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Abstract. In this work, many important theorems will be prdvand proven in the
formation of (DLWT) in that they take their role ithe processing of the signal or image
processing, which makes them possess characteritich as those characterized by
those that were used for the same purpose anchigithefficiency
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1. Introduction

It is worth mentioning that the analysis of datanirthe signals or images is done by
wavelets in the decisions as we know that wavetgirdhms that deal with signals are
working in the same way as the human eye or caaraaapture signals cell phone and
even digital color images used in medicine are mabcessed by waveforms as
approximation of data and intermittent signalsmages with too many edges [1, 9, 10].
The result of algorithms is the key to processioghbers or digital information, signals,
images etc, [2]. The result of algorithms is a Keyprocessing numbers or digital
information, signals and images. Wavelet applicetiare data compression, fingerprints
and many fields of science and engineering [5, lavelet image processing enables
computers to store an image in many scales ofugsnts. Consequently, decomposing
an image into various levels and types of approtiona with different valued
resolutions [3]. Wavelets allow one to compressitingge using less storage space with
more details of the image [4].

2. Laguerre wavelets
In this section authors will construct Laguerre wiat from the family function [6, 8].

psyr(t):lsl_llzp(t:j, Os, MR, ( (1)

wherep(t) =[p, (t),p,(t), .., pM—l]T ,
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The eIementspO(t), ,ol(t),...,p,v,_l(t) are the basis functions, orthogonal in the interva
[0,1].

Laguerre wavelet is denoted by Lag(wav), is type of wavelets and is used for
solving differential equation, integral equatioasiation problems and different sciences
and engineering as well as fractional differendiglations. That is why it is an important
part. Laguerre wavelet

pn,m(t): pt,n,m,k
have four argumente=1,2,..., n= 1,2,...,l§_1 , ris order for Laguerre polynomials and

t is normalized time. If we dilation by parameter (k1)

k+1)(

and translation by parameter

r:2_( 2n-1) by transform x and by using (1).

If x:2_(k+l)(2k t) then we will get the following equation

kel
2 k, n-1 n
pn,m(t): 2 Lm(2 t 2n+]), 2k—1s t< K1 )
0 , otherwise

wherel :iLm, for k=2.
m!
A function approximationf (t) DL2[0,1] may be expanded as:

1= Anunlt) @

n=1 m=0

where, A, =( f (t), o, . (t) (4)

In equation (4){.,., denote the inner product with weight functw,;(t) on the Hilbert

Space[1,0). If the infinite series in above equation is tated, then equation (3) can be

written as:
M

FE) =D Aumfunlt) = A0, (1) (5)

n=1 m=0

where A and ,o(t)are 2“'M x1 matrices given by:

T
A{Al,oA 118 2,082, (M-1) A, e 19 A ke 1M_J ©6)

T
P(t):{pl,o'pl,l(t) ----- Pim-49° 249 Py ke '1,\,,_1(b P,k ,10( ) Pk 1,M—1( )t}
()
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3. Properties of Laguerre wavelets transform

Forward Wavelet Transformn addition to the use of waveforms mentioned iangn
sources, which have many common characteristidsqleify for the operations of the
pressure of the image of these qualities suchrasngyric and orthogonal. In addition to
converting the waveform that we have constructedhimm previous chapters and the
qualities it possesses, it also gives us the asserthat these waveguides possess the
same image processing behavior as the previouglgt usaveforms, for example Haar
wavelets transform.

Definition 3.1. For every pair ofh,mO Z, define the period | by

lym =[27"m, 27" (m+ 1)]
which is familiar as dyadic period. The group df @lch periods is called dyadic sub
periods of R.

Laguerre's Scalar function
The family of functions [12],

{ﬂ”’m(t)}n,mjz

is called the system of Laguerre Scalar functioscale n .
Laguerre Scaldunction can be defined as

ﬁ(t):{l ,0<st<1

-n
=22 z9(2_nt—m), On 0z 8)

. )
0 , otherwise

Equation (8) will be
D, L,9(1)
_1/2
D, f(t)=r""=f(rt)
And the extending of employee f(t) =f(t -m).

4. The systemof Laguerre waveletsLWS
Laguerre wavelets system for eaehmO Z, defined as

-Nn
{,On,m(t)} — 22 ,0( 2‘”t—m) , Onmidz (10)

From the equation (10), the function is called llaguerre wavelet system denoted by
(LWS). Considerf(t) is defined onL?0,1] has an expansion in terms of Laguerre
functions as follows:

For any integee0.

2N-1 o -1
(0= 2 (Fomnm* = 2 (Toymonmt) @b
m=0 n=N m=0
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2"-1 o -1
= Zq%mﬁN m (t)+ Z Zdn,mpN m
m=0 n=N m=0

which is known as Laguerre series whefg , and a, ., are Laguerre coefficients for

wavelet and Laguerre scaling coefficients respeltiv

5. Wavelets

In many sources you can take the basic idea offwaming the wavelet, which is

summarized in the following definition. They amnétions defined over finite period

with average value of zero and for any arbitramgcfion f(t) as an overlap of a basis
functions. It is called the mother wavelei), from equation (1). Throughout the study
of wavelets they are shown to be the best, mogtieft and flexible because of their
method as smooth. For eashmO Z,, define pn,m(t) .

_1 _-n
pn , m(t)_zinp(z t- m) ’ (12)
The framework for constructing wavelets involve tboncept of a multiresolution
analysis of Laguerre wavelets. They are constductey {pnym (t)}, where

nmiZ - p(t) OL? orthonormal on R. Multiresolution analysis of Lage wavelets
(MRA () is @ system for calculation of basis coefficidnts

L2(R):f =XSAn Pom

v, = f(t)/f(t):lnh(z‘”t), h(t) NV ¢

22
where

f(1)=X(1,9(-m))o(t-m)

miZ
Then a multi resolution analysis of Laguerre watge(®RA .gwav) ON R is a sequence of

subspace¢v }, n iz of functionsL? on R. First and foremost, we should look forward
to achieve the following characteristics that allog/to complete our work in the field

that authors will apply [3].

(@ On,mO 2z V,0V,,,.

(b) If £(t) is C? on R, thenf (t)Dspan{Vn},nDZ , with 0>0, there isamOZ and a
function g(t)0V,, such thaf|f-g |E<D .

© () V.={q.

n0z
(d) A functionf(t) OV, if and only if 27"?f(2"t)0 V,.
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(e) There exists a functiofi(t), > on R, called the scaling function such that the
collection 9(t-n) is an orthonormal system of translates &pe span§ (t- n)}.

Definition 5.1. Let {V;; } be an MRAgway) With calibration functiond(t) which satisfies
(13) andh(m). In this definition authors are considered calioratolander, where

h(m)z<%8(%) 9 (t- m)> (13)

Then, find out the following function which will beamed as Wavelet colander
g(m)defined as

9(t)=(1"h(@- m) (14)
and the Laguerre wavelet will be defined as
1 t
P(x)=> glm —ﬂ[——mj (15)
(=2 0(m 2

Then{pn t)}n,m[Z is a Lag wavelet orthonormal standard on R.

m(

Definition 5.2. Let f be the arbitrary function then the orthogonal @ctipn of it is given
by
Pt =3 {8 m) B (16)

mOz
f OL*when it on toV.,.

6. Approximation by (DLWT) in different Space
In this section, we prove waveforms belong andeatized approximation space.

6.1. Demonstrate of approximate space
(Lag(wav), | . ||Lag) belong to norm space denoted by (W, )-

Let ((Wav), )yso b€ a functions of subspaces of a space W(@nev), )., O W.
3. If fOw, (fis a function) - E, (f),, =|f -K], the approach error, where K
approach in(Wav)y )so -

Case 1.
For linear approach, N perform prerequisite to abtarize on element V.. That is, N

is measure ofl;;. There are situations that must take seriously as
N-o whenE,(f) - 0.

Case 2.

For the nonlinear approach, different from thet fi@se where N is Linked to free factors.
This can be demonstrated by example, N power baedhgber of contract in piecewise
stationary approximation with free knot\a&/N is general space can be quite. Specially,

this means they are not linear.
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6.2. Approximation in Space of square integrable fuctions over R
1. Letf OL,(R) then the (Lag)., be a series

o N-1
f :zz<f 110n,m>pn,m (t)
n=0m=0
a continuous function.
2. p, n(t) is support on the period

lhm=[27"M, 27" (m+1)]
-n (m2) 2"
<f.pn>=[fMOp,Od=22 [ f(t)p(2"t-m)dt
m27"
3. If we calculate finite aggregate, we can filg tcoefficients for someON by

N :2', n=0,1,2,..2 -1=N then
1-1 N-1
SOy 1=+ 24+ I-E N
n=0m=0
Coefficients, for DLWT we can see that for eactomly one of the coefficients is non
-n
zero and its size i2 2 . By using the following equation, we can determihe
approximate error in.,(R) which is denoted by E

I-1 N-1 2 o N-1 2
f- Z Z <f:pn m>pn n{t) = Z Z <fypnn§t)>p nrg:)
n=0m=0 ’ ’ Ly = Im= 0 ’ ’ L,

o N-1

:zzl<f’pn,m >|2 =§:2_n: ZIZ%ZH(Zn )l
=1

N=1m=0

where, p is any approximation result.

Theorem 6.3. (Approximation in L,(R)).
Let f OL(R) be the partial sum of (DLWS) of f then

|-1N-1 -n
H=>>(f.0n)Pum(t) NON qup=y(22)

n=0m=0
Proof:
Eapp, which determine the approximate errorif(R).
E, =[t-H] . [f TN €0
=|f— - <f,p >p {
app Lp n=OneE 0 n,m”F n, o
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© -lp % 1 -1
%z 22 j =22 = /122 _
Theorem 6.4. (Approximation in L,,,(3,P)).

Let f OLy, (8,p),80(0,9,p0( 0] M =
I-1N-1

Then H (t) = (f,Bom) Pum () is the LWS of f for some I1ON ,

=0m=0

Eapp:'u( )

Proof. Eappis the approximate error of IFFL,(R).

=3 (o) O )H

n=0m=0

>

€ =If -H, =

SN -sN
ThereforeEapp <22 |

Theorem 6.5. (Approximation in Besov Spacesé(LP(R))

1-1N-1

Let fOBY(LA(R)5>0,0<ysw andH (t)=> > (f,0, )P (t). can be limited

n=0m=0
N
LWS of f. Then there existsONI €N - E_ =42 2 , whereN=2'.
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Proof is straight forward.

7. Non linear approximation in LP(R).

In this section we prove only one theorem.

Theorem 7.1.f DLP(R) the partial sum of LWSF is

-Nn
I-1N-1 —u
i ):Z(:)m:o<f Pon) P (1), N, = Eqppni =4 2 2

Proof:

-1 N-1
If=Hll_=1IF%X X <fp, wPnm®ll
appNL L n=0m=0 n,m ~n,m LP

=SS o) o )

n=0m=0

(55 nnr)

n=l+1m=0

8. Conclusion.

In this article we have demonstrated many thedhiasshow the mathematical aspects of
the Laguerre wavelets where we were able to rdaeliniportant definitions that play a
very important role in the applications in imageqassing.
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