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Abstract. In this paper an attempt has been made to fuzzify some parametats an
variables appeared in equations of fluid mechaaickthen defined the fuzzy derivatives
using Zadeh extension principle. The differentiqli@&ions governing the Couetee type
flow which is one of the fundamental boundary vapreblems is also fuzzified. The
fuzzified boundary value problem has been diseitizising Crank Nicolson scheme.
Finally, numerical solution is carried out by dexghg computer codes for the problem.
The crisp solution and mid value solution of thartgular fuzzified system of equations
are in good agreement.
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1. Introduction

In day to day life we encounter many situation nodghem are fuzzy in nature [1,2,3,4].
To tackle such fuzziness in many application relgieoblems mathematical models or
mathematical equation are derived. Many such problare models to differential

equation having some prescribe boundary conditidhen a real world problem is

transformed value problem of ordinary differengjuations, or a system of differential
equations, we cannot be usually sure that the msgedrfect to illustrate the system. For

example, the initial value problem (IVP)% = f(x,y), x(yy) =y, the initial value

may not be known exactly and the functfanay contain uncertain parameter. If they are
estimated through certain measurements, they aressarily subject to errors. The
analysis of the effect of these errors leads tosthdy of the qualitative behavior of the
solutions of the IVP. If the nature of the errorrédom then we can discuss, random
differential equation with random initial data. Hewver, if the underlying structure is not
probabilistic due to subjective choices, it woulel tatural to employ fuzzy differential
equations. The solution and behaviors of such rdiffgal equation are fuzzy in nature.
So it is important to fuzzifed the differential eqwns appeared in many branches of
science and technology such as Physics, Fluid MecsiaMechanical Engineering and
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Civil Engineering. Such models are successivelyiegn the fields of civil engineering
[5], population model [6] and as well in modelinghydraulic [7].

The first fuzzy valued function was developed byafig and Zadeh [8]. After
that Dubois and Prade [9], Puri and Ralescu [1@lea [11] Seikkala [12] etc. came
with their own approaches. Subsequently lots ofeReher has done the work on the
field of fuzzy differential equation see e.g.[12,13].

For the solution of such differential equation mamesearchers investigated
numerical solution with the numerical methods swh Runge-Kutta [15], Fuzzy
transform [16], difference methods [17], shootingtihbd [18] and many more.

Since couette type flow problems are a fundamefibaé problem in Fluid
Dynamics having many applications drawn the atbentif many works in [17,18,19]. In
this paper an attempt has been made to fuzzifdifferential equation that represents the
couette type flow and to solve the fuzzified bougdealue problems. The fuzzify the
differential equation after discritisation usinga@k-Nickolson methods has been solved
by developing computer codes for the fuzzified targ value problem. It is interesting
to note that the mid solution is almost identiciéhvthat the crisp solution.

2. Preliminaries
(i) Basic of fuzzy set theory
Definition 2.1. Fuzzy set : Let X is a collection of objects denoted gerlgral x, then a
fuzzy set of ordered pairs A in X is a set of orpairs

A= {(xpa(0) : x € X} )
ug is called the membership function or grade of mestiip ofx in A. The range of the
membership function is a subset of the non-negatet number whose supremum is
finite.

Definition 2.2. Height of a fuzzy set: It is defined as the largest membership grade
obtained by any element of a fuzzy set. i.e.

h(A) = supxexua(x).
Definition 2.3. Normal fuzzy set: A fuzzy set A is said to be normalit4) = 1.

Definition 2.4. Triangular fuzzy set: A fuzzy set is called triangular if the membership
function of the set is given by

b ) <x<b

.uA(x)z C:?C
) b<x<c

c—b

Simply it can be express ds= [a, b, c]

Definition 2.5. Operation of triangular fuzzy set:
A, =[ay,bycq] and A; = [ay, by ;] are two triangular fuzzy number then Operation of
these two are defined as

(a) Addition: A; + A, = [ay,by,¢1| + [az baco] = [a1 + az, by + bycy + ¢5 ]

(b) Subtraction: A; —A, = [al,bl,cl] — [az,bz,cz] = [a; —az, by — by ¢y — 3]

374



Numerical Study of Fuzzified Boundary Value ProblieEmCouette type Flow of Fluid
Mechanics

(c) Scalar Multiplication: cA; = [oay, oby 0¢4]

.. K b
(d) Division: =% = [mln T, 2% max T], whereT = {& & 2
A b, az Az Cz €

(e) Multiplication: A; * A, = [mina;b; product of mid point, max a;b;]

Definition 2.6. Zadeh extension principle:
When a crisp functiofi: X — Yis said to be fuzzified when it is extended toacfuzzy
set definedon X and Y. i.e
f:X-7Y

And its inverse has the form fLYy-X
The extension principle state that for a given gerfanction f: X - Y induces two
functionsf and f~! which are defined above for which membership fuorctire given
by

B [f(/i)] (y) = Supxiy=f(x)ﬂ£(x)
For all A€ X. And

_ [fF 1 (B)](x) = upf (x)
ForallBeY

(i) Basic of dynamics

Definition 2.7. Incompressible fluid: A fluid is said to be incompressible if it requiras
huge variation in pressure to produce some appeciariation of its density. A fluid
which is not incompressible is called compresdiloiiel.

Definition 2.8. Laminar flow: The flow in which each fluid particle followed aftgte
curve and the curve trace out any two distinctdflparticle can't intersect, is called
Laminar flow.

Definition 2.9. Steady and Unsteady flow: A flow in which property and condition

associated with the motion of the fluid are indajsam of time so that the flow pattern

remain unchanged with the time is called steady,flatherwise it is unsteady.
Mathematically for steady flow

a
EP =0,

For unsteady rovv(%P # 0,

where P may be any of velocity, density, presseraperature etc.

Definition 2.10. Rotational and irrotational flows: A flow in which fluid particle go on
rotating about their own axes, while flowing, isdsto be rotational. And the flow which
is not rotational is called irrotational flow.

Definition 2.11. Equation of continuity: This is also known as equation of conservation

of mass. In vector notation the equation is givgn b % + V. (qu =0.
In Cartesian co-ordinate system the above equiimgduce to
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ap ] ) 2 _

Frie (Pu):l' % (pv) + - (pw) = 0
Whereq = ui + vj + wk andu, v,w are the velocity component gfalong the
x,y and z direction.

Definition 2.12. Navier -Stokes equation: Navier stockes is a set of equation of motion
for a viscous incompressible fluid. In Cartesiaordinates these are is given by

{6u+ 6u+ 6u+ au}_ B 6p+ 62u+62u+62u
Plac T 4o TVay TWa TPE T TG T2 T a2
{6v+ 6v+ 6v+ av}_ B 6p+ 62v+62v+62v
Plac T ¥ax Tlay T War T PB T o TG Y o Y a2

{6W+ 6W+ 0W+ OW}_ B 0p+ 62w+62W+62W
Plac T ox TVay TV o TP o G T e T o

Definition 2.13. Reynolds number: This is a dimensionless number which is defined as
the ratio of inertia force by viscous force is knmoas Reynolds number.

Mathematically the expression for Reynolds numer i

oo VL
“=

where V and L are the characteristic velocity amgth and) = %. Here the symbol
indicates the usual meaning.

Couette flow: The couette flow is the flow problem of a visconsdmpressible fluid
between two parallel plates, one plate is at redtthe other is moving with a constant
velocity. This is one of the problems for which etxaolution of Navier-Stoke equation
for one dimensional flow with given boundary coruatit.

Objective of the problem: The main objective of these type problems is toaiobt
velocity, temperature, coefficient of skin frictiorand to estimate the rate of Heat
Transfer .

Physical model of the problems. Consider a laminar flow Newtonian incompressible
fluid between two infinite parallel plate which akept at a distancé apart. We
assuming that upper plate is moving in the directibx- axis with constant velocity,u
andy — axis perpendicular to and fluid flow properties are independentzoAlso we
have taken that there is no external force.

AY _
U=uy R i
h —— *
=
> > %
y=0, u=0
Figure 1
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The flow is considered to be unsteady, laminar sindle phase. The governing
equation and the boundary condition of this flowiken by the equation.

Mathematical model: The governing Equation and boundary conditionhef bove
problem is given by the following
Equation of continuity

oL 2+ a(pu) + —(pv) + —(pW) =0 (1)
Navier Stockes equatlon

p{ +ua—u+ —+wau} pB, _a_p u{%+%+%} (2)
p{E+ua+v—+w } pB, _a_+ {sz Zyz % )
PG+ udt+ v+ wil) = pB, — L+ u {ﬁ+a—y2+azz} 4)

Assumption under coquette flow are given by
(a) The plates are of infinite extent in x-directi@o, all quantities are independent

of x. i.e. %( T) = 0 . WhereT may be velocity, Temperature etc.

(b) Similarly as there is no body force involved in thetion so the physical
quantity all are equivalent to zero, i.e. we hag= B, =B, =0

(c) There is no motion along— axis so we havel% (T)=0,w=0.WhereT
may be velocity, Temperature etc

Under these assumption equations (1),(2),(3) and (4) become
u _  u 5)
P = Moy (
The boundary condition: u(t,0)=0 and u(t,h)=u
To make the equation and the boundary conditiomgdsionless let us assume

-4 =t e
u= Uo t= To y= Lo
Then the above equation reduces to
pooo%u ou
pLOUO ay’z B at’
ou’ 1 9%
= (6)

at’ — Re. ay'?
whereRe. indicate the Reynold number.

The boundary conditions become: t',0§=0,
ut’,1)=1. (7)
Fuzzified the above equation and boundary conditierhave,
R ®)
at' _ Re. a“’z
And the boundary condition 1(t',0)=0,
a(t’,1)=1 9)

(For our simplicity we just remove the bar giverearch variable. Example
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u’ became u,t'became t etc. ) Then The above equation discrtized using Crank
Nicolson scheme and the final finite difference atpns become:

Uppr,j U 1 . l* Uipqje1 T Wije1 — 2Uipq,j — 285 — Uip1 1 T U1
At Re. 2 Ay?
N ui+1’j — u—i_]’ +£_2* %* Uit j+1HULj+1 2ul+2,;22ul,] Uiy, j-1HUij—1 (10)
wherei =123, ...cccocccc... M, j=1,2,3,......... N. And the boundary condition
u(i,1) =0,
u(i,N+1)=1 (11)

Zedeh Extension principle we shall convert the a&beguation into fuzzyfied form we
have

AT . l* Uis1,j41 T Uijer = 2Uipqj —2U;j = Uiq o1 + U g

RE. 2 AY?

1) =0,

UGN+1D) =1
Here all block letter are the fuzzified form of ttespective variables.

= Uiy = Ui +

(12)
With the boundary condition
(13)

3. Result and discussion
The equation for the crisp variable is given in #guation (6) with the boundary
condition (7) and the fuzzified boundary value peobis given by (8) - (9).

The Crank-Nickolson Scheme for the discritized agiqun (6)-(7) is given in
Equation (10)-(11). The discritized equations (8(9} after applying Zadeh extension
principle are given by12) and(13).

The discritized equation$10) - (11) and (12) - (13) are solved by an iterative
scheme based on Gauss Saidel method for diffeireet ds well as Reynolds number.
Solution is carried out by developing computer cofie the problem. The solution tables
for Reynolds number Re= 10, t= 0 ; Re= 15, t= R25 20, t= 0.4; are given below.

Tablel: Re. no.=10 and t=0.0

crispvalue midvalue leftvalue midvalue rightvalue
y u U U U u

0 0 0 0 0 0
0.1 0.000296 0.000295 -0.01376 0.000295 0.013876
0.2 0.000887 0.000887 -0.0206 0.000887 0.021591
0.3 0.002365 0.002365 -0.02199 0.002365 0.025805
0.4 0.006208 0.006208 -0.01926 0.006208 0.030703
0.5 0.01626 0.01626 -0.00983 0.01626 0.041145
0.6 0.042572 0.042572 0.015262 0.042572 0.067499
0.7 0.111456 0.111456 0.081489 0.111456 0.135929
0.8 0.291796 0.291796 0.258609 0.291796 0.314371
0.9 0.763932 0.763932 0.73317 0.763932 0.779979

1 1 1 1 1 1
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Tablell: Re. no.=10 and t=0.2

crispvalue midvalue leftvalue midvalue  rightvalue
y u U U U U
0 0 0 0 0 0
0.1 0.000489 0.000489 -0.03092  0.000489  0.030831
0.2 0.001551 0.001551 -0.05108 0.001551  0.052328
0.3 0.004379 0.004379 -0.05903 0.004379  0.065548
0.4 0.011978 0.011978 -0.05606 0.011978 0.077694
0.5 0.03181 0.03181 -0.0382 0.03181  0.099387
0.6 0.081082 0.081082 0.009243 0.081082 0.149276
0.7 0.193754 0.193754 0.118299 0.193754 0.2611
0.8 0.411552 0.411552 0.336546  0.411552  0.472625
0.9 0.655631 0.655631 0.601393 0.655631 0.695913
1 1 1 1 1 1
Tablelll: Re. no.=15 and t=0.4
crispvalue midvalue leftvalue midvalue rightvalue
y u U U U U

0 0 0 0 0 0

0.1 0.000655 0.000655 -0.05705 0.000655 0.05643

0.2 0.002132 0.002132 -0.09804 0.002132 0.098917

0.3 0.006135 0.006135 -0.11831 0.006135 0.126385

0.4 0.016793 0.016793 -0.11911 0.016793 0.14827

0.5 0.043486 0.043486 -0.09714 0.043486 0.17965

0.6 0.104405 0.104405 -0.03824 0.104405 0.241746

0.7 0.224902 0.224902 0.081858 0.224902 0.359012

0.8 0.415971 0.415971 0.283714 0.415971 0.533649

0.9 0.686897 0.686897 0.597843 0.686897 0.760546

1 1 1 1 1 1

Table I, Table Il and Table Ill are few exampletod output of the programming
developed for the said problems. Here we see lteatid value of the fuzzy solution and

the crisp solution of the problems are in good egrent.

In the next part we draw some graph of the fuztyt®n which are obtain from
the developed computer codes for the same problehesgraphs of fuzzy values of U
against Y for different times and Renoylds numbergaesented in figures 2-9.
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At t=0, Re.=10,15,20

(Left values) Figure2:
1.2
1
0.8 // = Seriesl
0.6
0.4 / e Series2
0.2 / Series3
0 T T 1
0.2 ¢ 0:2 04 06 0:8 1 1.2
(Right values) Figure3:
1.2
1
0.8
// Seriesl
0.6
0.4 // Series2
0.2 Y, Series3
0 1 1 T T 1
0 0.2 0.4 0.6 0.8 1 1.2
Re.10, t=0.00, 0.2,0.4
('left values) Figure4:
1.2
1
0.8 //
0.6 / Seriesl
0.4
0.2 /// Series2
Series3

S~

:z:i 0 \2 0:4 y o

-0.6
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Re.10, t=0.00, 0.2,0.4
(right values) Figure5:
1.2
1 A
0.8 //
/ Seriesl
0.6
0.4 / / / Series2
0.2 / / / Series3
0 0.2 0.4 0.6 0.8 1 1.2
Re.15, t=0.00, 0.2,0.4
('left values) Figure®6:
1.2
1
08 /
0.6 / Seriesl

0.4 / Series2

0.2 Series3
° ?% . .

-0.2 : 0.4 0 : .

0.4

(Right values) Figure7:

1.2

s 7
A

Seriesl

0.6
/// Series2

0.4
/ / / Series3

0.2

—
0 1 T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2
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Re.20, t=0.00, 0.2, 0.4

(left values) Figure8:
1.2
1 /
0.8
06 Seriesl
Series2
0.4 // Series3
1 1.2
(Right values) Figure9:
1.2
1
0.8
/ Seriesl
0.6
/// Series2
0.4
/// Series3
0.2 /
0 0.2 0.4 0.6 0.8 1 1.2

4. Conclusion
From the graphs we observed that when Reynolds Muonmzreases the uncertainty
decreases. From the physical model of Reynolds Mume know that increase of
Reynolds Number indicate that the viscous forcéess so flow pattern is uniform so
clearly less chance of uncertainty will arise.

For all Reynolds Number within the interval of &nf0,0.2] we get a point of
inflection near y=0.6. When time> 0.4 the uncertainty of the solution of the problem
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increases. For the given set of parameter withim ithiterval [0,0.2] there is less
uncertainty.
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