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1. Intro duction 
Let G be a simple undirected graph on n vertices.  The  adjacency matrix of G 
denoted by A(G)  = (aij  )n×n  is an n × n symmetric matrix indexed by the vertices 
{ v1, v2, . . . , vn }  of G where aij = 1 if vi and vj are adjacent in G and is 0 otherwise. 
A graph is regular if every vertex has the same degree.  The characteristic polynomial of 
G is defined as fG(x)  = det (xIn − A) where In is the identity matrix of order n. The 
roots of the characteristic equation of A are called the eigenvalues of G. It is denoted by 
λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) and are called  A - spectrum of G. 

The distance matrix D(G)  = (dij  ) where dij = d(vi , vj ) is the distance (the 
length of the shortest path) between the vertices vi and vj . If the diameter of G is atmost 
two, any pair of non adjacent vertices is at a distance less than or equal to two.  Graham 
and Pollak [5] introduced the distance matrices in 1971. The matrix D(G) is non negative, 
irreducible and symmetric, the eigenvalues of D(G) are real. Let  G be a graph with 
diameter atmost 2, then D(G) = ���� + 2 ������������ = 2(J − I )−A(G)  [6] where �̅ is the 
adjacency matrix of the complement graph �̅. If ηi1   ≥ ηi2   ≥ · · · ≥ ηig are the distinct 

eigenvalues of D(G)  with corresponding algebraic multiplicity mi1 , mi2 , . . . , mig and 

mi1 + mi2 + . . . + mig = n, then the  D - spectrum can be written as 

SpecD(G) = 
 ��
     ���        �����
    ���      ����. 
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Now consider a special class of graphs called chemical graphs, which representing the 
chemical structure of a compound. Molecular graphs are graphs in which the chemical 
structure under consideration are molecules. Also, these molecular graphs are undirected 
graphs. In molecular graphs, vertices correspond to atoms and edge represents covalent 
bond between atoms and usually the hydrogen atoms are neglected. These matrices have 
been used to determine a number of topological indices like Balaban index, Winer index, 
distance sum index etc. There are some models for the molecular design of a chemical 
compound. Quantitative structure property relationship (QSPR) and quantitative 
structure activity relationship (QSAR) are two such models. Renny  and Susha in [12] 
determined the VDC - spectrum of the molecular matrices derived from the graph distance 
namely vertex distance complement matrix (VDC). In this paper we find the VDC - 
spectrum of some class of graphs namely join of two graphs, cartesian product, double 
graph, lexicographic product, double odd graph and extended double cover graph. 

The organization of the paper is as follows.  In section 2 we mention some basic 
results on spectral graph theory which are useful to prove the results in the succeeding 
sections. In section 3 we determine the VDC - spectrum of some class of graphs. We 
also discuss about some family of graphs which are VDC  - integral.  Then in section 4 
we discuss the application of VDC  - spectrum such as VDC - energy of   G×K2 , 
G[K2],  D2(G) and the extended double cover graph. We conclude that G×K2  and 
extended double cover graph of G are VDC - equienergetic graphs. 

 
2.  Preliminaries 
Definition 2.1. [8] The vertex distance complement matrix VDC = VDC(G) of a graph G 
with ‘n’ vertices is an n×n symmetric matrix VDC = [cij ] , where c�� = � � − ��� , if i ≠ j0 ,                    !" ! = #$ 
dij is the distance between the vertices vi and vj . 
 

The eigenvalues of VDC(G) are denoted by θ1  ≥ θ2  ≥ · · · ≥ θn  and are 
called the VDC  - eigenvalue of G. The set of all VDC - eigenvalues of G is called the 
VDC - spectrum of G. Two non isomorphic graphs are said to be VDC - cospectral if they 
have the same VDC - spectrum. A graph is VDC - integral if the VDC - spectrum 
consists only of integers. 

 
Definition 2.2. [3] Let G be a simple connected graph. G is called distance regular if it is 
regular, and if for any two vertices u, v ∈ V (G) at a distance i, there are constant number 
of neighbors ci and bi  of v at a distance i − 1 and i + 1 from u respectively. 
 
Theorem 2.1. [12]  Let G be a  r - regular graph with  n vertices and  diam(G) = 2. Let  
{ r, λ2, . . . , λn } be the adjacency eigenvalues of  G, then VDC -  eigenvalues of  G are     
(n − 1)(n − 2) + r and  λi   − n + 2 for    i = 2, 3, . . . , n. 
 
Lemma 2.2. [4] Let G be a connected r - regular graph on ‘n’ vertices with its adjacency 
matrix A having n distinct eigenvalues r = λ1, λ2, …, λn. Then there exists a polynomial  

P(x) = n 
�& ' ()��& ' (*�…�& ' (,��- ' ()��- ' (*�…�- ' (,�  such that P (A) = J where J is the square matrix of order n 
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whose all entries are one, so that P (r) = n and P (λi) = 0 for all  λi ≠  r. 
 
Lemma 2.3. [4] Let G be a connected r - regular graph with adjacency matrix A and 
spectrum { r = λ1, λ2, …, λn }. Then the adjacency matrix and spectrum of  �̅, the 
complement of the graph G, are  �̅ = J – I - A and   {n - r - 1, - (λ2 + 1), …, - (λn  + 1)} 
respectively. Here J denote matrix with all entries equal to one and I denote the unit 
matrix. 

Lemma 2.4.[4] Let A = ./
 /�/� /
0 be a 2×2 block symmetric matrix. Then the 

eigenvalues of A are that of M1 + M2 together with M1 – M2. 
 
Theorem  2.5. [6] Let D be the distance matrix of a connected regular graph G on ‘n’ 
vertices with its   distinct eigenvalues  k = η1, η2, …, ηn.  Then there exists a polynomial 

P(x) = n 
�& ' 1)��& ' 1*�…�& ' 1,��2 ' 1)��2 ' 1*�…�2 ' 1,�  such that P(D) = J where J is the square matrix of order n 

whose all entries are one and k is the unique sum of each rows of D. 
 
Product of graphs defined by Yeh and Gutman in [14] are as follows: 
(1) The Cartesian product G1× G2  : 

V (G1× G2 ) = V (G1) × V (G2 ); 

 the vertices u = (u1, u2) and  v = (v1, v2) of G1×G2  are adjacent if and only    
 if either  [u1 = v1, (u2, v2) ∈  E(G2)] or [u2 = v2, (u1, v1 ) ∈  E(G1)]. 

(2) The composition (lexicographic product) G1[G2] : 
V (G1[G2 ]) = V (G1) × V (G2) ; 

the vertices u = (u1, u2 ) and v = (v1, v2) of G1 [G2] are adjacent if and only if either 
[u1 = v1, (u2, v2) ∈  E(G2)] or [(u1, v1) ∈  E(G1 )]. 
(3) The Kronecker  (tensor)  product G1⊗ G2  : 

V (G1 ⊗ G2 ) = V (G1) × V (G2 ); 
the vertices u = (u1 , u2 ) and v = (v1, v2) of  G1⊗G2  are adjacent if and only if  [(u1, v1) ∈  E(G1 )] and [(u2, v2 ) ∈  E(G2)].  
 (4)    The join G1▽G2  : 

V (G1▽G2 ) = V (G1) ∪ V (G2) ; 
E(G1▽G2 ) = E(G1) ∪ E(G2) ∪ { (u1, u2) | u1 ∈ V (G1), u2  ∈  V (G2)} 

 
3. VDC- spectra  of some  graphs 
In this section we find the VDC -spectrum of join of two graphs, cartesian product of 
an arbitrary graph with K2,  double graph, lexicographic product of a graph with K2 , 
double odd graph and extended double cover graph. 

 
3.1. Join of two graphs  G1▽▽▽▽G2   
Theorem 3.1. For i = 1, 2 let Gi be a ri regular graph on ni vertices with adjacency 

spectrum λ1(Gi ) ≥ λ2(Gi ) ≥ . . . ≥ λn (Gi ) and diameter 2 then the VDC - spectrum 
of G1▽G2  consists  of  λi (G1) − n + 2 for i = 2, 3 . . . , n1 ,  
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λj (G2) − n + 2 for  j = 2, 3, . . . , n2  and two roots of the equation; 

x2  − ((n − 2)2 + r1 + r2)x + ((n − 2)(n1  − 1) + r1)((n − 2)(n2  − 1) + r2 )  

− n1 n2 (n − 1)2  = 0. where n = n1  + n2 . 

Proof: From the definition of join of two graphs, the distance matrix of the join G1▽G2  is 

D(G1▽G2) = 56
             789×;) 78)×;9                 6�<, 
where D1  and D2  are the distance matrices of G1  and G2  respectively and J is the 
matrix of all entries equal to 1. 
The VDC - matrix of G1▽G2, 

B = 5��7 − =�89             � 789×;)� 78)×;9                ��7 − =�8) < -  56
             789×;) 78)×;9                 6�<, 
where n = n1 + n2.  
 
Since diam(G) = 2, the distance matrix  D = ���� + 2 ������������ = 2(J − I )− A(G) 

B = 5�� − 2��7 − =�89 + ���
�                                    �� − 1� 789×;)�� − 1�78)×;9                                          �� − 2��7 − =�8) + ����� < . 
 

Since G1 is r1 - regular, it has an eigenvector 1n1 , a vector with all entries equal to 1, 

corresponding to the eigenvalue r1. All other eigenvectors are orthogonal to 1n1
. Let 

λ(G1) be an eigenvalue of the adjacency matrix A(G1) of G1  with eigenvector X such 

that 1T X = 0. Then (X, 0)T  is an eigenvector corresponding to the eigenvalue             
− (n − 2) + λ(G1). This is because 

 5�� − 2��7 − =�89 + ���
�                            �� − 1� 789×;)�� − 1�78)×;9                                �� − 2��7 − =�8) + ����� < ?@0A  
                                                                                   = .B− �� − 2� +  C��
�D@0 0 
                                                                                   =  �C��
� − � + 2� ?@0A. 
Similarly (0, Y )T   is also an eigenvector corresponding to λ(G2 ).  In an equivalent 
manner we can prove  -(n - 2) + λ(G2) is an eigenvalue of A(G2)  and the 

corresponding eigenvectors are (0, Y )T.  

In this way we obtain eigenvectors of the form (X, 0)T   and (0, Y )T   all 
orthogonal to (1n1,  0) T and (0,1n2)

T . Thus we obtain n1  − 1 + n2  − 1 = n1  + n2  − 2 
eigenvalues of B. 

The remaining two vectors of B are of the form (α1, β1) for (α, β) ≠ 0. 
Let x be the eigenvalue of B with eigenvector τ.   
Then from Bτ  = xτ  we get 
(n − 2)(n1  − 1)α + r1α + (n − 1)n2β  = xα                                                  (1) 

n1(n − 1)α + (n − 2)(n2  − 1)β + r2β = xβ                                                           (2) 
By solving equations (1) and (2) we get the remaining two eigenvalues. 
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3.2. Cartesian product G × K2 
Theorem  3.2. Let G be a distance regular graph with distance spectrum  
{ η1 , η2, . . . , ηn}  and distance regularity k. Then the VDC - spectrum of G × K2  is 

VDCSpec(G × K2) =  F 4�� − 3� − 2I   − 2�� +  ���       − �    − 2�                     1                      1                       1        � − 1J,  

for i = 2, 3, …, n. 
Proof: From the definition of Cartesian product, we have distance matrix of  G×K2 i s  

D(G × K2)  = .      6         6 + 7 6 + 7          6    0. 
VDC matrix of  G×K2   is 

 

VDC(G×K2)  = . 2��7 − =�              2�7       2�7                 2��7 − =� 0 - .      6         6 + 7 6 + 7          6    0 
                                        = . 2��7 − =� − 6             �2� − 1�7 − 6      �2� − 1�7 − 6               2��7 − =� − 6 0. 
By Lemma 2.4 the eigenvalues of G×K2   are those of  2n(J  − I ) − D + (2n − 1)J − D 
and 2n(J  − I ) − D − (2n − 1)J + D.  
i.e. the eigenvalues of (4n − 1)J − 2nI − 2D and J − 2nI.  
Using Theorem 2.5 we get the required spectrum. 
    
Corollary  3.3. If G is a  r - regular graph with diameter 2 and adjacency spectrum  
{ r  = λ1, λ2, . . . , λn} . Then the VDC - spectrum of G×K2  is 
VDCSpec(G × K2 )  

=  F 4�� − 7� − 2L + 4         2�C� + 2 − ��      − �        − 2�                     1                                     1                       1           � − 1J , 

for i = 2, 3, …, n. 
 
3.3. Double Graph D2(G) 
Definition 3.1. [7] Let G be a graph with vertex set V (G) = { v1 , v2, . . . , vn } . Take 
another copy of G with the vertices denoted by { u1, u2, . . . , un } where ui corresponds to 
vi for each i. Make ui adjacent to all the vertices in N (vi ), the neighborhood of vi , in G 
for each i. The resulting graph is called the double graph of G and is denoted by D2(G). 
 
Theorem  3.4. Let G be a distance regular graph with distance spectrum  
{ η1 , η2, . . . , ηn}  and distance regularity k. Then the VDC - spectrum of D2(G) is 

VDCSpec(D2(G)) =  F4�� − 2� − 2 − 2I       − 2�� + 1 + ���          − 2�� − 1�                     1                                     1                                  � J , 

for i = 2, 3, …, n. 
Proof: From the Definition 3.1,  the distance matrix of D2(G) is 

D(D2(G)) = ?      6         6 + 2= 6 + 2=          6    A. 
VDC matrix of D2(G) is 

VDC(D2(G))   = . 2��7 − =� − 6                2�7 − 6 − 2= 2� 7 − 6 − 2=               2��7 − =� − 6 0. 
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By Lemma 2.4 the eigenvalues of D2(G) are those of 2n (J − I ) − D + 2nJ − D − 2I 
together with 2n (J − I ) − D − 2nJ + D + 2I .  
 ie the eigenvalues of  4nJ − 2(n + 1)I − 2D  and −2(n − 1)I .   
Hence the theorem follows using Theorem 2.5. 
    
Corollary  3.5. If G is an r - regular graph with diameter 2 and adjacency  spectrum  
{ r  = λ1, λ2, . . . , λn} . Then the VDC - spectrum of D2(G) is 
 

VDCSpec(D2(G) ) =  F4�� − 6� + 2L + 2       − 2�C� − � + 2�         − 2�� − 1�                     1                                     1                                  � J , 

for i = 2, 3, …, n. 
 
3.4. Lexicographic product of G with K2 
Theorem  3.6. Let G be a distance regular graph with distance spectrum { η1 , η2, . . . , 
ηn}  and distance regularity k. Then the VDC - spectrum of the lexicographic product of 
G with K2, G[K2], is 

VDCSpec(G[K2]) =  F4�� − 2� − 1 − 2I       − �2� + 1 + 2���          − �2� − 1�                     1                                     1                                  � J , 

for i = 2, 3, …, n. 
Proof: From the definition of lexicographic product, we have the distance matrix of G[K2] 
is 

D(G[K2])  = ?      6         6 + = 6 + =          6    A. 
VDC matrix of  G[K 2] is 

VDC(G[K2])  = . 2��7 − =� − 6                2�7 − 6 − = 2� 7 − 6 − =               2��7 − =� − 6 0 
By Lemma 2.4 the eigenvalues of G[K2] are those of 4nJ − (2n + 1)I − 2D and  
−(2n − 1)I .  Remaining proof follows from Theorem 2.5. 
 
Corollary 3.7.  If G is a r  - regular graph with diameter 2 and adjacency spectrum 
{ r   = λ1, λ2 , . . . , λn} . Then the VDC - spectrum of G[K2 ] is 

VDCSpec(G[K2]) =  F4�� − 6� + 2L + 3        2C� − 2� + 3         − �2� − 1�            1                                1                                    � J , 

for i = 2, 3, …, n. 
 
3.5. Double odd graph, DO(r) 
Let n and r be two fixed integers. Consider the collection of integers S = {1, 2, 3, …, n} 

and 
�L� denote the number of r – subsets of S. The graph J(n; r; i) with fixed integers n, 

r and i is defined on the vertex set 
�L� such that two vertices T1 and T2 are adjacent iff  

|T1 ∩ T2| = r − i. 
For i = 1 the graph J (n; r ; 1) = J (n, r) is called the Johnson graph.  The Kneser 

graph K (n, r) is the Johnson graph J (n; r; r) and the odd graph O(r)  = K (2r +1, r).  
A Double odd graph DO(r)  is a graph whose vertices are r - element or (r + 1) - 
element subset of { 1, 2, . . . , 2r + 1} . Two vertices T1 and T2 are adjacent iff T1 ⊂ T2 or 
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T2 ⊂ T1. Also, the Double odd graph can be constructed as the Kronecker product of O(r) 
with the path P2.  
For more details see [1]. 
 
Theorem 3.8. [3] The distance spectrum of Johnson graph J(n,r) is given by 

SpecD(J(n,r))  =  O P��, L�                0                           'Q�8,R�8'
        1             
�L� − �                    � − 1    S , 

where, s(n,r) = ∑ # 
L#� 
� − L# �R�UV . 

 

Theorem  3.9. [1] Let J (2r + 1, r) be the Johnson graph of order N = W2r + 1rr Y. Let  

r ≥ 2,   the distance spectrum of the Double odd graph DO(r) is 
SpecD(DO(r)) = 

 

Z �2L + 1�[                          0                       'Q��R\
,R�8'
           − �2L + 1�[ + 4P�2L + 1, L�        1                      2[ − 2L − 2                      2L                                            1                            ],   
where, s(n,r) = ∑ # 
L#� 
� − L# �R�UV . 

 
Theorem  3.10. Let G be an arbitrary graph with distance spectrum { η1, η2, . . . , ηn} .  
Then the VDC - spectrum of the double odd graph, DO(r), is 
VDCSpec(DO(r)) = 

Z[�4[ − 2L − 3�                         − 2[                   �2L − 1�[ − 4P        − �2[ −  �QR  �         1                                      2�[ − L − 1�                      1                                     2L       ],  

where, N = W2r + 1rr Y and s = s(2r+1,r) = ∑ # 
L#� FL + 1# JR�UV . 

Proof: We have from Theorem 3.8 distance matrix of DO(r) is .  26                          �2L + 1�7 − 26 �2L + 1�7 − 26                             260, 
where D is the distance matrix of the Johnson graph J (2r + 1, r) and J in the above 
matrix is a square matrix of order 2r + 1 having all entries equal to 1. 
Hence the VDC matrix of DO(r) is 

VDC(DO(r))  = . 2[�7 − =� − 26                      �2[ − 2L − 1�7 + 26 �2[ − 2L − 1�7 + 26                       2[�7 − =� − 26 0. 
By Lemma 2.4 the VDC-eigenvalues of DO(r)  are those of (4N  − 2r − 1)J  − 2N I 
and  (2r + 1)J − 2N I − 4D.  
By Theorem 2.5 the eigenvalues corresponding to (4N − 2r − 1)J − 2N I are 
 �4[ − 2L − 3�[           − 2[                    1                       [ − 1  �.                                                                              (3)                                                                                           

Since D is the distance matrix of the Johnson graph J (2r + 1, r), from Theorem 3.8, 
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SpecD(J) =  ZP�2L + 1, L�                0                           'Q��R\
,R��R        1                      [ − �2L + 1�                    2L    ],                                     (4)                                              

where,  N = W2r + 1rr Y  and    s = s(2r+1,r) = ∑  # 
L#� 
� − L# �R�UV . 

Using Theorem 3.9 and Equation (4), the eigenvalues corresponding to  
(2r+1)J - 2N I - 4D  is 

Z �2L − 1�[ − 4P�2L + 1, L�                − 2[                       − �2[ − �Q��R\
,R�R  �                   1                                           [ − �2L + 1�                                          2L       ].      (5)                

Combining Equations (3) and (5) we get the required VDC – spectrum of DO(r). 
 
3.6. Extended  double cover graph 
The extended double cover of a graph was first introduced in 1986 by Alon [2] in 
connection with the study of networks. 
 
Definition 3.2. [2] Let G be a simple graph with vertex set V(G) = { v1, v2 , . . . , vn} . The 

extended double cover of  G, denoted by D∗(G), is the bipartite graph with bipartition 
(X, Y ), where X ={ x1, x2, . . . , xn } and Y  ={ y1, y2 , . . . , yn} , in which xi and yi are 
adjacent if and only if i = j  or vi and vj  are adjacent in G. 
 
Theorem 3.11. If G is a  r - regular graph on n vertices with diameter 2 and adjacency 

spectrum { r = λ1 , λ2, . . . , λn} . The VDC - spectrum of G∗, the extended double cover 
of G is 
VDCSpec(G* ) =  F4�� − 7� + 2L + 4        − �� + 2L�        2C� − 2� + 4      − 2�� + C�           1                                       1                      1                                   1 J , 

for i = 2, 3, …, n. 
Proof: Let A be the adjacency matrix of G. Since diam(G) = 2, we have  D(G) = ���� + 2 ������������. Then by the definition of G*, the distance matrix of G* can be written 
as, 

D(G*) = . 2�7 − =�                      37 − 2= − 2� 37 − 2= − 2�                       2�7 − =� 0. 
VDC matrix of G* is 

VDC(G*) = . �2� − 2��7 − =�                                  �2� − 3�7 + 2= + 2� �2� − 3�7 + 2= + 2�                                    �2� − 2��7 − =�0. 
By Theorem 3.5,. the eigenvalues of G* are those of (2n − 2)(J  − I ) + (2n − 3)J + 
2I + 2A  = (4n − 5)J + (4 − 2n)I + 2A and (2n − 2)(J − I ) − (2n − 3)J − 2I − 2A 
= J − 2nI − 2A. 
Using Theorem 2.5 we get the required result. 
                                                                                  
Theorem  3.12. Let G be an A - integral graph with diameter atmost  2, then the 
following class of graphs are VDC - integral. 
(1) Cartesian product of G with K2  :   G×K2 
(2) Double graph :   D2(G) 
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(3) Lexicographic product of  G with K2  :   G[K2] 
(4) Extended double cover graph :   G* 
Proof: From Corollaries 3.3, 3.5, 3.7 and Theorem 3.11, it is clear that if G is A-integral 
then the VDC - spectrum of   G×K2, D2(G), G[K2] and G* consists only of integers. 
 
4.  VDC–energy 
Energy of the graph G is introduced by Gutman   [9]. Research is going on this field and 
many results obtained in this regard. For more details see [9 - 13]. 
 
Definition 4.1. [12] VDC  - energy is the sum of the absolute values of the 
eigenvalues of the vertex distance complement matrix. It is denoted by VDC E(G).  If 
{ θ1, θ2, . . . , θn } are the VDC - spectrum of a graph G then the VDC - energy is, 

VDCE(G) = ∑ |c�|8�U
 . 
 

Theorem  4.1. Let G be a connected r - regular graph on n vertices with a diameter two. 
Then VDC - energy of G × K2  is 
(i) The second largest eigenvalue of G is less than n − 2 then, 

VDCE(G×K2) = 2(4n2  − 7n + 2r + 4) 
(ii) The smallest adjacency eigenvalue of G is greater than or equal to n − 2 then, 

VDCE(G×K2) = 2n(2n − 1) 

Proof: Since G is r - regular, by Theorem 2.5 4n2 − 7n − 2r + 4, the largest VDC - 
eigenvalue of G × K2 , and  is positive. 
(i) By assumption λi + 2 − n < 0, f o r  i  = 2, 3, . . . , n. 

Hence from Corollary 3.3 it is clear that 4n2 − 7n  +  2r  +  4 is the only positive VDC -
eigenvalue of G × K2. Since the diagonal entries of VDC(G) are zero, algebraic sum of the 
VDC - eigenvalues of any graph is zero. Therefore, 

VDCE(G×K2) = 2 × (4n2  − 7n + 2r + 4) 

                          = 2(4n2  − 7n + 2r + 4). 
(ii) If λi + 2 − n ≥ 0 then from Corollary 3.3,  - n  and −2n are the only negative 

eigenvalue of VDC (G × K2) which repeats 1 and n − 1 times respectively. 
VDCE(G × K2 ) = 2 [n × 1 + 2n × (n − 1)] 
                             = 2n (2n − 1). 
 
Theorem  4.2. Let G be a connected r - regular graph on n > 2 vertices with diameter 
2. Then VDC - energy of the double graph D2(G) is 
(i) The second largest eigenvalue of G is less than n − 2 then, 

VDCE(D2 (G)) = 2(4n2  − 6n + 2r + 2). 
(ii)The smallest adjacency eigenvalue of G is greater than or equal to n − 2 then, 

VDCE(D2(G)) = 2n(2n − 1). 

Proof: We have (4n2  − 6n + 2r + 2) is the largest VDC - eigenvalue of D2(G).  By 
Theorem 2.5, it is positive. 
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(i) By assumption λi − n + 2 < 0 for all i = 2, 3, . . . , n. 
Hence from Corollary 3.5 it is clear that −2(n − 1) is the only negative VDC  - 
eigenvalues of D2(G) which repeats n times. Therefore, 

VDCE(D2(G)) = 2 × [n × 2(n − 1)] 
                            = 4n(n − 1). 

(ii)  If λi − n + 2 ≥ 0, from Corollary 3.5,  4n2 − 6n + 2r + 2 is the only positive VDC - 
eigenvalue of D2(G).  Therefore, 

VDCE(D2(G)) = 2 × (4n2  − 6n + 2r + 2) 

                   = 4(2n2  − 3n + r + 1). 
 
Theorem  4.3. Let G be a connected r - regular graph on n vertices with diameter 2. 
Then VDC - energy of the lexicographic product of G with K2,  G[K2], is 

(i)  The second largest eigenvalue of G is less than 
�8'd�   then,  

VDCE(G[K2])  = 2[4n2 − 6n + 2r + 3]. 

(ii) The smallest adjacency eigenvalue of G is greater than or equal  to 
�8'd�   then, 

VDCE(G[K2])  = 2n(2n – 1). 
Proof:  The proof of the Theorem is similar in lines that of the above Theorem. 
 
Theorem  4.4. Let G be a connected r - regular graph with n > 4 vertices. Then VDC - 
energy of  G*, the extended double cover of G,  is 
(i) The second largest eigenvalue of G is less than n − 4 then, 

VDCE(G*) = 2[4n2 − 7n + 2r + 4]. 
(ii)The smallest adjacency eigenvalue of G is greater than or equal to n − 4 then, 

VDCE(G*) = 2n(2n − 1). 

Proof: Since G is r - regular, 4n2 − 7n − 2r  +  4 is positive. Also −r ≤ λi ≤ r   for  
i = 2, 3, . . . , n.  
So −n < −r ≤ λi    n + λi > 0   for i = 2, 3, . . . , n. 
(i) By assumption λi + 2 − n < 0,   for i = 2, 3, . . . , n. 

Hence from Theorem 3.11,  it is clear that 4n2 − 7n − 2r + 4 is the only positive VDC – 
eigenvalue of G*. Since the diagonal entries of VDC (G) are zero, algebraic sum of the 
VDC – eigenvalues of any graph is zero. Therefore, 

VDCE(G*) = 2 × (4n2  − 7n − 2r + 4) 

                                           = 2(4n2  − 7n + 2r + 4). 
(ii) If λi + 2 − n ≥ 0 then from Theorem 3.11 − (n + 2r) and −2(λi + n),  

 i = 2, 3, . . . , n are the only negative V DC - eigenvalue of G∗. 
We have ∑ C�8�U
  = 0 ⇒  ∑ C� =  −L8�U� , 

VDCE(G*)  = 2[(n + 2r) × 1 + 2 ∑ �� +  C��8�U�  
                   = 2[n + 2r + 2((n - 1) n – r)] 

             =  2n (2n - 1). 
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Definition 4.2. Two connected graphs G1 and G2  are said to be vertex distance 
complement equienergetic or VDC - equienergetic if VDCE(G1)  = VDCE(G2 ). 
 
Theorem  4.5. Let G be a  r - regular graph with diameter 2, then G×K2 and G* are  
VDC – equienergetic  graphs. 
Proof: Proof of the theorem follows from Theorems 4.1 and 4.2.                                                    
 
 
 
 
 

 
Figure 1:  VDC-equienergetic graphs with VDC - energy 224. 

 
5. Conclusion   
The spectral graph theory has various applications in the field of science like theoretical 
chemistry, quantum mechanics, statistical physics, computer, information science etc. 
There are mainly two models QSPR and QSAR which are used for the study of 
molecular design of chemical compound. The vertex distance complement matrix is one 
of the important sources of structural description for QSPR and QSAR models. In this 
paper we construct the VDC- spectrum and VDC - energy of some class of graphs. Here 
we discuss some infinite family of VDC - integral graphs.  As an application we can 
give the VDC -energy of G×K2,  G[K2 ], D2(G) and the extended double cover graph. 
Also we proved that the cartesian product G×K2   and the extended double cover graph of 
G are VDC-equienergetic graphs. 
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Chemistry, Uni. Kragujevac, Kragujevac, 2007. 

9. X. L.Li, Y.T.Shi and I.Gutman, Graph Energy, Springer-Verlag New York,  Inc., 
2012. 

10. T.K.Mathew Varkey and J.K.Rajan, On the spectrum and energy of concatenated   
graphs, Annals of Pure and Applied Mathematics, 14(3) (2017) 555-579. 

11. S.Meenakshi and S.Lavanya, A survey on energy of graphs, Annals of Pure and  
Applied Mathematics, 8(2) (2014) 183-191. 

12. R.P.Varghese and D.Susha, Vertex distance complement spectra of regular graphs 
and its line  graphs, Int. J.  of Appl.  Math.  Analysis and Applications, 12(2) (2017) 
221-231. 

13.  D.S.Revankar, M.M.Pattil and H.S.Remane, On eccentricity sum eigenvalues and eccentricity 
sum energy of a graph, Annals of  Pure and Applied Mathematics, 13(1)  (2017) 123-130. 

14. Y.N.Yeh and I.Gutman, On the sum of all distances in composite graphs, Discrete 
Math. 135 (1994) 359–365. 


