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Abstract. In this paper, an attempt has been made to fuzzify some parameters and 
variables appeared in equations of fluid mechanics and then defined the fuzzy derivatives 
using Zadeh extension principle. The differential equations governing the Couetee type 
flow which is one of the fundamental boundary value problems is also fuzzified.  The 
fuzzified boundary value problem has been discritized using Crank Nicolson scheme. 
Finally, numerical solution is carried out by developing computer codes for the problem. 
The crisp solution and mid value solution of the triangular fuzzified system of equations 
are  in good agreement. 
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1. Introduction 
In day to day life we encounter many situation most of them are fuzzy in nature [1,2,3,4]. 
To tackle such fuzziness in many application related problems mathematical models or 
mathematical equation are derived. Many such problems are models to differential 
equation having some prescribe boundary condition. When a real world problem is 
transformed value problem of ordinary differential equations, or a system of differential 
equations, we cannot be usually sure that the model is perfect to illustrate the system. For 

example, the initial value problem (IVP)   
���� = ���, 	
, ��	�
 = 	�  the initial value 

may not be known exactly and the function f may contain uncertain parameter. If they are 
estimated through certain measurements, they are necessarily subject to errors. The 
analysis of the effect of these errors leads to the study of the qualitative behavior of the 
solutions of the IVP. If the nature of the error is random then we can discuss, random 
differential equation with random initial data. However, if the underlying structure is not 
probabilistic due to subjective choices, it would be natural to employ fuzzy differential 
equations. The solution and behaviors of such differential equation are fuzzy in nature. 
So it is important to fuzzifed the differential equations appeared in many branches of 
science and technology such as Physics, Fluid Mechanics, Mechanical Engineering and 
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Civil Engineering. Such models are successively applied in the fields of civil engineering 
[5], population model [6] and as well in modeling of hydraulic [7].   
 The first fuzzy valued function was developed by Chang and Zadeh [8]. After 
that Dubois and Prade [9], Puri and Ralescu [10], Kaleva [11] Seikkala [12] etc. came 
with their own approaches. Subsequently lots of Researcher has done the work on the 
field of fuzzy differential equation see e.g.[12,13, 14].  
 For the solution of such differential equation many researchers investigated 
numerical solution with the numerical methods such as Runge-Kutta [15], Fuzzy 
transform [16], difference methods [17], shooting Method [18] and many more.  
 Since couette type flow problems are a fundamental flow problem in Fluid 
Dynamics having many applications drawn the attention of many works in [17,18,19]. In 
this paper an attempt has been made to fuzzify the differential equation that represents the 
couette type flow and to solve the fuzzified boundary value problems. The fuzzify the 
differential equation after discritisation using Crank-Nickolson methods has been solved 
by developing computer codes for the fuzzified boundary value problem. It is interesting 
to note that the mid solution is almost identical with that the crisp solution. 
 
2. Preliminaries  
(i) Basic of fuzzy set theory 
Definition 2.1. Fuzzy set : Let X is a collection of objects denoted generally by x, then a 
fuzzy set of ordered pairs Ã in X is a set of order pairs  
  Ã= { ( x,�Ã��

 ∶ � ∈ �}  
 �Ã 	is called the membership function or grade of membership of � in Ã. The range of the 
membership function is a subset of the non-negative real number whose supremum is 
finite. 
 
Definition 2.2. Height of a fuzzy set: It is defined as the largest membership grade 
obtained by any element of a fuzzy set. i.e. 
  ℎ��
 = 	 ����∈�����
.	    
 
Definition 2.3. Normal fuzzy set: A fuzzy set A is said to be normal if ℎ��
 = 	1.  
 
Definition 2.4. Triangular fuzzy set: A fuzzy set is called triangular if the membership 
function of the set is given by  

����
 = �� − �� − � , � ≤ � ≤ � − � − � , � ≤ � ≤  ! 
Simply it can be express as �	" = [�, �,  ] 
 
Definition 2.5. Operation of triangular fuzzy set:  Ã& = [�&, �&, &] and 	Ã& = [�', �', ']  are two triangular fuzzy number then Operation of 
these two are defined as  

(a) Addition: Ã& + Ã' = )�&, �&, &* + )�', �', '* = [�& + �', �& + �', & +  ' ]  
(b) Subtraction: Ã& − Ã' = )�&, �&, &* − )�', �', '* = [�& − �', �& − �', & −  '] 
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(c) Scalar Multiplication: σÃ& = [σ�&, σ�&,σ &]  
(d) Division: 

Ã,Ã- = .min 2, 3,3- , 4��	25, where 2 = {	7,7- , 8,7- , 8,8- 	 , 8,8-} 
(e) Multiplication:  Ã& ∗ Ã' = [4:;�<�<	,�=>?� @	>�	4:?	�>:;@, max �<�<] 

 
Definition 2.6. Zadeh extension principle: 
When a crisp function �: � → Eis said to be fuzzified when it is extended to act on fuzzy 
set defined on X and Y. i.e  �F:	�G → EG 
And its inverse has the form        							�FH&: EG → �G 
The extension principle state that for a given crisp function �: � → E  induces two 
functions �F and  	�FH&	which are defined above for which membership function are given 
by   )�I�FJ*�	
 = ����⋮�LM��
�NO��
 
For all A ∈ �G. And  [�FH&�P
]��
 = �Q���
 

For all B ∈ EG  
 
(ii) Basic of dynamics 
Definition 2.7. Incompressible fluid: A fluid is said to be incompressible if it requires a 
huge variation in pressure to produce some appreciable variation of its density. A fluid 
which is not incompressible is called compressible fluid. 
 
Definition 2.8. Laminar flow: The flow in which each fluid particle followed a definite 
curve and the curve trace out any two distinct fluid particle can’t intersect, is called 
Laminar flow. 
 
Definition 2.9. Steady and Unsteady flow: A flow in which property and condition 
associated with the motion of the fluid are independent of time so that the flow pattern 
remain unchanged with the time is called steady flow, otherwise it is unsteady. 

 Mathematically for steady flow 

    
RRST = U,  

For unsteady flow  
RRST ≠ U, 

where P may be any of velocity, density, pressure, temperature etc. 
 
Definition 2.10. Rotational and irrotational flows: A flow in which fluid particle go on 
rotating about their own axes, while flowing, is said to be rotational. And the flow which 
is not rotational is called irrotational flow.  
 
Definition 2.11. Equation of continuity: This is also known as equation of conservation 

of mass. In vector notation the equation is given by:   
RWRS +	∇. �YZ
[[[[\ = 0. 

In Cartesian co-ordinate system the above equation is reduce to 
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RWRS +	 RR� �Y�
 + RR� �Y^
 + RR_ �Y`
 = 0  

Where Z\ = �â + ^ĉ + `dO and �, ^, ` are the velocity component of Z\	along the �, 		�;?	e direction. 
 
Definition 2.12. Navier -Stokes equation: Navier stockes is a set of equation of motion 
for a viscous incompressible fluid. In Cartesian coordinates these are is given by Y fg�g@ + � g�g� + ^ g�g	 + `g�geh = YP� − g�g� + �{g'�g�' + g'�g	' + g'�ge'} 

Y fg^g@ + � g^g� + ^ g^g	 + ` g^geh = YP� − g�g	 + �{g'^g�' + g'^g	' + g'^ge'} 
Y fgg̀@ + � gg̀� + ^ gg̀	 + ` gg̀e h = YP_ − g�ge + �{g'`g�' + g'`g	' + g'`ge' } 

 
Definition 2.13. Reynolds number: This is a dimensionless number which is defined as 
the ratio of inertia force by viscous force is known as Reynolds number. 
Mathematically the expression for Reynolds number is  ij.= klm  

where V and L are the characteristic velocity and length and m = no. Here the symbol 

indicates the usual meaning. 

Couette flow: The couette flow is the flow problem of a viscous incompressible fluid 
between two parallel plates, one plate is at rest and the other is moving with a constant 
velocity. This is one of the problems for which exact solution of Navier-Stoke equation 
for one dimensional flow with given boundary conditions.  

Objective of the problem: The main objective of these type problems is to obtain 
velocity, temperature, coefficient of skin friction  and to estimate the rate of Heat 
Transfer .  
 
Physical model of the problems: Consider a laminar flow Newtonian incompressible 
fluid between two infinite parallel plate which are kept at a distance ℎ  apart. We 
assuming that upper plate is moving in the direction of �- axis with constant velocity uo 

and 	 − axis perpendicular to � and fluid flow properties are independent of e. Also we 
have taken that there is no external force. 
 y                                        
u=u0 
  
 h 
 
           x 
         y=0, u=0 
 
 
                                                                  Figure 1: 
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 The flow is considered to be unsteady, laminar and single phase. The governing 
equation and the boundary condition of this flow is given by the equation. 
 
Mathematical model: The governing Equation and boundary condition of the above 
problem is given by the following 
Equation of continuity RWRS +	 RR� �Y�
 + RR� �Y^
 + RR_ �Y`
 = 0                                      (1)  

Navier Stockes equation Y pRqRS + � RqR� + ^ RqR� + ` RqR_r = YP� − RWR� + � pR-qR�- + R-qR�- + R-qR_-r	                                    (2) Y pRsRS + � RsR� + ^ RsR� +` RsR_r = YP� − RWR� + 	�{R-sR�- + R-sR�- + R-sR_-}                                     (3)  Y pRtRS + � RtR� + ^ RtR� + ` RtR_ r = YP_ − RWR_ + �{R-tR�- + R-tR�- + R-tR_- }                                  (4) 

 
Assumption under coquette flow are given by 

(a)  The plates are of infinite extent in x-direction, so all quantities are independent 

of x. i.e. 	 uuv �		w
 = U  . Where 2 may be velocity, Temperature etc. 

(b) Similarly as there is no body force involved in the motion so the physical 
quantity all are equivalent to zero, i.e. we have  xv = xy = xz = U  

(c) There is no motion along e − axis so we have   
uuz �w	
 = U , { = U. Where 2 

may be velocity, Temperature etc 
 
Under these assumption equations  (1),(2),(3) and (4) become  

                                                      | u}u~ = � u�}uy�                                                                (5) 

The boundary condition:  u(t,0)=0 and  u(t,h)= uo 
To make the equation and the boundary conditions dimensionless let us assume � =́ 

q��  @ =́ 
S��   	 =́ 

��� 
Then the above equation reduces to �Yl��� 	g'��g	�' = g��g@�  
                                       ⇒ Rq�RS� = &��. 	 R-q�R��-			                                                                   (6) 

where ij. indicate the Reynold number.  
The boundary conditions become:                 u(@�,0)=0,  
            u(@�,1)=1.                                                  (7) 
Fuzzified the above equation and boundary condition we have, 

                      																														Rq��RS�� = &��� . 	 R-q��R���-				                                                                 (8) 

And the boundary condition   ��(@�,0)=0,  
     ��(@�,1)=1                                                          (9) 
(For our simplicity we just remove the bar given in each variable. Example 
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��	�j �4j	�, @��j �4j	@	j@ . ) Then The above equation discrtized using Crank 
Nicolson scheme and the final finite difference equations become: �<�&,� − �<,�∆@ = 1ij. ∗ 	12 ∗ �<�&,��& + �<,��& − 2�<�&,� − 2�<,� − �<�&.�H& + �<,�H&∆	'  

 ⇒ �<�&,� = �<,� + ∆S��. ∗ 	&' ∗ q��,,��,�q�,��,H'q��,,�H'q�,�Hq��,.��,�q�,��,∆�-                              (10) 

where  : = 1,2,3, ……………�, � = 1,2,3, ………�. And the boundary condition ��:, 1
 = 0,	 
                            																															��:, � + 1
 = 1                                                       (11) 
Zedeh Extension principle we shall convert the above equation into fuzzyfied form we 
have  ⇒ �<�&,� = �<,� + ∆2i�. ∗ 	12 ∗ �<�&,��& +�<,��& − 2�<�&,� − 2�<,� −�<�&.�H& +�<,�H&∆E'  																																																																																																																									                              (12) 
With the boundary condition            U�:, 1
 = 0,	 
                                                       	��:, � + 1
 = 1                                                      (13) 
Here all block letter are the fuzzified form of the respective variables. 
 
3. Result and discussion 
The equation for the crisp variable is given in the equation (6) with the boundary 
condition (7) and the fuzzified boundary value problem is given by (8) - (9). 
 The Crank-Nickolson Scheme for the discritized equation (6)-(7) is given in 
Equation (10)-(11). The discritized equations (8) – (9) after applying Zadeh extension 
principle are given by �12
 and �13
. 
 The discritized equations  �10
 - �11
	and	�12
 - �13
 are solved by an iterative 
scheme based on Gauss Saidel method for different time as well as Reynolds number. 
Solution is carried out by developing computer codes for the problem. The solution tables 
for Reynolds number Re= 10, t= 0 ; Re= 15, t= 0.2 ; Re= 20, t= 0.4; are given below.  

Table I: Re. no.=10 and t=0.0 
                        crispvalue        midvalue         leftvalue       midvalue       rightvalue    
            y   																		�                   U                     U                 U                  U 

0 0 0 0 0 0 

0.1 0.000296 0.000295 -0.01376 0.000295 0.013876 

0.2 0.000887 0.000887 -0.0206 0.000887 0.021591 

0.3 0.002365 0.002365 -0.02199 0.002365 0.025805 

0.4 0.006208 0.006208 -0.01926 0.006208 0.030703 

0.5 0.01626 0.01626 -0.00983 0.01626 0.041145 

0.6 0.042572 0.042572 0.015262 0.042572 0.067499 

0.7 0.111456 0.111456 0.081489 0.111456 0.135929 

0.8 0.291796 0.291796 0.258609 0.291796 0.314371 

0.9 0.763932 0.763932 0.73317 0.763932 0.779979 

1 1 1 1 1 1 
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Table II: Re. no.=10 and t=0.2 
                        crispvalue        midvalue         leftvalue       midvalue      rightvalue    
            y   																		�                   U                     U                 U                  U 

0 0 0 0 0 0 

0.1 0.000489 0.000489 -0.03092 0.000489 0.030831 

0.2 0.001551 0.001551 -0.05108 0.001551 0.052328 

0.3 0.004379 0.004379 -0.05903 0.004379 0.065548 

0.4 0.011978 0.011978 -0.05606 0.011978 0.077694 

0.5 0.03181 0.03181 -0.0382 0.03181 0.099387 

0.6 0.081082 0.081082 0.009243 0.081082 0.149276 

0.7 0.193754 0.193754 0.118299 0.193754 0.2611 

0.8 0.411552 0.411552 0.336546 0.411552 0.472625 

0.9 0.655631 0.655631 0.601393 0.655631 0.695913 

1 1 1 1 1 1 
 

 

Table III: Re. no.=15 and t=0.4 
                        crispvalue        midvalue         leftvalue       midvalue       rightvalue    
            y   																		�                   U                     U                 U                  U 

0 0 0 0 0 0 

0.1 0.000655 0.000655 -0.05705 0.000655 0.05643 

0.2 0.002132 0.002132 -0.09804 0.002132 0.098917 

0.3 0.006135 0.006135 -0.11831 0.006135 0.126385 

0.4 0.016793 0.016793 -0.11911 0.016793 0.14827 

0.5 0.043486 0.043486 -0.09714 0.043486 0.17965 

0.6 0.104405 0.104405 -0.03824 0.104405 0.241746 

0.7 0.224902 0.224902 0.081858 0.224902 0.359012 

0.8 0.415971 0.415971 0.283714 0.415971 0.533649 

0.9 0.686897 0.686897 0.597843 0.686897 0.760546 

1 1 1 1 1 1 
 

 

 Table I, Table II and Table III are few example of the output of the programming 
developed for the said problems. Here we see that the mid value of the fuzzy solution and 
the crisp solution of the problems are in good agreement. 

 In the next part we draw some graph of the fuzzy solution which are obtain from 
the developed computer codes for the same problems. The graphs of fuzzy values of  U 
against Y for different times and Renoylds number are presented in figures 2-9. 
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At t=0, Re.=10,15,20 

(Left values)    Figure 2: 

 

 

(Right values)                  Figure 3:

 

 
Re.10, t=0.00, 0.2,0.4 

( left values)                 Figure 4: 
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Re.10, t=0.00, 0.2,0.4  

(right values)         Figure 5: 

 

Re.15, t=0.00, 0.2,0.4 
( left values)            Figure 6: 

 

(Right values)            Figure 7: 
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Re.20, t=0.00, 0.2, 0.4 

( left values)                     Figure 8: 

 
 

(Right values)                                   Figure 9: 

 

4. Conclusion   
From the graphs we observed that when Reynolds Number increases the uncertainty 
decreases. From the physical model of Reynolds Number we know that increase of 
Reynolds Number indicate that the viscous force is less so flow pattern is uniform so 
clearly less chance of uncertainty will arise.  
 For all Reynolds Number within the interval of time [0,0.2] we get a point of 
inflection near y=0.6. When time @ ≥ 0.4 the uncertainty of the solution of the problem 
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increases. For the given set of parameter within the interval [0,0.2] there is less 
uncertainty.   
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