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Abstract. In this work, many important theorems will be proved and proven in the 
formation of (DLWT) in that they take their role in the processing of the signal or image 
processing, which makes them possess characteristics such as those characterized by 
those that were used for the same purpose and with high efficiency. 
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1. Introduction  
It is worth mentioning that the analysis of data from the signals or images is done by 
wavelets in the decisions as we know that wavelet algorithms that deal with signals are 
working in the same way as the human eye or camera and capture signals cell phone and 
even digital color images used in medicine are all processed by waveforms as 
approximation of data and intermittent signals or images with too many edges [1, 9, 10].  
The result of algorithms is the key to processing numbers or digital information, signals, 
images etc, [2]. The result of algorithms is a key to processing numbers or digital 
information, signals and images.  Wavelet applications are data compression, fingerprints 
and many fields of science and engineering  [5, 7].  Wavelet image processing enables 
computers to store an image in many scales of resolutions. Consequently, decomposing 
an image into various levels and types of approximations with different valued 
resolutions [3]. Wavelets allow one to compress the image using less storage space with 
more details of the image [4]. 
 
2. Laguerre wavelets 
In this section authors will construct Laguerre wavelet from the family function [6, 8]. 

            
( ) t r1/2t s , s, r R, s 0

s,r s
− −ρ = ρ ∀ ∈ ≠ 

 
                                                               (1) 

where ( ) ( ) ( ) T

0 1 M 1t t , t ,..., −ρ = ρ ρ ρ   . 
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The elements  ( ) ( ) ( )ttt M 110 ,...,, −ρρρ  are the basis functions, orthogonal in the interval 

[0,1]. 
     Laguerre wavelet is denoted by Lag(wav), is the type of wavelets and is used for 
solving differential equation, integral equation, variation problems and different sciences 
and engineering as well as fractional differential equations. That is why it is an important 
part.  Laguerre wavelet               

                                                         
( )tn,m

ρ =
 t,n,m,k
ρ  

  

have four arguments k 1k 1,2,..., n 1,2,...,2 , m−= =  is order for Laguerre polynomials and   

t   is normalized time. If we dilation by parameter ( )12 +−= ks and translation by parameter 
( ) ( )k 1

r 2 2n 1
− += −  by transform x and by using (1).   

      If ( ) ( )k 1 kx 2 2 t
− +=     then we will get the following equation 
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where m m

1
L L ,

m!
=ɶ  for k=2. 

A function approximation  ( ) [ ]2f t L 0,1∈  may be expanded as: 
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∞

=
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where, ( ) ( )〉〈= ttfA mnmn ,, ,ρ                                                                                            (4) 

 
In equation (4), 〉〈.,. denote the inner product with weight function( )twn  on the Hilbert 

Space [ )1,0 .  If the infinite series in above equation is truncated, then equation (3) can be 

written as: 
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where A  and ( )tρ are 12 1 ×− Mk  matrices given by:     

                             ( )
T

A A ,A ,...,A ,...,A ,...,A ,...,A1,0 1,1 2,0 k 1 k 12, M 1 2 ,0 2 ,M 1

 
= − −− −      

    (6)  
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Mathematical Aspects of Laguerre Wavelets Transformation 

55 
 

 

3. Properties of Laguerre wavelets transform 
Forward Wavelet Transform, in addition to the use of waveforms mentioned in many 
sources, which have many common characteristics that qualify for the operations of the 
pressure of the image of these qualities such as symmetric and orthogonal.  In addition to 
converting the waveform that we have constructed in the previous chapters and the 
qualities it possesses, it also gives us the assurance that these waveguides possess the 
same image processing behavior as the previously used waveforms, for example Haar 
wavelets transform. 
 
Definition 3.1. For every pair of n,m Z,∈  define the period In,mby  

                                         n n
n,mI [2 m,2 (m 1)]− −= +    

which is familiar as dyadic period. The group of all such periods is called dyadic sub 
periods of   R. 
 
Laguerre's Scalar function  
The family of functions [12], 

                 ( ){ } ( )22 2 , ,, ,

−
−= − ∀ ∈

∈

n
nt t m n m Zn m n m Z

ϑ ϑ                                         (8) 

 is called the system of Laguerre Scalar function at scale  n . 
 Laguerre Scalar function can be defined as  

                 ( ) 1 , 0 1

0 ,

≤ ≤
= 


t
t

otherwise
ϑ                                                                                 (9) 

Equation (8) will be  
                             n m2

D L (t)ϑ  

                            ( ) ( )1/2=D f t r f rt
r

  

And the extending of employee mL f (t) f (t m).= −  
 
4.  The system of Laguerre wavelets LWS 
Laguerre wavelets system for each  n,m Z∈ , defined as 

                ( ){ } ( )22 2 , ,, ,

−
−= − ∀ ∈

∈

n
nt t m n m Zn m n m Z

ρ ρ                                     (10) 

From the equation (10), the function is called the Laguerre wavelet system denoted by 
(LWS).  Consider f (t)  is defined on 2L [0,1]  has an expansion in terms of Laguerre 
functions as follows: 
For any integer 0.≥  

               ( ) ( ) ( )
2 1 2 1

, ,, , , ,
0 0

− ∞ −
= +∑ ∑ ∑

= = =

n n
f t f t f tN m N m N m N m

m n N m
ϑ ϑ ρ ρ          (11) 
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                                  ( )
2 1 2 1

, , , ,
0 0

n n

n m N m n m N m
m n N m

a t dϑ ρ
− ∞ −

= = =

= +∑ ∑ ∑  

which is known as Laguerre series where dm,n and  an,m are Laguerre coefficients for 

wavelet and Laguerre scaling coefficients respectively. 
 
5.  Wavelets  
In many sources you can take the basic idea of transforming the wavelet, which is 
summarized in the following definition.  They are functions defined over finite period 
with average value of zero and for any arbitrary function f(t) as an overlap of a basis 
functions. It is called the mother wavelet , from equation (1).  Throughout the study 
of wavelets they are shown to be the best, most efficient and flexible because of their 
method as smooth. For each n,m Z,∈ , define  (t)n,mρ . 

                         
1 n(t) (2 t m)n,m n2

−ρ = ρ − ,                                                                       (12) 

The framework for constructing wavelets involves the concept of a multiresolution 

analysis of Laguerre wavelets.  They are constructed by ( ){ }, ,n m tρ where 

( ) 2, ∈ → ∈n m Z t Lρ  orthonormal on R. Multiresolution analysis of Laguerre wavelets 

( )Lag(way)MRA  is a system for calculation of  basis coefficients in  

                                2 L (R) : f An,m n,m= ρ∑∑      

                                ( ) ( ) ( ) ( )1
/ 2 , ,0

22

 
  −∈ = = ∈ 
 
  

nf V f t f t h t h t Vn n
 

where   

                                        ( ) ( ) ( ),
∈

= − −∑ i
m Z

f t f m t mϑ ϑ  

Then a multi resolution analysis of Laguerre wavelets (MRALag(wav)) on R is a sequence of 

subspaces n{V }, n Z∈  of functions 2L  on R. First and foremost, we should look forward 
to achieve the following characteristics that allow us to complete our work in the field 
that authors will apply [3]. 
(a) n n 1n,m Z, V V .+∀ ∈ ⊆  

(b) If f (t)   is 0
cC  on R, then ( ) { },∈ ∈f t span V n Zn , with 0∈> , there is an n Z∈  and a 

function g(t) Vn∈  such that || f g || .
2

− <∈  

(c) { }0n
n Z

V
∈

=∩ . 

(d) A function 0f (t) V∈  if and only if n /2 n
n2 f (2 t) V .− − ∈   
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(e) There exists a function 2(t), Lϑ  on R, called the scaling function such that the 

collection (t n)ϑ −   is an orthonormal system of translates and 0V span{ (t n)}.= ϑ −  
 
Definition 5.1. Let  be an MRALag(wav) with calibration function (t)ϑ which satisfies 
(13) and h(m). In this definition authors are considered calibration colander, where 

                       
1 t

h(m) , (t m)
22

 = < ϑ ϑ − > 
 

                                                                   (13)  

Then, find out the following function which will be named as Wavelet colander 
g(m)defined as 

                              mg(t) ( 1) h(1 m)= − −                                                                              (14)  
and the Laguerre wavelet will be defined as  

                 ( ) ( ) 1

22∈

 = − 
 

∑
m Z

t
x g m mρ ϑ                                                                  (15) 

Then { (t)} n,m Zn,mρ ∈  is a Lag wavelet orthonormal standard on R. 

 
Definition 5.2. Let f be the arbitrary function then the orthogonal projection of it is  given 
by 

                             , ,,n n m n m
m Z

f fρ ϑ ϑ
∈

= ∑                                                                 (16)  

2f L∈ when it on to nV .  
 
6. Approximation by (DLWT) in different Space           
In this section, we prove waveforms belong and are realized approximation space. 
 
6.1. Demonstrate of approximate space 

1. (Lag(wav), 
Lag

. ) belong to norm space denoted by (W, 
W

. ).  

2. Let N N 0((Wav) ) ≥  be a functions of subspaces of a space W and N N 0((Wav) ) W.≥ ⊆    

3. If f W,∈  (f is a function) N W W,
E (f ) f K→ = −  the approach error, where K 

approach in N N 0((Wav) ) ≥ .  
 
Case 1. 
For linear approach, N perform prerequisite to characterize on element in . That is, N 

is measure of . There are situations that must take seriously as 

  N→∞  when ( ) 0→N w
E f . 

 
Case 2. 
For the nonlinear approach, different from the first case where N is Linked to free factors. 
This can be demonstrated by example, N power be the number of contract in piecewise 
stationary approximation with free knots  W

N
 is general space can be quite. Specially, 

this means they are not linear. 
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6.2. Approximation in Space of square integrable functions over R  
1. Let 2f L (R)∈ then the (Lag)wav be a series  

                                     ( )
1

, ,
0 0

,
N
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n m

f f tρ ρ
∞ −

= =

=∑∑  

 a continuous function.  
2. n,m(t)ρ  is support on the period 

                                     n n
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f t t dt f t t m dtρ ρ  

3. If we  calculate finite aggregate, we can find the coefficients for some 1 N∈  by 
IN 2 ,=  n = 0, 1, 2,…, I2 1 N− =  then  

                                  
I 1 N 1 2 I1 1 2 2 ... 2 1 N 1
n 0m 0

− −
= + + + + − = −∑ ∑

= =
 

Coefficients, for DLWT  we can see that for each n, only one of the coefficients is non 

zero and its size is 22
n−

. By using the following equation, we can determine the 
approximate error in L (R)2  which is denoted by E  

                                    
2 2I 1 N 1 N 1

f f , (t) f , (t) (t)n,m n,m n,m n,m
n 0m 0 n Im 0L L2 2

− − ∞ −
− < ρ >ρ = < ρ >ρ∑ ∑ ∑ ∑

= = = =
 

                                         
N 1

2 n I n
n,m

N 1 m 0 n 1

1
| f , | 2 2 (2 ),

N

∞ − ∞
− − −

= = =

= < ρ > = = = = µ∑∑ ∑   

where,  µ  is any approximation result. 
 
Theorem 6.3. (Approximation in PL (R) ). 
Let Pf L (R)∈  be the partial sum of (DLWS) of f then  

                                ( )
1 1

2
, ,

0 0

, 2
nl N

n m n m app
n m

H f t n N Eρ ρ µ
−− −

= =

 
= ∈ → =  

 
∑∑  

Proof: 
  Eapp, which determine the approximate error in PL (R).  

                         
I 1 N 1

E f H f f , (t)app n,m n,mLp
n 0m 0 Lp

− −
= − − < ρ >ρ∑ ∑
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Theorem 6.4. (Approximation in iPML ( ,P)δ ). 
 
Let  ( ) ( ] ( ], , 0,1 , 0, , 0ipMf L p p Mδ δ∈ ∈ ∈ ∞ ≥ . 

Then ( ) ( )
1 1

, ,
0 0

,
l N
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n m

H t f tρ ρ
− −

= =

=∑∑  is the LWS of  f  for some  I N∈ , 

( )2 l
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Proof. Eappis the approximate error of in s 2F L (R) . 
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 from spaces' properties ( )( )
1

1 22

2 ,
0

2 ,s

N
sm

n mF
n l m

f L R f ρ
∞ −

= =

 
  ≅     
 

∑∑ .  
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22 2S

SN SN
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Theorem 6.5. (Approximation in Besov Space B (L (R)).
r P
δ   

Let  Pf B (L (R)) 0,0δ
γ∈ δ > < γ ≤ ∞  and ( ) ( )

1 1

, ,
0 0

,
l N
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n m
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− −

= =
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LWS of  f.  Then there exists I N∈  22
N
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δ

µ
−

→ = ,   where IN 2 .=  
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 Proof is straight forward.  
 
7.  Non linear approximation in L (R).

P
 

 
In this section we prove only one theorem. 
 
Theorem 7.1. f L (R)

P
∈ the partial sum of  LWS  f is   

( ) ( )
1 1

, ,
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,
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n m n m
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Proof: 
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µ
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∑  

8.  Conclusion.     
In this article we have demonstrated many theories that show the mathematical aspects of 
the Laguerre wavelets where we were able to reach the important definitions that play a 
very important role in the applications in image processing.  
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