Annals of Pure and Applied Mathematics

Vol. 16, No. 2, 2018, 393-400 Annals of

ISSN: 2279-087X (P), 2279-0888(online) .
Published on 3 March 2018 Pure and Applied
www.researchmathsci.org :

DOI: http://dx.doi.org/10.22457/apam.v16n2al6 Mathe—n‘atlcs

On p-h Points and Completeness Property of a Partial
Metric Space
A.P.Baisnab' and Sumana Pal?

Department of Mathematics, Lady Brabourne College
Kolkata-700017, West Bengal, India. E-mail: baisnababhog@ghhoo.com
’Department of Mathematics, Aliah University
Kolkata-700156, West Bengal, India. E-mail: sumana.pal@booan
“Corresponding author

Received 10 February 2018; accepted 28 February 2018
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1. Introduction

The notion of partial metric spaces, which allown+zero self-distance, was introduced
as a generalization of metric spaces by Matthewq [&@ 1994 where he gave a
generalization of Banach'’s contraction mappingthm over a metric space. Since then,
many researchers have worked on different aspiectsrticular, in the realm of fixed
point theory of partial metric spaces. For investiigns in partial metric spaces, works of
Valero and Oltra [9, 15], Romaguera [16], Altun at [6], Choudhury [2, 3] are
noteworthy. In this connection it should also bentimmed that before the introduction of
partial metric spaces, there were other generalizmbf metric spaces, most notably 2-
metric spaces and generalized metric spaces whe foint theorems for contractive
mappings had been investigated (see for exampledhieof Das et al. [4, 10] or Dey et
al. [17]. Again in [1, 5, 11] one finds severaldik point theorems proved for operators
involving Kannan contractions, weak contractiond ground space sometimes endowed
with an associated graph. In particular, exclugivelth Kannan contraction in fixed
point theory, we have references like [8,12,13].

In the year 1977, Weston [7] definedpoint for a real-valued functitlon a
metric spac€X,d) and obtained a characterization of completeneds ahetric space
(X,d). Further, he applied the result in fixed pointatyeover a complete metric space
X, d).

In any generalization of metric spaces, completedas always been one of the
most fundamental properties. In particular char&adons of completeness has been of
much interest. In this paper, we have defipeld point in the setting of partial metric
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spacesand studied the completeness of a partizicnsptace with the aid of sugkh
points. Also, the concept pfh points was utilized to deduce some fixed point thetw
over complete metric spaces.

We recall a few definitions first.

A partial metric ornXis a functionp: X x X - R*(the set of nonnegative real
numbers) satisfying conditions as under:
For alk, y,z € X,
0] x = yif and only ifo(x, x) = p(y,¥) = p(x,¥),
(i)  pkx) <plxy),
(i) pC,y) =pQ,x),
(v)  p(x2)<pky)+py,2)—pl ).
If p is a partial metric on the s&t (X,p) is known as a partial metricspace.
Thus in a partial metric spadg,p), each point does not necessarily possess zero
distance from itself. Of course, a metric space partial metric space while the converse
is false.

Example 1.1. TakeN = set of all natural numbers, and N x N —» R* is defined by

1.

—if m=n,
pmmn) =4 . "
—+—if m#n.
n m

Then(N, p) is a partial metric space.
Now let us give a look into the topological aspegfta partial metric spad&(, p).

If x € X ande > 0, then the seB.(x) ={y € X : p(x,y) <p(x,x) + € }is called ap-
open ball in(X,p). By routine check up one findB{(x)},x € Xande > 0is a base to
generate a topology, called the partial metric topologydf) and this topology,, is Tj.

We have the following definitions in a partial nmietspaceX, p).

Definition 1.2. A sequencéx, }in a partial metric spadg, p) is said tobe @-Cauchy
sequence im,;, ., p (X, Xy )EXiStS.

Definition 1.3. A sequencéx,,} in a partial metric spadg, p) is said tobep-convergent
atxy € X if lim,_, p(x,, x9) = p(x0,%g)-

Definition 1.4. A partial metric spac€X,p) is said to be complete if eveprCauchy
sequence ifX, p) p-converges to a point df, i.e., if{x,} isp-Cauchy in(X, p), there is
a pointx, € X such that

My, o0 P (X X)) = limy 0, p(x0, X0) = P (X0, X0)-

2. Main results
Before going into the main result, we give someaddsfinitions.

394



Onp-h Points and Completeness Property of a Partial M&piace

Definition 2.1. A functionh : (X,p) — R (with usual topology) is said to Ipelower
semi continuouspfl.s.c.) atu € X if givene > 0, there is & >0 such that

h(x) > h(u) — € for x € p-Bs(u),
or, equivalently, ifx,} is a sequence iX, p) p-converging tas, then

lim f(x,) 2 f(w).

Also h is said to be @-l.s.c. function orXif it is so at every point of.

Definition 2.2. Given a functiorh : (X,p) — R (with usual topology) a point, € X is
said to be @-h point if and only if for every € Xwithx # x,

h(xo) = h(x) < p(xo,x) — p(x,x)(> 0).

Theorem 2.3. Let (X, p) be a complete partial metric space andX,p) — R be ap-
lower semi continuous function that is bounded Wwekben there is @-h point inX.
Proof: Leth : (X,p) = R be ap-lower semi continuous function that is boundeatel
where(X, p) is complete. We consider a membe€ X; letx; be not a-h point forhin
X. Then we can find € X with x # x; satisfying

h(x1) —h(x) = p(xy,x) —p(x,x) (> 0).
We construct a sequenge, } in Xsuch that for each, if
¢, = inf{h(x): h(x,) — h(x) = p(x,, x) — p(x,x) >0}, (2.2)
thenx,, ., € X satisfies

h(xn) — h(xpi1) = p(Xn, Xns1) — P(Xns1, Xna1)

andh(x,41)< Cy + . P
If somex,, is ap-h point we are done; thes,.; = x, or else (2.1) show(x,)} is
monotonic decreasing. Suppase> n. Then we have

h(xn) - h(xm)

= (h(xn) - h(xn+1)) + (h(xn+1) - h(xn+2)) + -t (h(xm—l) - h(xm))

= (p(xn: xn+1) - p(xn+1: xn+1)) + (p(xn+1:xn+2) - p(xn+2:xn+2))

L (p(xm—l'xm) - p(xm' xm))
= (p(xn: xn+2) - p(xn+2: xn+2)) + (p(xn+2:xn+3) - p(xn+3:xn+3))
+eeet (p(xm—lnxm) - p(xm: xm))
= (p(xnt xn+3) - p(xn+3' xn+3)) +oet (p(xm—ltxm) - p(xm'xm))
= p(xn'xm) - p(xm' xm) > 0.

Thus
h(xn) - h(xm) = p(xn: xm) - p(xm: xm)- (2-3)

As h is bounded anfh(x,,)} is monotonic decreasinfi(x,,)} is convergent and (2.3)
says{x,} is p-convergent in the partial metric spacgp).

Let p-lim,,_,, x, = x € X.

Then we have

lim p(x,, %) = lim p(x,, x¢) = p(xg, Xg)-
n,m-o n—-wn

Now
h(xy,) — h(xg) = p(xp, xo) — p(x0, Xo)- (2.4)
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This is true for alh.
Otherwise for some, we have
h(xn) — h(xo) < p(xn, x0) — P(x0, X0)-
Choosee > 0. Then

h(xp) — h(x0) < p(xn, x0) — P(xg, Xo) — €.
Lete; = p(xy, xo) — (%0, X0) — € — h(x,) + h(xy)(> 0) . We applyp-l.s.c. ofh atx,
to get

h(xg) — €1 < h(x), forallx € p-Bs(x,) for somes > 0,
or,h(xg) — {p(xn, x0) — p(xg,x0) — € — h(x,) + h(xg)} < h(x),

or, h(xy) — h(x) < p(xn, xo) — p(Xo, %) — €.
As {x,} - x, , for largem, x,, € p-Bs(x,) , SO

h(xn) - h(xm) < p(xn: xo) - p(xo.xo) —€

< p(xn' xm) + p(xm' xO) - p(xm' xm) - P(xo'xo) — €.
Takings = €, we have
h(xn) - h(xm) < p(xn: xm) - p(xm; xm)-

This contradicts (2.3) above. Therefore, fomal(2.4) holds.

We now claim thak, is ap-hpoint forh. Otherwise, for some,

h(x) — h(x) = p(xo,x) — p(x,x) > 0.(2.5)
Replacingn byn + 1 in (2.4), we find

h(xn41) — h(xg) = p(xn41,%0) — P (X0, Xo)-
Therefore
h(x) < h(x) + h(xp41) — h(xo)

= h(xn+1) + h(x) — h(xo)
< e+ 4 h(x) — h(xo).
As h(x) — h(x,) is negative from (2.5), taking large we haveh(x) < ¢, ,which
contradicts (2.1). Hence the proof is done.

Now as we look for the converse of Theorem 2.3hawe Theorem 2.5 below in
this connection.

Definition 2.4. Let (X, p) be a partial metric space. A functibn (X,p) — R s said to
be uniformly continuous oK if givene > 0, there exist$ = §(e) > 0 such that

lh(x) —h()| <€
whenever,y € X and p(x,y) —min{p(x,x), p(y,¥)} <3.

Theorem 2.5. Let (X,p) be a partial metric space which is not completeenTthere
exists a uniformly continuous functign: (X,p) — R which isbounded below and has
no p-h point inX.

Proof. Suppose the partial metric spadgp) is not complete and I€k,,} be ap-Cauchy
sequence iX which is notp-convergent. Thelimy,, ;.. (X , X, ) is finite.

Letx € X such that(x, x,) # p(x,, x,,) . We consider the sequen@(x, x,,) —

2p(xp, xp)} INR.

Since p(x, x,) < p(x, xm) + p(Xm X)) — P(Xm, Xm), WE have

{p(x, xn) —p(n, xn)} - {p(x' xm) - p(xmrxm)} Sp@m,xn) =P, %) = 0
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asn — o, which shows tha2p(x, x,) — 2p(x,, x,)} is a Cauchy sequencelia Let
h(x) be its limit. Therh(x) > 0 so thath is bounded below.
Letx, € X. Then

|hCxo) — (G| = |lim [2p(xo, X5) — 2P (x, Xn)]

= 2[p(x01x) - p(xl x)]

< z[p(xw X) - min{P(xo' xO)' p(x: X)}]
Henceh is uniformly continuous o#. Also,

h(xo) + h(x) = 2p(xo, x) — limy_o 2p(Xy , Xy ).
So
1
h(x9) = h(x) 2 p(xo, ) + 5 [h(x0) = 3h()] — lim p(xn, xp ).
Now asx = x,,, , we have
h(xo) — h(x) = p(xo, X) = P(Xm Xm) + [P(Xm, ¥m) — lim p(xn, x7)]

1
+ 5 [h(xo) = 3h(0)]
so that asn becomes large, we gkfx,,,) » 0 asm — o.Hence

h(xo) — h(x) = p(xo,x) — p(x, %)
whenx = x,, , m is large, which further implies thgt is notp-h point.

3. Application in fixed point theory
Let (X, p) be a partial metric space ahdbe as given. Define on X by the rule that for
x,y €X,
x L yifand only ifh(y) — h(x) = p(x,y) — p(x,x) > 0.
Thenx « y relation orders. The relation is transitive and antisymmetric.

Definition 3.1. A pointx, € Xis said to be a minimal point with respecktdf and only
if x < xo iImpliesx = x,.

Theorem 3.2. A pointx, in X is p-h point forh if and only ifx, is a minimal point with
respect to< .
Proof: If a pointx, € X is ap-h point forh, then

h(xo) — h(x) <p(xo,x) — p(x,x)
for all x € X with x # x,. This givesx « x,only if x = x,. Thereforex, is a minimal
point with respect te<.
Conversely, let, be a minimal point with respect &0, so x< x, impliesx = x,, i.e.,
ifx = x4, then

h(xo) — h(x) < p(xp,x) — p(x,x)
for all x € X with x # x,. This impliesx, is ap-h point forh.

Theorem 3.3. Given a functionf : X — X, it may be possible to take a partial metric
pand a functiorhso that« has the propertf(x) « x.Then any-hpoint forh is a fixed
point of f.

Proof. Let x, be ap-hpoint for h, then by Theorem 3.2,is a minimal point with
respect tok. Again by hypothesisf(x;) < x,. It then follows thaif (xy) = x,, a fixed
point of f.
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4. Some applications of p-hpointsin a metric space
Theorem 4.1. (Kannan Fixed Point Theorem)

Let (X, d) be a complete metric space ghd X — X satisfies
d(f(x), f) < ald(x, f(x)) +d(y, fFO))]
for all x,y € X where0 < a < % and letd(x, f(x)) be a l.s.c. function, thefi has a

fixed point inX.
Proof. We take

h(x) = f_‘fa d(x, f(x)).
Thenh : X - Ris al.s.c. function being bounded below. In viewrbeorem 2.3, we find
that there is d-h point inX.

Now

1—«a
1—-2«a

h(x) = h(f(x)) = [d(x, f(0) = d(f GO, fF2(0)]-
Again,

d(f(x0), f2(0) < ald(x, f(0) + d(f(x), f2())]
which implies

A0, £2()) < 7= d(x.F ().

Hence
l1—«a a
R = h(f () = T [A(x, F(0) = =7 dCx FC)]
l—a\/l—-a—a
- (1 = 2a>< 1-a )d(x’f(x))
> d(x,f(x))

Thereforef (x) <« x. Now we apply Theorem 3.3 to conclude tfidtas a fixed point in
X.

Theorem 4.2. (B. Fisher Theorem)
Let (X, d) be a complete metric space ghd X — X satisfies

d(f (), f)) < ald(x, f)) +d(y, f(X))]
forallx,y € X,where0 < a < % and letd(x, f (x)) be al.s.c. function, thefihas a

fixed point inX.
Proof: Here also we take

b 1—«a
@) = 7—-d(xf().
Then
h(x) = h(f () = 5= [d(x, £ (1)) — d(F (), F2(0))].
Now
d(f(0), f2(0) < a[d(x, f2(0) + d(f (), f ()]
< afd(x, f(x)) + d(f (x), f2(x))]
so that

A0, £2()) < = d(x.F ).
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Hence

h(x) — h(f(x)) = d(x, f(x)).
Thusf(x) « x. Since by Theorem 2.3, we getis of h in X, we find that there exists a
fixed point off in X.

Theorem 4.3. Let (X, d) be a complete metric space ghd — X satisfies
d(f ), f)) < ald(x, f(0) + d(y, f)] + Bd(x,¥)

+ymax {d(x, f (), d(y, f(x))}
for allx € X wherea, 8,y =0, 2a + 8 + 2y < 1, and letd(x, f (x)) be a l.s.c. function,
thenf has a fixed point iX.

Proof. Here we také(x) = a d(x, f(x)), for all x € X, wherea = 1_;;?—;:2)/
Then
h(x) = h(f(x)) = a [d(x, f(x)) = d(f (), £2(x))].
Now
d(f (), f2(0) < ald(x, f(x)) + d(f (), f2(x))] + Bd(x, f(x))
+y max { d(x, f2(x)), d(f (x), f(x))}
< ald(x, f(x)) + d(f(x), f2(x))] + Bd(x, f(x)) + yd(x, f2(x))
< (@+B+y)d(x f(x) + (@ +p)d(f(x), f2(x)).
This gives
A6, 20) < 5L atw o),
which implies
a+f+y _
h(x) — h(f(x)) >a [1 — m] d(x,f(x)) = d(x,f(x)).

Hencef (x) < x. Then we proceed as before to complete the proof.

5. Conclusions

In this paper, a kind of characterization of cortgtess property of a partial metric space
has been achieved, by using the notiop-@&fpoint relevant to fixed point theory in the
space.
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