and second reverse Zagreb polynomials as
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CM,(G,x)= Y X¥'%,  CM,(G,x)= D x%. (3)

WwOE(G) wiE(G)
Also considering the first and second reverse hiagreb indices, we introduce
the first and second reverse hyper-Zagreb polynisrag
HOM, (G, )= 3 X&' HeM, (G = 3 X&), (4)
uvDE(G) uvDE(G)
Recently many topological indices were studied gikmmple, in [6, 7, 8, 9, 10,
11, 12, 13, 14,15,186].
In this paper, we determine the first two reversgréb indices, the first two
reverse hyper-Zagreb indices, and their polynonaélshombus silicate networks. For
networks see [17] and references cited therein.

2. Resultsfor Rhombus Silicate networks

Silicates are obtained by fusing metal oxides otaimearbonates with sand. In this
section, we consider a family of rhombus silicagéworks. This network is symbolized
by RHL,. A 3-dimensional rhombus silicate network is deggicin Figure 1.

Figure 1: A 3-dimensional rhombus silicate network

Theorem 1. The first and second reverse Zagreb indices ofmthe silicate network
RHS, are
(i) CMy(RHSL,) = 4% 36n. (i) CM,(RHSL,) = 30n*+72n+18.
Proof: Let G be the graph of rhombus silicate netwBHSL,. The graptG has % + 2n
vertices and 1¥ edges. From Figure 1, we see that the verticd®H&L, are either of
degree 3 or 6. Thua(G) = 6. InRHSL,, by algebraic method, there are three types of
edges as follows:

Es= {uvE(G) | dg(u) =ds(v) = 3}, Essl = 4n+2.

Ess = {WOE(G)| do(U) | = 3, do(V) = 6}, [Esel = & + 4n — 4.

Ees = {WOE(G)| do(u) | =do(V) = 6},  Eed = 0" — 8+ 2.

Clearly we have,= A(G) —dg(u) + 1 = 7 —dg(u).

We now see that there are three types of revergeseas follows:

CEss= {uUE(G) |cy = ¢y = 4}, CE4 = + 2.
CEs = {uwlE(G) |cy = 4,c, = 1}, ICEa| = &° + 4n— 4.
CEw= {wlE(G) |c,=¢c, = 1}, ICE.| = & —8n+ 2.
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() To computeCM(RHSL,), we see that

CM,(RHSL))= > (¢, +¢) =2 (c +c )+ X (c +q)+ X (a +q,)

wiOE(G) EE,, RE,1 RE,;,
= (4+4) (4 + 2) + (4+1)(8°+ 4n — 4) + (1+1)(8°— 8 + 2)
= 41+ 36n.

(i) To computeCM,(RHSL,), we see that
CM,(RHSL))= > g, =D.6C +D.GC + ) .¢G,

WwiE(G) EE,, RE 41 RE;
= (4x4) (4 + 2) + (4x1)(8°+ 4n — 4) + (1x1)(6°— 8 + 2)
= 3%+ 72n + 18.

Theorem 2. The first and second reverse Zagreb polynomialghofmbus silicate
networkRHS., are
(i) CMy(RHSL,, X) = (4n+2) X8+ (6n° + 4n— 4)X°+ (6n° — 8 + 2) X%
(i) CMo(RHSL,, X) = (4n+2) X*°+ (6n + 4n— 4)x* + (60 — & + 2) x.
Proof: Let G= RHY.,
() From equation (3) and by cardinalities of tegarse edge partition 8HSL,,, we have
CM, (RHYL,,x) = Z SRIED IS SRR DI D I S
CEyy CE4y CEyy
_(4n+2) X" (En?+ - 4x e (@7- &+ IxH
=(4n+2)X +(6n° + M- 4x°+( &7 - &+ Ix?
(i) From equation (3), and by cardinalities of tteverse edge partition &#HIL,,, we
have
CM, (RHSL, x)= D> x&% =) x&% + 3" X3 + 3" x&

wiE(G) CEyq CEy CEyy
=(4n+2)x™* + (6r12+ - A)x‘”+(612— B+ ;x“
=(4n+2)xX°+(6n’+ M- dx“+( &7~ B+ Ix

Theorem 3. The first and second reverse hyper-Zagreb indafeshombus silicate
networkRHSL,, are
(i) HCMy(RHSL,)) = 1747 + 324+ 36.
(ii) HCMy(RHSL,) = 10*+ 1080 + 450.
Proof: LetG = RHY.,.
() From equation (2) and by cardinalities of tegarse edge partition BHSL,,, we have

HCM, (RHSL, )= Y (g, +c) =X (g +¢) + X (6, +¢) + DX (6 +q)°

wiE(G) CEyy CE,y CE,,
=(4+47(++(4+ (60 + - I+( 2 J( 62— B+ )
=1740° + 32h + 36
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(i) From equation (2) and by cardinalities of tteverse edge partition &HSL,,, we
have

HOM, (RHSL,) = 3 (qe,)" = X(ae) + X(ae) + X(ae)”

wiE(G) CEyy CEy CEqy
:(4x4)2(4n+ 2)+( 4« :)2( &+ 61— }+( X )]_2( 6’ - 18+ F
=102n* + 108 + 45(

Theorem 4. The first and second reverse hyper-Zagreb polyalsnaf rhombus silicate
networkRHSL,, are

(i) HCMy(RHSL,,, X) = (4n+2)x**+ (6n°+ 4n —2)*+ (6n°— 8n + 2)X".

(i) HCMy(RHSL,, X) = (4n+2)x°°+ (6n°+ 4n —2)X"°+ (6n°— 8n + 2)x.
Proof: LetG = RHY.,.
(i) From equation (4) and by cardinalities of tbeerse edge partition BHSL,,, we have
HCM, (RHSL,,x) = Z wlava) = z lara) 4 z Wava)’ 4 z l&+a)’

WE(G) CEyy CEy CEp
=(an+2)x* Y + (@2 + - Ix T+ (@7 - @+ T
=(4n+2)x* +(@n?+ - x> +( @7- &+ Ix*

(i) From equation (4) and by cardinalities of treverse edge partition &HSL,, we
have
HCM, (RHSL,,,x)= Y| K@)’ = > xae)’ 4 D x&e)” 4 3 (&a)’

WE(G) CEyy CE4 CEqy
=(an+2)x* + (@ + - x>V + (@7 - g+ I
=(4n+2)x* +(6n?+ 61— 4x°+( &7~ B+ Ix
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