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1. Introduction 
The notion of partial metric spaces, which allow non-zero self-distance, was introduced 
as a generalization of metric spaces by Matthews [14] in 1994 where he gave a 
generalization of  Banach’s contraction mapping theorem over a metric space. Since then, 
many researchers have worked on different aspects, in particular, in the realm of fixed 
point theory of partial metric spaces. For investigations in partial metric spaces, works of 
Valero and Oltra [9, 15], Romaguera [16], Altun et al. [6], Choudhury [2, 3] are 
noteworthy. In this connection it should also be mentioned that before the introduction of 
partial metric spaces, there were other generalizations of metric spaces, most notably 2-
metric spaces and generalized metric spaces where fixed point theorems for contractive 
mappings had been investigated (see for example the work of  Das et al. [4, 10] or Dey et 
al. [17]. Again in [1, 5, 11] one finds several fixed point theorems proved for operators 
involving Kannan contractions, weak contractions and ground space sometimes endowed 
with an associated graph. In particular, exclusively with Kannan contraction in fixed 
point theory, we have references like [8,12,13].  
 In the year 1977, Weston [7] defined d-point for a real-valued functionhon a 
metric space (�, �) and obtained a characterization of completeness ofthe metric space (�, �). Further, he applied the result in fixed point theory over a complete metric space (�, �). 
 In any generalization of metric spaces, completeness has always been one of the 
most fundamental properties. In particular characterizations of completeness has been of 
much interest. In this paper, we have defined p-h point in the setting of partial metric 
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spacesand studied the completeness of a partial metric space with the aid of such p-h 
points. Also, the concept of p-h points was utilized to deduce some fixed point theorems 
over complete metric spaces. 
 
We recall a few definitions first. 
 
 A partial metric on �is a function �: � × � → ℝ�(the set of nonnegative real 
numbers) satisfying conditions as under: 
For all
, �, � ∈ �, 

(i) 
 = �if and only if�(
, 
) = �(�, �) = �(
, �), 
(ii)  �(
, 
) ≤ �(
, �), 
(iii)  �(
, �) = �(�, 
), 
(iv) �(
, �) ≤ �(
, �) + �(�, �) − �(�, �). 

 If  � is a partial metric on the set �, (�, �) is known as a partial metricspace. 
Thus in a partial metric space (�, �), each point does not necessarily possess zero 
distance from itself. Of course, a metric space is a partial metric space while the converse 
is false. 
 
Example 1.1. Take ℕ = set of all natural numbers, and � ∶  ℕ ×  ℕ →  ℝ� is defined by 

�(�, �) = � 1� if  � = �,1� + 1� if  � ≠ �.� 
Then (ℕ, �) is a partial metric space. 
 
Now let us give a look into the topological aspects of a partial metric space (�, �). 
 
If 
 ∈ � and  > 0, then the set #$(
) = { � ∈ � ∶  �(
, �) < �(
, 
) +   } is called a �-
open ball in (�, �). By routine check up one finds {#$(
)},
 ∈ �and  > 0 is a base to 
generate a topology () called the partial metric topologyon �, and this topology () is *+. 
 
We have the following definitions in a partial metric space (�, �). 
 
Definition 1.2. A sequence {
,}in a partial metric space (�, �) is said tobe a �-Cauchy 
sequence if lim/,,→∞ �(
,, 
/)exists. 
 
Definition 1.3. A sequence {
,} in a partial metric space (�, �) is said tobe �-convergent 
at 
+ ∈ � if  lim,→∞ �(
,, 
+) = �(
+, 
+). 
 
Definition 1.4. A partial metric space (�, �) is said to be complete if every �-Cauchy 
sequence in (�, �) �-converges to a point of �, i.e., if {
,} is �-Cauchy in (�, �), there is 
a point 
+ ∈ � such that lim,,/→∞ �(
,, 
/) = lim,→∞ �(
,, 
+) = �(
+, 
+). 
 
2. Main results 
Before going into the main result, we give some basic definitions. 
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Definition 2.1. A function ℎ ∶ (�, �)  →  ℝ (with usual topology) is said to be �-lower 
semi continuous (�-1.s.c.) at 1 ∈ � if given  > 0, there is a δ >0 such that ℎ(
) > ℎ(1) −   for 
 ∈ �-#2(1),  
or, equivalently, if {
,} is a sequence in (�, �) �-converging to 1, then  lim,→∞3(
,) ≥  3(1). 
Also ℎ is said to be a �-l.s.c. function on �if it is so at every point of �. 
 
Definition 2.2. Given a function ℎ ∶ (�, �)  →  ℝ (with usual topology) a point 
+ ∈ � is 
said to be a �-ℎ point if and only if for every 
 ∈ �with
 ≠ 
+, ℎ(
+) − ℎ(
) < �(
+, 
) − �(
, 
)(> 0). 

 
Theorem 2.3. Let (�, �) be a complete partial metric space and ℎ ∶ (�, �)  →  ℝ be a �-
lower semi continuous function that is bounded below, then there is a �-ℎ point in �. 
Proof: Let ℎ ∶ (�, �)  →  ℝ be a �-lower semi continuous function that is bounded below 
where (�, �) is complete. We consider a member
5 ∈ �; let 
5 be not a �-ℎ point for ℎin �. Then we can find 
 ∈ � with 
 ≠ 
5 satisfying 
 ℎ(
5) − ℎ(
) ≥ �(
5, 
) − �(
, 
)      (> 0). 
We construct a sequence {
,} in �such that for each �, if 6, = inf{ℎ(
): ℎ(
,) − ℎ(
) ≥ �(
,, 
) − �(
, 
) > 0 },                                           (2.1) 
then 
,�5 ∈ � satisfies ℎ(
,) − ℎ(
,�5) ≥ �(
,, 
,�5) − �(
,�5, 
,�5) 

and ℎ(
,�5)< 6, + 5, .                                                                                                    (2.2) 

If some 
, is a �-ℎ point we are done; then 
,�5 = 
, or else (2.1) shows {ℎ(
,)} is 
monotonic decreasing. Suppose � > �. Then we have ℎ(
,) − ℎ(
/) = 8ℎ(
,) − ℎ(
,�5)9 + 8ℎ(
,�5) − ℎ(
,�:)9 + ⋯ + 8ℎ(
/<5) − ℎ(
/)9 ≥ 8�(
,, 
,�5) − �(
,�5, 
,�5)9 + 8�(
,�5, 
,�:) − �(
,�:, 
,�:)9       + ⋯ + (�(
/<5, 
/) − �(
/, 
/)) ≥ 8�(
,, 
,�:) − �(
,�:, 
,�:)9 + 8�(
,�:, 
,�=) − �(
,�=, 
,�=)9       + ⋯ + (�(
/<5, 
/) − �(
/, 
/)) ≥ 8�(
,, 
,�=) − �(
,�=, 
,�=)9 + ⋯ + (�(
/<5, 
/) − �(
/ , 
/)) ≥ �(
, , 
/) − �(
/, 
/) > 0. 
 
Thus ℎ(
,) − ℎ(
/) ≥ �(
,, 
/) − �(
/, 
/).                                                                  (2.3) 
 
As ℎ is bounded and {ℎ(
,)} is monotonic decreasing, {ℎ(
,)} is convergent and (2.3) 
says {
,} is �-convergent in the partial metric space (�, �). 
Let �-lim,→∞ 
, = 
+ ∈ �. 
Then we have  lim,,/→∞ �(
,, 
/) = lim,→∞�(
,, 
+) = �(
+, 
+). 
Now ℎ(
,) − ℎ(
+) ≥ �(
, , 
+) − �(
+, 
+).                                                                       (2.4) 
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This is true for all �. 
Otherwise for some �, we have  ℎ(
,) − ℎ(
+) < �(
, , 
+) − �(
+, 
+). 
Choose   > 0. Then ℎ(
,) − ℎ(
+) < �(
,, 
+) − �(
+, 
+) −  . 
Let  5 = �(
,, 
+) − �(
+, 
+) −  − ℎ(
,) + ℎ(
+)(> 0) . We apply �-l.s.c. of ℎ at 
+ 
to get ℎ(
+) −  5 < ℎ(
),    for all 
 ∈ �-#2(
+) for some > > 0, 

or,ℎ(
+) − {�(
,, 
+) − �(
+, 
+) −  − ℎ(
,) + ℎ(
+)} < ℎ(
), 
or,   ℎ(
,) − ℎ(
) < �(
,, 
+) − �(
+, 
+) −  . 
As  {
,} → 
+ , for large �, 
/ ∈ �-#2(
+) , so ℎ(
,) − ℎ(
/) < �(
,, 
+) − �(
+, 
+) −   < �(
,, 
/) + �(
/, 
+) − �(
/, 
/) − �(
+, 
+) −  . 
Taking > =  , we have ℎ(
,) − ℎ(
/) < �(
,, 
/) − �(
/, 
/). 
This contradicts (2.3) above. Therefore, for all �, (2.4) holds. 
 
We now claim that 
+ is a �-ℎpoint for ℎ. Otherwise, for some 
, ℎ(
+) − ℎ(
) ≥ �(
+, 
) − �(
, 
) > 0.(2.5) 
Replacing � by � + 1 in (2.4), we find ℎ(
,�5) − ℎ(
+) ≥ �(
,�5, 
+) − �(
+, 
+). 
Therefore ℎ(
) ≤ ℎ(
) + ℎ(
,�5) − ℎ(
+) 
 = ℎ(
,�5) + ℎ(
) − ℎ(
+) < 6, + 5, + ℎ(
) − ℎ(
+). 
As ℎ(
)  −  ℎ(
+) is negative from (2.5), taking large �, we have ℎ(
) < 6, ,which 
contradicts (2.1). Hence the proof is done. 
 Now as we look for the converse of Theorem 2.3, we have Theorem 2.5 below in 
this connection. 
 
Definition 2.4. Let (�, �) be a partial metric space. A function ℎ ∶ (�, �)  →  ℝ is said to 
be uniformly continuous on � if given  > 0, there exists > = >( ) > 0 such that  |ℎ(
) − ℎ(�)| <   
whenever 
, � ∈ � and   �(
, �) − min{�(
, 
), �(�, �)} < >. 
 
Theorem 2.5. Let (�, �) be a partial metric space which is not complete. Then there 
exists a uniformly continuous function ℎ ∶ (�, �)  →  ℝ which isbounded below and has 
no �-ℎ point in �. 
Proof. Suppose the partial metric space (�, �) is not complete and let {
,} be a �-Cauchy 
sequence in � which is not �-convergent. Then lim/,,→∞ �(
/ , 
, ) is finite. 
Let
 ∈ � such that�(
, 
,) ≠ �(
,, 
,) . We consider the sequence {2�(
, 
,) −2�(
,, 
,)} in ℝ.  
Since   �(
, 
,) ≤ �(
, 
/) + �(
/, 
,) − �(
/, 
/), we have 
{ �(
, 
,) − �(
,, 
,)} − {�(
, 
/) − �(
/, 
/)} ≤ �(
/  , 
, ) − �(
,, 
,) → 0  



On p-h Points and Completeness Property of a Partial Metric Space 

397 

 

as � → ∞ , which shows that {2�(
, 
,) − 2�(
,, 
,)} is a Cauchy sequence in ℝ. Let ℎ(
) be its limit. Then ℎ(
) > 0 so that ℎ is bounded below. 
Let 
+ ∈ �. Then |ℎ(
+) − ℎ(
)| = A lim,→∞[2�(
+ , 
,) − 2�(
, 
,)]A 
  = 2[�(
+, 
) − �(
, 
)] 
              ≤ 2[�(
+, 
) − min{�(
+, 
+), �(
, 
)}].    
Hence ℎ is uniformly continuous on �. Also, 
   ℎ(
+) + ℎ(
) ≥ 2�(
+, 
) − lim,→∞ 2�(
, , 
, ). 
So ℎ(
+) − ℎ(
) ≥ �(
+, 
) + 12 [ℎ(
+) − 3ℎ(
)] − lim,→∞ �(
, , 
, ). 
Now as 
 = 
/ , we have ℎ(
+) − ℎ(
) ≥ �(
+, 
) − �(
/, 
/) + [�(
/, 
/) − lim,→∞ �(
, , 
,)]

+ 12 [ℎ(
+) − 3ℎ(
)] 
so that as � becomes large, we get ℎ(
/) → 0 as � → ∞. Hence ℎ(
+) − ℎ(
) ≥ �(
+, 
) − �(
, 
) 
when 
 = 
/ , � is large, which further implies that
+ is not �-ℎ point. 
 
3. Application in fixed point theory 
Let (�, �) be a partial metric space and ℎ be as given. Define ≪ on � by the rule that for 
, � ∈ �, 
 ≪ � if and only if ℎ(�) − ℎ(
) ≥ �(
, �) − �(
, 
) > 0. 
Then 
 ≪ � relation orders �. The relation is transitive and antisymmetric. 
 
Definition 3.1. A point 
+ ∈ �is said to be a minimal point with respect to ≪ if and only 
if 
 ≪ 
+ implies 
 = 
+. 
 
Theorem 3.2. A point 
+ in � is �-ℎ point for ℎ if and only if 
+ is a minimal point with 
respect to ≪ . 
Proof: If a point 
+ ∈ � is a �-ℎ point for ℎ, then ℎ(
+) − ℎ(
) < �(
+, 
) − �(
, 
) 
for all 
 ∈ � with 
 ≠ 
+. This gives 
 ≪ 
+ only if 
 = 
+. Therefore 
+ is a minimal 
point with respect to ≪. 
Conversely, let 
+ be a minimal point with respect to ≪, so x ≪ 
+ implies 
 = 
+ , i.e., 
if
 ≠  
+, then ℎ(
+) − ℎ(
) < �(
+, 
) − �(
, 
) 
for all 
 ∈ � with 
 ≠ 
+. This implies 
+ is a �-ℎ point for ℎ.  
 
Theorem 3.3. Given a function 3 ∶ � →  �, it may be possible to take a partial metric �and a function ℎso that ≪ has the property 3(
) ≪ 
.Then any �-ℎpoint for ℎ is a fixed 
point of 3. 
Proof. Let 
+ be a �-ℎpoint for ℎ, then by Theorem 3.2, 
+is a minimal point with 
respect to ≪. Again by hypothesis  3(
+) ≪ 
+. It then follows that 3(
+) =  
+, a fixed 
point of 3. 
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4. Some applications of G-Hpoints in a metric space 
Theorem 4.1. (Kannan Fixed Point Theorem) 
Let (�, �) be a complete metric space and 3 ∶  � →  � satisfies �(3(
), 3(�)) ≤ I[�8
, 3(
)9 + �8�, 3(�)9] 
for all 
, � ∈ �  where 0 ≤  I < 5:, and let �(
, 3(
)) be a l.s.c. function, then 3 has a 

fixed point in �. 
Proof. We take  ℎ(
) = 5<J5<:J �8
, 3(
)9. 

Then ℎ ∶ � → ℝ is al.s.c. function being bounded below. In view of Theorem 2.3, we find 
that there is a �-ℎ point in �. 
Now ℎ(
) − ℎ83(
)9 = 1 − I1 − 2I K�8
, 3(
)9 − �83(
), 3:(
)9L. 
Again, �83(
), 3:(
)9 ≤ IK�8
, 3(
)9 + �83(
), 3:(
)9L 
which  implies �83(
), 3:(
)9 ≤ I1 − I �8
, 3(
)9. 
Hence ℎ(
) − ℎ83(
)9 ≥ 1 − I1 − 2I [�8
, 3(
)9 − I1 − I �(
, 3(
))] 

= M 1 − I1 − 2IN M1 − I − I1 − I N �(
, 3(
)) ≥ �8
, 3(
)9. 
Therefore 3(
) ≪ 
. Now we apply Theorem 3.3 to conclude that 3 has a fixed point in �. 

 
Theorem 4.2. (B. Fisher Theorem) 
Let (�, �) be a complete metric space and 3 ∶  � →  � satisfies �(3(
), 3(�)) ≤ I[�8
, 3(�)9 + �8�, 3(
)9] 
for all 
, � ∈ � , where 0 ≤  I < 5: and let �(
, 3(
)) be a l.s.c. function, then 3 has a 

fixed point in �. 
Proof: Here also we take ℎ(
) = 1 − I1 − 2I �8
, 3(
)9. 
Then   ℎ(
) − ℎ83(
)9 = 5<J5<:J [�8
, 3(
)9 − �83(
), 3:(
)9]. 
Now �83(
), 3:(
)9 ≤ IK�8
, 3:(
)9 + �83(
), 3(
)9L ≤ IK�8
, 3(
)9 + �(3(
), 3:(
))L 
so that �83(
), 3:(
)9 ≤ I1 − I �8
, 3(
)9. 



On p-h Points and Completeness Property of a Partial Metric Space 

399 

 

Hence ℎ(
) − ℎ83(
)9 ≥ �8
, 3(
)9. 
Thus 3(
) ≪ 
. Since by Theorem 2.3, we get a �-ℎ of ℎ in �, we find that there exists a 
fixed point of 3 in �. 
 
Theorem 4.3. Let (�, �) be a complete metric space and 3: � →  � satisfies �83(
), 3(�)9 ≤ IK�8
, 3(
)9 + �8�, 3(�)9L + O�(
, �)+ Pmax {�8
, 3(�)9, �8�, 3(
)9} 
for all 
 ∈ � where I, O, P ≥ 0, 2I + O + 2P < 1, and let �(
, 3(
)) be a l.s.c. function, 
then 3 has a fixed point in �. 

Proof. Here we take ℎ(
) = S �8
, 3(
)9, for all 
 ∈ �, where S = 5<J<T5<:J<U<:T. 

Then  ℎ(
) − ℎ83(
)9 = S K�8
, 3(
)9 − �83(
), 3:(
)9L. 
Now �83(
), 3:(
)9 ≤ IK�8
, 3(
)9 + �83(
), 3:(
)9L + O�8
, 3(
)9 +P max { �(
, 3:(
)), �83(
), 3(
)9} ≤ IK�8
, 3(
)9 + �83(
), 3:(
)9L + O�8
, 3(
)9 + P�(
, 3:(
)) ≤ (I + O + P)�8
, 3(
)9 + (I + P)�83(
), 3:(
)9. 
This  gives �83(
), 3:(
)9 ≤ I + O + P1 − I − P �8
, 3(
)9, 
which implies ℎ(
) − ℎ83(
)9 ≥ S V1 − I + O + P1 − I − PW �8
, 3(
)9 = �8
, 3(
)9. 
Hence 3(
) ≪ 
. Then we proceed as before to complete the proof. 
 
5. Conclusions 
In this paper, a kind of characterization of completeness property of a partial metric space 
has been achieved, by using the notion of �-ℎ point relevant to fixed point theory in the 
space. 
 
Acknowledgement. The authors remain thankful to the reviewer for the kind and valuable 
advice for improvement of the paper in the present form. 
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